THE CLASS-NUMBER OF BINARY QUADRATIC FORMS.

By S. CHOWLA, Ph.D., Andhra University, Waltair.

Received November 13, 1934.

- 1. Let $h(\Delta)$ denote the number of primitive classes of binary quadratic forms of negative determinant $-\Delta$; $\pi(x; k, l)$ the number of primes $\equiv l \pmod{k}$ not exceeding $x; \phi(n)$, Euler's totient function. I have recently shown that
 - (I) If $m > \frac{1}{2}$, $x \ge exp(k^m)$, then (1) $\lim_{k \to \infty} \frac{\pi(x; k, l)}{x/\phi(k) \log x} = 1$ [(k, l) = 1].
 - (II) If (I) is true for $m < \frac{1}{2}$, then $(2) \quad h(\Delta) > \Delta^{\frac{1}{2} m \epsilon}$ for every $\epsilon > 0$ and every $\Delta > \Delta_0$ (m, ϵ) .

I gave a complete proof of (I) but only indicated how (II) could be proved by a combination of my arguments with transcendental methods due to Gronwall and Landau. My object here is to give a direct proof of (II) based on elementary reasoning. In fact I prove the slightly stronger result:

(III) Let $0 < m < \frac{1}{2}$. If there is a positive constant² c such that when (k, 1) = 1,

(3)
$$\pi(x; k, l) > \frac{c x}{\phi(k) \log x} [x \ge \exp(k^m), k \ge k_0(m)]$$

then

(4)
$$h(\Delta) > \Delta^{\frac{1}{2}-m-\epsilon}$$

for every $\epsilon > 0$ and all $\Delta > \Delta_0$ (m, ϵ).

2. Notation.

w denotes a typical prime $\equiv 1 \pmod{4\Delta}$; t is a typical positive integer $\equiv 1 \pmod{4\Delta}$; $y = \exp(\Delta^m)$; $u, v \text{ are integers} \geqslant 0.$

¹ In a paper entitled "Primes in Arithmetical Progression," *Indian Physico-Mathematical Journal*, 1934, 5, 35-43, I have used (I) to prove an asymptotic formula (conjectured by Hardy and Littlewood) for the number of representations of a positive integer as a sum of four squares and a prime. See *Zentralblatt für Mathematik*, 1934, Band 9, 153.

 $^{^{2}}$ c is an absolute positive constant.

We further assume that Δ is a prime, but the argument is easily extended to general \triangle .

Under a summation sign Σ we first indicate the variables of summation and then the conditions of summation.

Let $(a_n, b_n, c_n) \equiv a_n u^2 + 2b_n u v + c_n v^2$ be a typical reduced primitive form of negative determinant $-\Delta$, so that by giving n the values 1, 2, ..., $h(\Delta)$ we get all the (reduced) primitive classes of negative determinant $-\triangle$. Then³

(5)
$$\begin{array}{cccc}
\lambda(\Delta) & \Sigma & \Sigma & 1 & \geqslant \Sigma & 1 \\
x & 1 & w & w & w & w \\
& w & (a_n, b_n, c_n) & w & \leqslant y
\end{array}$$
(6)
$$\begin{array}{cccc}
\Sigma & 1 & \leqslant & \Sigma & 1 \\
w & (a_n, b_n, c_n) & t & (a_n, b_n, c_n) \\
v & \leqslant y & t & \leqslant y
\end{array}$$

(6)
$$\begin{array}{ccc}
\Sigma & 1 & \leqslant & \Sigma & 1 \\
w & & t & t \\
w & = (a_n, b_n, c_n) & t & = (a_n, b_n, c_n) \\
v & \leqslant y & t \leqslant y
\end{array}$$

Now
$$t = a_n u^2 + 2b_n u v + c_n v^2$$
 gives $a_n t = (a_n u + b_n v)^2 + \Delta v^2$, $c_n t = (c_n v + b_n u)^2 + \Delta u^2$,

which with $t \leq y$ imply that v can assume at most⁴

В
$$\sqrt{\frac{a_n y}{\Delta}}$$

consecutive values, and that u can assume at most

B
$$\sqrt{\frac{c_n y}{\wedge}}$$

consecutive values. Further, for fixed v, the congruence $a_n u^2 + 2b_n u v +$ $c_n v^2 \equiv 1 \pmod{4\Delta}$ has B solutions (mod Δ). From these considerations it follows that

(7)
$$\sum_{\substack{t \ t \leq (a_n, b_n, c_n)}} \Sigma 1 = B\sqrt{\frac{a_n c_n}{\Delta^2}} \times \frac{y}{\Delta} = \frac{B y}{\Delta^{3/2}},$$

since $a_n c_n = \Delta + b_n^2 \leqslant \frac{4\Delta}{3}$. From (3), (5), (6) and (7) it follows that

(8)
$$\frac{y}{(\Delta - 1) \log y} = B \frac{h(\Delta) y}{\Delta^{3/2}}$$

If $h(\Delta) < \Delta^{\frac{1}{2}-m-\epsilon}$ then (8) is false for all $\Delta > \Delta_0$ (m, ϵ) and hence (4) is proved.

³ Since w can be represented by (a_n, b_n, c_n) for some n in $1 \le n \le h(\triangle)$.

⁴ The numbers B are less than absolute positive constants.

3. As an application of (III) we note the following derivation of a well-known result.

Titchmarsh⁵ has shown that

If the 'extended Riemann hypothesis' is true then, provided (k, 1) = 1,

(9)
$$\lim_{k \to \infty} \frac{\pi(x; k, l)}{x/\phi(k) \log x} = 1 \quad [x \geqslant k^3].$$

From (III) and (9) it follows at once that

If the 'extended Riemann hypothesis' is true then

$$h(\Delta) > \Delta^{\frac{1}{2} - \epsilon} [\Delta > \Delta_0(\epsilon)].$$

The latter result is a special case of results due to Gronwall, Hecke and Landau.⁶

4. Dr. Heilbronn has drawn my attention to a small error in my paper⁷ "An Extension of Heilbronn's Class-Number Theorem". On page 144, line 2 of that paper the word "exactly" should be replaced by the expression "not less than". The rest of the proof stands unaltered.

⁵ Palermo Rendiconti, 1930, 54, 414-429. The result cited is a special case of Theorem 6

⁶ See Landau, Göttinger Nachrichten, 1918. The best-known result in this direction is due to Littlewood, Proc. Lond. Math. Soc., 2, 1928, 27, 358-372.

⁷ Proc. Ind. Acad. Sci., A, 1934, 1, 143-144.