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Exploitation of microbial wealth, of which almost 95% or more is still unexplored, is a growing need. The taxonomic
placements of a new isolate based on phenotypic characteristics are now being supported by information preserved
in the 168 rRNA gene. However, the analysis of 16S rDNA sequences retrieved from metagenome, by the available
bioinformatics tools, is subject to limitations. In this study, the occurrences of nucleotide features in 16S rDNA
sequences have been used to ascertain the taxonomic placement of organisms. The tetra- and penta-nucleotide features
were extracted from the training data set of the 16S rDNA sequence, and was subjected to an artificial neural network
(ANN) based tool known as self-organizing map (SOM), which helped in visualization of unsupervised classification.
For selection of significant features, principal component analysis (PCA) or curvilinear component analysis (CCA)
was applied. The SOM along with these techniques could discriminate the sample sequences with more than 90%
accuracy, highlighting the relevance of features. To ascertain the confidence level in the developed classification
approach, the test data set was specifically evaluated for Thiobacillus, with Acidiphilium, Paracocus and Starkeya,
which are taxonomically reassigned. The evaluation proved the excellent generalization capability of the developed
tool. The topology of genera in SOM supported the conventional chemo-biochemical classification reported in the
Bergey manual.
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1. Introduction

Molecular phylogenetic methods have revolutionized the
classifying and identification of organisms that occur in
microbial communities (Hugenholtz er a/.1998). Prior to
this development, the chemo-biochemical characteristics
of strains were used to derive the coefficient of similarity
(or percentage similarity) between the strains, leading to
what is known as numerical taxonomy (Garrity et al. 2001).
However, with the increase in the number of bacterial
isolates, it became apparent that many such phenotypic
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criteria have limitations. For a new isolate based only on
biochemical properties, quite often it is difficult to predict
the phylogeny or additional associated characteristics of
the isolate. Anticipating this, Woese (1987) suggested
the use of nucleotide sequence differences in a single
gene to investigate the evolutionary relationships. They
pioneered the use of rRNA for phylogenetic analysis, which
subsequently led to redrawing the universal tree of life and
opened a new era of molecular taxonomy.

The 16S rRNA gene is widely used to investigate the
evolutionary relationships of prokaryotes. Over the years,
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the 16S rDNA database has grown tremendously. In
taxonomy, the highly conserved regions group bacteria into
higher taxonomic orders, whereas the variable regions allow
classification at lower taxonomic levels, such as the genus
or species level (Amann et al. 1995). The method consist
of aligning the sequences using ClustalW/ClustalX and
then obtaining the pair-wise distance matrix based on the
alignment in order to provide taxonomic relatedness (Durbin
et al. 1998). The analysis also provides an estimate of the
evolutionary distance between sequences.

The early classification of life based on the YrRNA gene by
Carl Woese showed that bacteria could be divided into two
different groups, and Archaea has been made as an additional
group. The study led to the generation of the ribosomal RNA
data base that contained the sequence data originating from
either RNA or DNA versions of the 16S rRNA molecule
(Maidak et al. 1994). The majority of the sequences in the
database are generated from amplified PCR products of the
16S rRNA gene, where the templates were derived from
either genomic DNA of isolates or environmental DNA.
However, use of 16S rRNA data does have some problems,
which are mostly due to techniques involved in developing
the sequence data. In cases in which cDNA is synthesized
from the extracted total RNA from bacteria, the process is
carried out by reverse transcriptase, which has its limitations.
In cases in which rDNA is amplified from the metagenome
and cloned, sometimes, hybrids are formed between two
16S rRNA genes derived from different organisms present
in the same environment and they generate chimeras that
are difficult to classify (Ward et al. 1990; Amann et al.
1995). Yet, 16S rDNA is the usual data used for classifying
microorganisms, and in this study as well, we have used 16S
rDNA sequences in the analysis.

