IRRATIONAL INDEFINITE QUADRATIC FORMS. By S. CHOWLA, Andhra University, Waltair. Received July 13, 1935. ## 1. I have recently proved the Theorem. If the c's are not all of one sign and if all the ratios $\frac{c_s}{c_r}$ (s \neq t) are irrational, we can find integers n_1, \dots, n_r (not all zero) such that $$\left|\begin{array}{cc} r \\ \sum \\ s=1 \end{array} c_s n_s^2 \right| < \epsilon$$ where ϵ is an arbitrary positive number and $r \geqslant 9$. This was deduced from a theorem of Jarnik and Walfisz in the theory of lattice points. In the same direction we have Theorem 1. Let $$c_1$$, $c_2 > 0$, $\sqrt{\frac{c_1}{c_2}}$ irrational, (1) $$\sqrt{\frac{c_1}{c_2}} = a_1 + \frac{1}{a_2 + a_3 + \cdots}$$ Then, to every positive ϵ , we can find infinitely many pairs of positive integers n_1 and n_2 , such that (2) $$|n_1^2c_1-n_2^2c_2|<\epsilon$$ whenever $a_n \neq O(1)$, but not otherwise. Theorem 2. If the c's are not all of one sign, then for 'almost all' sets (c_1, c_2, \ldots, c_r) we can find integers n_1, \ldots, n_r (not all zero) such that $$\left|\begin{array}{cc} r \\ \sum \\ s=1 \end{array}\right| c_s n_s^2 \quad \left| \quad < \epsilon \right|$$ where ϵ is an arbitrary positive number and $r \ge 2$. 2. Let $\frac{p_n}{q_n}$ be the *n*th convergent to (1). Then $$(3) \quad \left| \quad \frac{p_n}{q_n} \quad - \quad \sqrt{\frac{c_1}{c_2}} \quad \right| \quad < \quad \frac{1}{a_n q_n^2}.$$ ¹ Jour. London Math. Soc., 1934, 9, 162-63. Further, (2) requires, (4) $$\left| \frac{n_2}{n_1} - \sqrt{\frac{c_1}{c_2}} \right| = 0 \left(\frac{1}{n_1^2} \right)$$ From (3) and (4) we obtain Theorem 1, since a_n is unbounded. To prove Theorem 2, we can assume without loss of generality that c_1 and c_2 have opposite signs. Let $c_1 = b_1 > 0$, $c_2 = -b_2$. Then $b_1 > 0$, $b_2 > 0$. We know that if $$\theta = d_1 + \frac{1}{d_2 +} \quad \frac{1}{d_3 + \cdots}$$ where the d's are positive integers, then $d_n \neq 0$ (1) for almost all θ . It now follows from Theorem 1 that for almost all (b_1, b_2) we can find positive integers n_1 and n_2 such that (5) $$|b_1n_1^2 - b_2n_2^2| < \epsilon$$ where ϵ is an arbitrary positive number. Hence for almost all sets (b_1, b_2) we have from (5), (6) $$|b_1n_1^2 - b_2n_2^2 + c_3.0^2 + c_4.0^2 + \cdots + c_r.0^2| < \epsilon [n_1, n_2 > 0].$$ Hence Theorem 2 follows from (6), as we can take $n_3 = \cdots = n_r = 0$. If in Theorem 2 we require that the integers n_1, \dots, n_r are all different from zero, then Theorem 2 is no longer easy to prove — there is, however, little doubt that the theorem is true even with this restriction.