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1. WrIGHT has announced that

TuroreEM 1. Every positive integer N 0 (mod 8) s expressible in the
form

(1) N =m® + my* + my® -+ m,®
where the m’s are integers satisfying

N 5 .
T -t = 0N [1<i<4]

and he has proved (loc. ¢i8.) that this result is true with
? —m;2 =0 (N).

By an entirely elementary method we prove the sharper
TeroREM II. If N#0 (mod 8), then (1) is true with

N 3 L.
(2) T~ m;*=0(N*) [4 =123, 4.
Proof.
Case I. N = 2or 6 (mod 8)
Write
3) N —dm>="P

where 4m? is the nearest even perfect square below N. Then P
2, 6 (mod 8). Hence

n

(4:) P = %12 _{" 5\522 + x32
where %; + %, +%; = 0 (mod 2). Hence we can write
(5) Xy =a+bx,=b+¢x =c+a

where a4, b, ¢ are integers. From (3), (4), (5),

(6) N=@m-+aP4(m+0>+m-+c)P +m—a—0>b—c)p?
where, since

(7) P =0 (N}

! This is a special case of his result in Q. J. M. (Oxford), 1936. Tchudakoff has
recently proved a similar result for cubes.
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we have from (4) and (B), .
(8) a, b, ¢ =0 (%)
Hence
(9) (m + a)® =m* + 2ma + a®
3 1
=7I§— + 0O (¥N) + O (N*) 4 O (N?)
? + O (NI)

and the same is true of (m + b)?, (m + )%, (m —a —b —c). Thus
Theorem II is proved in Case I [from (6) and (9)].
Case II. N =1 (mod 2).

Let 4m? — 9m be the nearest integer of this form below N. Put

(10) N —4m? +2m =P
so that P = 1 (mod 2) and 4 P — 1 = 3 (mod 8).
Hence

(11) 4P — 1 =x,2 + %52 4 x3?

where %, %,, %, are all odd and can therefore be chosen so that (by changing
all their signs if mecessary)

(12) %y + %y + x5 = 1 (mod 4)
If we put

(13) 2, =2b +2¢ — 1, %, =2¢ + 2a — 1, %3 = 2a + 26 — 1

it follows from (12) and (13) that a, b, ¢ are all integers. From (11) and (13),

(14) 4P —1 =8(a% + 8% 4 c® 4 ab -+ bc + ca)

—8(a +b+¢c) + 3.
or

(15) P =2(a®+ b+ %+ ab + bc + ca)

—2(@+b+c) + 1

From (10) and (15),
(16) N =m—aP*+ (m — b2+ (m —c)?

+m4a-+b+c—1)2

3
Since a, b, ¢ are O (N*) the rest of the proof proceeds as in Case I.
Case I111. = 4 (mod 8).

This follows from Case II by mu]tlphcatlon by 4. Theorem II is now
completely proved.
Note added 10-7-37.

Wright's proof of Theorem I has appeared in Proc. London Math. Soc.,

42 (1937), 481-500. The error term is improved to O(N°® fte ) for any pOSl"
tive e. Our index is slightly better.




