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1. LET v(k) denote the least value of s such that every integer #
(positive or negative) can be expressed in the form

0 = eyt temF

where m; is a positive integer or zero, and ¢; = £1. Thisfunction has been
studied by Wright.l He proves

(k) = O (2385,
The principal result of this paper is
Theorem 1. For every k> 1 there exists a g = g(k) such that

(1) %< g< 2k+1
and

(2) v(g) < k24-9%+6.
From this follows immediately
Theorem 2. There ave infinitely many k such that
(8) o(k) < (B—1)2+0(k—1)+6 = ATk
2. Notation. We write ,

(4:) ai, ”')aﬂlzbl’ "':bﬂz

o

when
(5) Zad =200 (8 =1,2,38, -, k),
a b

and the b’s are not merely a permutation of the @’s. N(k) denotes the least
value of m such that (4) is possible. The trivial result N(k) > k+1 is a
consequence of the impossibility of

k
als"':a/ezblj"'xbk' .

In what follows the B’s are positive mumbers (whose values differ from
place to place) depending ounly on k and s. Further

m
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Two sets of integets a, (» < ) and b, (» < ) are said to bhe different if
the ?’s are not a permutation of the a’s.

We deduce Theorem 1 from
Theorem 3.

B4k
(6) NE)< 5+
We prove this result in the next section.
3.

(6) is a consequence of
Theoren 4. Let m < k,s = Ak 41

2
posttive integers (m-+1 in number)

Then there ave infinitely many sets of

(= #®, g, nd, ... 0™}
such that the system of (m-+1) equations

(A) # = : n? [r==~Fk; 1K< r<< ml
has movre than Bnem solutions. =

Proof: (1) The case m = L.

Tt is known that we can find infinitely many positive integers =
such that the equation

s
(7) #A = X uf
t=1
1
has more than Bn# solutions in positive integers #,(r < s). In (7) we
must have
1
8 0< 2 ny < s

I<s
Let us arrange the solutions of (7) according to the value of 2 =,

It
I<s
follows from (7) and (8) that there is a positive integer () such that the
equations

W= X nr (r==%k;r=1)
I<s
s 1
PR
have more than B#n !

the proof of Theorem 4 for m

Bn?: solutions in #,(r < s).
= 1.

(2) Assume the theorem proved for m where m < &k — 2. We shall
then prove it for m-+1. ‘

From the case » = & of (A) we obtain .

This completes

m-t1

(9) 0< 22 wrlgsn k
t<s
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Now arrange the solutions (s, - -

2 %tm'*'l.
i<s
It follows from the theorem (proved for m) and from (9) that there

exists an integer n(»+l) such that the number of solutions of (A) which also
satisfy

-, %) of (A) according to the value of

pmt) = 3 pmtl
I<s

is more than Bn® where b= pm — m+
proved for m--1,

1
= P,u+1. Hence the theorem is

(3) From (1) and (2) Theorem 4 follows by mathematical induction.

Proof of Theorem 3 : Puttings = —]—k -+ 1, m = k—1 in Theorem 4 we
get
E+1 1 k—1 1
bm="—5 Tt l-g =3>0
Hence there exist at least two different sets of integers {a;, ---, a;} and
{b;, - - -, by} such that ;
Jar =2 (r=Fk;1<r<k—1)
a b
which is the same as (4) with s = m. Hence Theorem 3.

k*+k

4. Theorem 3 implies the existence of an s < —5—

ent sets of integers a,(r < s) and b,(r < s) such that
Y ar= X b (1 mgRh).
r<s r<S
The latter equation implies that
(10) 2 (x+a,)t— 2 (x+b,)% =
Torks r<s
Let g > % be the (least) integer such that continued integration of (10) gives
1) 2 (x+a)s — X (xt+b)e=c¢
r<s r<s

where ¢ == 0. Then g<s for

+1 and two d1ffer-

ar, "':axi bl: ""b:
is impossible. Hence we obtain

2 .
Theovem 5. There ts an s < —5— +k + 1, two different sels of integers

a,(r< s) and b,(t < s), and an mtege;' g satisfying
(12) k<g<s
such that

(13 2 am7= X b™
rs r<s

is true for m < g but ot true for m = g.
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5. From Theorem 5 we shall deduce the sharper