In this study, we have made an attempt to classify
organisms based on abstract information from sequences,
such short nucleotide patterns of length four or five base
pairs. In other words, the interest in this study was to know
whether the patterns and their occurrences in 16S rDNA
sequences hold information that can be used to distinguish
a set of genera from each other. This assertion rests on our
earlier study wherein we showed that the five most dominant
and closely related bacterial genera could be discriminated
using the di-nucleotide compositions of /6S rRNA gene
(Raje et al. 2002).

In recent years, artificial neural network (ANN)-based
tools have received wide acceptance in different application
domains, especially when the variable space is large. One
such well-known tool is the self-organizing maps (SOM).
This tool undergoes unsupervised learning and is particularly
useful in projecting/visualizing high-dimensional data
(Kohonen 1990). The important application of SOM is
classification (clustering), which has been exemplified in a
number of recent genomic studies. To cite a few, SOM along
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with PCA was used for sub-cellular locations of bacterial
proteins, resulting in a clear separation of cytoplasmic,
periplasmic and extra-cellular proteins (Schneider 1999). In
this study, the global sequence features based on amino acid
composition were used for localization. Later, SOM was also
used for the analysis of codon usage patterns of bacterial
genomes wherein the clustering of average codon usage of
main gene categories of genomes showed mixing of gene
classes (Wang et al. 2001). Further, SOM was employed to
analyse di- and tri-nucleotide frequencies in nine eukaryote
genomes and were able to recognize the species-specific
characteristics as a signature representation of each genome
(Abe et al. 2003). Subsequently, they used SOM in a wide
variety of prokaryotic and eukaryotic genomes wherein
the analysis of 1- and 10-kb genomic sequences from 65
prokaryotes and 6 from eukaryotes provided a clear species-
specific separation of major portions of the sequences
using SOM. Also, Kasturi ef al. (2003) studied the relative
dissimilarity between the gene expression profiles in
conjunction with anunsupervised SOM algorithm.

In this exercise, SOM has been used exclusively and also
in conjunction with linear and non-linear feature extraction
approaches such as PCA and curvilinear component analysis
(CCA). For training purpose, 800 16S rDNA sequences
belonging to 40 different genera were considered and each
sequence was represented by the frequency of occurrence
of various tetra- and penta-nucleotides. These tetra- and
penta-nucleotide combinations were treated as features
in this exercise. SOM along with the feature extraction
techniques could discriminate the sample sequences with
more than 90% accuracy. Moreover, the map also outlined
the territory for different taxonomic classes for the selected
genera, thereby highlighting the strength of the tool and the
relevance of features.

2. Methods

2.1 Feature extraction

Feature extraction is a process of mapping a set of
measurements (data) into fewer features, which preserve
the main information of the original data structure. One
of the important components of feature extraction is data
projection, wherein the data in the original high-dimensional
space is projected/transformed onto a lower-dimensional
space (usually 2D or 3D) so that it can be visualized
easily and the relationships and structure in the data can be
clearly identified. While projecting the data onto a reduced
dimensional space, it is necessary to perform dimensionality
reduction of the original data. The methods performing
dimensionality reduction search for a smaller set of variables
(known as “features”) for describing a large set of observed
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dimensions. Data projection onto a lower-dimensional
feature space enables better understanding of the data
structure, exploration of the intrinsic data dimensionality
and analysis of the clusters present in the original high-
dimensional data.

