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LEr Ay(x) denote the number of lattice points inside and on the
hypersphere
X3+ %02+ oo %2
and let V; (x) denote its volurne We denote by P; (x) the * Gitterrest ”,
so that
Py (%) = Ap (%) — Vi (%).
We show here that
I. 2 P ~3Ve(R) [E=2].
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1. In this section we prove that if >0 then
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For R(s)>0 it is known that
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Also we have

| e (— 1) 2\ 2+ b
(1-5) Ju (%)= m2=0 I+ (m+1+p) 9) '

It follows that for u> 0,
(1-6) 2 (x—m)* =1 v ﬂ“ﬂ
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Since for u>0,

Tu+g® =0 (Vw)
(1.1) follows from (1-6) and (1-7).
9. Now assume that (I) has been proved for some 2. We shall then
show it is true for (B+1). Write
(2:1) Vilx) = 1”'7(773“22@%)
We have .
Apa(R) = Via(R) +V§k+1(R)

= AzR)+ 2{: A,é(R—-’i’l«2)

= C,gxk/ 2,

VR YR
= Vi(R)+PyR) +23 ViR—n?) +2Z P4R—n?)

‘\/R
= Vi(R)+P4(R)+2C; & (R— n2)H +2Z Pp(R—n?).
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Hence, using (1-1),

| Vi
Pro1(x) = Cur?+ Pp(x) — Cpxtl + O(x44) + 2.2 Pi(x—n?)
1
¥ x
= Pi(x)+ 22 Pi(x—n2)+ O(x*/4)
1
Now assume (I) and we get

2 Ppa (%) = {3 C R¥2+ o (R2)}

TR

) A/R
+0 (R4 )+ 2 5 {4 Cp (R — n2)H2 40 (RH2)}
1
£+1 £+1
=34+Cu R 2 +0\R 2 (& = 3].

3. It remains to prove the case 2= 3.
case* k= 2 as follows:

We write, for | x| <1

oo 2 oo
(3-1) (Z’ x”z) = 1+4 2 7 (n) %"

=1

This is deduced from the

and
oo 3 co
(3-2) (Z x”z) =14+ X 73 (n) "

=1

Let ¢(n) = 1 if n is a perfect square, ¢, = 0 otherwise. It follows
from (3-1) and (3-2) that

(3-3) 73(n) = 8 ﬂzl‘]—l c(m) ¥(n—m) + 4 7(n) + 2 c(n).
Hence |
r—1 T
39 I ) = 87 e [;(R-—m)-{-P(R-—m):I

+ 42 (k) + 2T c(n).
ngE R nLR
Write f(x) for the fractional part of x. Then
(3:5) 2 clm) = vx— f(¥3).

m<L e

It follows that if # = f( 4/R), then

r—1
(3:6) 2 [Wm—f(¥m)] = X (R—m)cim)= X (R—m)c(m).
m=1 m<Rr—1 m<R
— R (YR —6) — (4/R3——- 2 (VRD— 6)2 VR6-- g

* The case.k = 2 is also an easy deduction from known results. In this Paper a
completely elementary proof is indicated (see section 4),
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whence
. 1
3.7 X Vm) = 0 + [2 R32+1 YR+ —= ]

(== YR=[§ R~ R+ (~02+0-1) vR+%~3_§+g] |
3 2
— iR+ VR (PPl (—P—F+ T D R

From (3-4) and (3-6) we obtain

(3-8) X rs(n) = 2ar [% R¥2_3 R+ 4R (—62+6—3) +23——6—2+~§]
ng R 3 26
+ 8  ¢m) P(R—m)+[= R+4 PR)]+ 22 c(m).
m<LR—1 MmLR

It follows that

(3-9) P3(R) =1 + i' vy (n)—§ wR32
~ 8% c\(m) P(R—m) + 4 P(R)

m<=Rr

+ 28 olm)+2m YR (—62+0—13)

m<R

+ 27 &+ — -—: 6)
Now we have

(3-10) T #n) = Tx + P(x) = T x+0(¥a).

nLw 4 4
Where, assuming (I) for £ = 2.
(3-11) X P (g— ;;)R+0(R)

TR

From (3-9) and (3-11),

(3:12) T Pylx) = 1521 o(m) [(—-;}) (R—m) +0 (R)J

<R

+O(R) + ﬂ{ Vu {f (V) —f2 (Vn)—3}

+O(R) + 25 c(m) (R+ L—m)
———R3/2+27-r I n {f (V) —f2 (Vn)—1} + o0 (R3P).

TL\R

We can prove in an elementary manner, similar to the proof of (3.7),

(3-13) Z' Vu {f(¥n)—f2 (Yn)—1} = OR).
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From (3-12) and (3-13),
(5.14) £ Py (x) = o R¥2+0 (R3M),
* <R
which is the case & = 3 of (I).

4. We have

(4-1) Pyolx)=1-+14 P(x).

To prove (3-11) assumed above, we first show, similar to the proof of
(3-14), that

(4.2) F Pm= T 40 (R).

<R

Thus we obtain completely elementary proofs of (I) in the cases k=2
and k=3. (1) then follows by mathematical induction for k>3, using the
results of sections 1 and 2, which, however, involve a knowledge of Bessel
functions. It is not difficult to comstruct a completely elementary proof of
(1), similar to the cases k=2 and k=3 [i.e., not using sections 1 and 2].

It is also possible to prove (I) for & > 2 from known results in the
theory of lattice points due to Walfisz and Landau.

5. Nothing is known about the signs of Py (n) and P, (n), » an integer.
Thus (I) proves that the inequalities,

(5-1) Ps(n)>0, Py(n)>0
are true for infinitely many infegers n. It seems not impossible that these
inequalities are true for all large positive integers n. ‘This, if true, must lie
very deep.

6. It may be remarked that the method used above also applies to the
ellipsoid of & dimensions:

a2+ - T ag=x,

where aj,- - -, az are positive integers. Here, also, (I)* holds.

* Credit is claimed for the completely elem i
‘ ' : ' ely elementary method of proving (I
in this paper [details were given only for k=3, the case k=2 is considera%ls(f :i::ﬁgz?ted