Theovem 6. There is an s < 7# -+ 1, two different sets of integers

a,(t < s) and b,(r < s), and an integer g satisfying

(14) 2 <g<g 2k
such that
(15) X am= X bm

r< 8 r<ls
1s true for m < g but not true for m = g.
Theorem 6 differs from Theorem 5 only in that (12) is replaced by the
sharper inequality (14).
6. In this section we prove the
Lemma. If a,(r < s) and b,(r < s) ave two different sets of integers such thai
P a," = PN brm

r<s r<s
is true for m < w but not true for m = w-+1 and if v is any inieger > w1,
then we can find two different sets of integers c,.(r < s) and d,(r < s) such that
2 o= X 47

r<s r<s
1s true for m < w but not true for m = y.
Proof. 1t follows from hypothesis that for arbitrary x,
(16) 2 (x+a )2l — X (v+b)2*l =¢ == 0.

r< s r 8
Integrating (16) (y—w—1) times we get
an 2 (xta)y — 2 (24b) = 2 a,x”
r< s TS r<y—w-1

where the coefficient of the highest power is @1 5= 0 since ¢ == 0. Hence
by proper choice of x, the right hand side of (17) is not zero. For such
x put ¢, = a,+%, d, = b,+x, and the lemma is proved.
7. We shall now deduce Theorem 6 from Theorem 5.
From (12) we see that there is a ¢ such that
(18) th <g< (t+DE [I1 <1<
Having found £ there is an m such that
(19) He+m) < g < Ho+m+1)
where 0 < m < k. Using our lemma (Section 6) and Theorem 5 we deduce

from (19) that we can find two different sets of integers ¢(r < s) and
d,(r < s) such that

| >
Sl
IS
1

@2) X b= x 49
r<s r<s

is true for § < (A+m) but not true for 6 = (A+m-+1).
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Hence putting

e, = ¢/, f?’ = d/
we have 2 different sets of integers ¢,(r < s) and f,(r < s) such that

2 oef= 3 fb

r< s r<s
is true for § < & -+m but not trae for § =k+m+1. Since m <&, Theorem
6 is now proved.
Eik 4
2 )

8. From Theorem 6 we can find s < two different sets

a,(r < s) and b{r < s), and a g satisfying

(21) k+1 < g< 2k+1
such that
(22) 2 (x+a)g— X (x+b)f = cx+d (c == 0)
VE ‘ 18 ‘

whence (as with Wright)
23) w(g) < 25+T(g) < 25 + 4g < R2+h+2+4(2k+ 1) = k24 9%+ 6.
From (21) and (23) Theorem 1 follows.
9. Denote by y(k) the least value of % such that
Z xt= X yf

sgm t<n
has infinitely many solutions in positive integers x5(s < m), Wt < m) with
(B) X1, * Xops Y1 *° ':yn) =1

and with m < n.
Now from Theorem 4, given any arbitrary r, we can find an s < kzgk
+1 and 7 sets (all different from each other) of s integers each, namely
{a11, Gr2, <+, A1k

{a219 A2, * aQS} ’

................

{arly a2, ’ a?’.\‘} ’
stch that
24) 2 aym= 2 @ (1< m< k)
t<s 1<s
is true for any 7, 7 (7, 7 < 7).
From (24), ‘
(28) 2 (xtan)t = 2 (x+ap)t
1<s 1<s
for any ¢, § < . Now for fixed 1,  suppose that a;; is the smallest of the
positive numbers a;;, @;. Then putting s = — a; in (25) we get a solu-
tion of

26) X xt= Z yf (m <n<s)

sgm t<n

with #, and y; positive and satisfying (B) above,.
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Since 7, j can be given any values upto » we get as many different

solutions of (26) as we like. Hence
B4k

Theorem T. 9k) € s< —— TL

10. From Theorem 6 and a process described by Wright (loc. cit., page
271) we get, easily,
Theorem 8. v(k) < exp (A vk log &),
where A is a positive constant independent of Z.





