IRRATIONAL INDEFINITE QUADRATIC FORMS.

By S. CHOWLA, Andhra University, Waltair.

Received July 13, 1935.

1. I have recently proved the

Theorem. If the c's are not all of one sign and if all the ratios $\frac{c_s}{c_r}$ (s \neq t) are irrational, we can find integers n_1, \dots, n_r (not all zero) such that

$$\left|\begin{array}{cc} r \\ \sum \\ s=1 \end{array} c_s n_s^2 \right| < \epsilon$$

where ϵ is an arbitrary positive number and $r \geqslant 9$.

This was deduced from a theorem of Jarnik and Walfisz in the theory of lattice points.

In the same direction we have

Theorem 1. Let
$$c_1$$
, $c_2 > 0$, $\sqrt{\frac{c_1}{c_2}}$ irrational,

(1)
$$\sqrt{\frac{c_1}{c_2}} = a_1 + \frac{1}{a_2 + a_3 + \cdots}$$

Then, to every positive ϵ , we can find infinitely many pairs of positive integers n_1 and n_2 , such that

(2)
$$|n_1^2c_1-n_2^2c_2|<\epsilon$$

whenever $a_n \neq O(1)$, but not otherwise.

Theorem 2. If the c's are not all of one sign, then for 'almost all' sets (c_1, c_2, \ldots, c_r) we can find integers n_1, \ldots, n_r (not all zero) such that

$$\left|\begin{array}{cc} r \\ \sum \\ s=1 \end{array}\right| c_s n_s^2 \quad \left| \quad < \epsilon \right|$$

where ϵ is an arbitrary positive number and $r \ge 2$.

2. Let $\frac{p_n}{q_n}$ be the *n*th convergent to (1).

Then

$$(3) \quad \left| \quad \frac{p_n}{q_n} \quad - \quad \sqrt{\frac{c_1}{c_2}} \quad \right| \quad < \quad \frac{1}{a_n q_n^2}.$$

¹ Jour. London Math. Soc., 1934, 9, 162-63.

Further, (2) requires,

(4)
$$\left| \frac{n_2}{n_1} - \sqrt{\frac{c_1}{c_2}} \right| = 0 \left(\frac{1}{n_1^2} \right)$$

From (3) and (4) we obtain Theorem 1, since a_n is unbounded.

To prove Theorem 2, we can assume without loss of generality that c_1 and c_2 have opposite signs. Let $c_1 = b_1 > 0$, $c_2 = -b_2$. Then $b_1 > 0$, $b_2 > 0$.

We know that if

$$\theta = d_1 + \frac{1}{d_2 +} \quad \frac{1}{d_3 + \cdots}$$

where the d's are positive integers, then $d_n \neq 0$ (1) for almost all θ . It now follows from Theorem 1 that for almost all (b_1, b_2) we can find positive integers n_1 and n_2 such that

(5)
$$|b_1n_1^2 - b_2n_2^2| < \epsilon$$

where ϵ is an arbitrary positive number. Hence for almost all sets (b_1, b_2) we have from (5),

(6)
$$|b_1n_1^2 - b_2n_2^2 + c_3.0^2 + c_4.0^2 + \cdots + c_r.0^2| < \epsilon [n_1, n_2 > 0].$$
 Hence Theorem 2 follows from (6), as we can take $n_3 = \cdots = n_r = 0$.

If in Theorem 2 we require that the integers n_1, \dots, n_r are all different from zero, then Theorem 2 is no longer easy to prove — there is, however, little doubt that the theorem is true even with this restriction.