2.2 Dimensionality reduction

In principle, feature extraction and data projection can be
formulated as a mapping ¥ from an n-dimensional input
space to a p-dimensional mapping space (¥: R" — R’
p < n) such that some criterion, E, is optimized. For data
visualization purposes, the value of p is usually set to 2
or 3. A large number of approaches for feature extraction
and data projection are available in the literature on pattern
recognition. These approaches differ from each other in
the characteristics of the mapping function, ¥, and how
¥ is learned. The widely used feature extraction and
dimensionality reduction method is PCA (Wold ef al.1987).
However, this technique captures only linear relationships
among the multiple variables of a data set. Invariably, when
data variables are correlated non-linearly, the linear PCA fails
to capture these correlations. To overcome this drawback of
linear PCA, a number of non-linear feature extraction and
dimensionality reduction methods have been proposed.
The significant ones among these are the multi-dimensional
scaling (MDS)-based Kruskal mapping (Kruskal 1964),
the Sammon mapping (Sammon 1967), isometric feature
mapping IsoMap (Tenebaum et al. 2000) and locally linear
embedding (LLE) (Roweis and Saul 2000). A significant
drawback of these methods is that they do not possess the
generalization capability of reducing/projecting new data
without re-mapping the combined set and hence comprising
the original and new data. The recently proposed CCA
(Demartines and Herault 1997), which is an ANN-based
non-linear feature extraction and dimensionality reduction
paradigm, has overcome the above-stated (i.e. inability to
generalize) drawback. Accordingly, the CCA formalism has
been used in this study for conducting non-linear feature
extraction of tetra- and penta-nucleotide frequency data.
Specifically, the dimensionality of these two data sets has
been reduced using the CCA formalism to afford subsequent
classification and visualization using the SOM neural
network (figures 1 and 2).

2.2.1 Curvilinear component analysis: The primary
objective of the CCA is to generate a revealing represen-
tation of the original data in a lower-dimensional feature
space so as to prepare a foundation for the further
clustering of the input data. The CCA operates on the
principle of preserving distances in its input and output
spaces. However, in case of non-linearly correlated input
data, it may not be possible to preserve distances of large
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Figure 2. A schematic of self-organizing map.

magnitudes because the task necessitates unfolding of the
manifold to effect dimensionality reduction in the projected
space. For achieving the preservation of local distances, the
CCA employs a neighbourhood function, which fulfills the
condition of preservation of smaller distances while relaxing
the condition for larger distances (Buchala ef al. 2004a).
The CCA can be considered as a self-organizing neural
network (figure 2) that performs two tasks: (i) vector
quantization (VQ) of the submanifold in the data set
(input space) and (ii) non-linearly projecting the quantized
vectors onto the output space. A vector quantizer maps n-
dimensional vectors in the vector space, R”, into a finite
set of vectors, where p < n. That is, while dimensionality
reduction methods reduce the dimension of the data,
vector quantization reduces the number of data points
that are termed “prototypes”. The main purpose of vector
quantization in CCA is to reduce computational cost. If the
data set is relatively small (a few hundred data points), then
it may not even be essential to perform vector quantization.
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In such a case, only the projection part of the CCA needs
to be conducted (Buchala ef al. 2004b). After training, the
CCA network has the ability of generalization owing to
which it can continuously map any new point in the forward
or backward direction. The CCA as shown in figure 2
performs the VQ and non-linear projection tasks separately
using two layers of connections. The first network layer
performs VQ on the data set and the second layer, known as
the “projection layer”, conducts topographic mapping of the
quantized vectors. The projection layer is a free space, which
takes the shape of the sub-manifold of the data.

The training algorithm for the CCA network was proposed
as an improvement to the Kohonen SOM, wherein the output
is not a fixed lattice but a continuous space capable of taking
the shape of the manifolds of the input data. In what follows,
the procedural details of the CCA training are described.

Let {x}, i = 1, 2,..., N, be the set of data vectors
(x, = [x,, X,..., x,]") in an n-dimensional input space,
and {y,} be the corresponding lower-dimensional vectors
(¥, = Wy Vreoes yip]T) in the p-dimensional (p<n) feature
space. Accordingly, each of the » neurons (processing
elements) in the CCA network has two weight vectors (x,
and y,) associated with it. During training of the network, the
processing elements (PEs) in the first layer force the input
vectors to become the prototypes of the distribution by using
any standard VQ method. The output-layers PEs are required
to construct a non-linear mapping of the input vectors. This
objective is fulfilled by minimizing the structure differences
between the quantized and output spaces. The structure
differences can be described in terms of the Euclidean
distances and the corresponding quadratic cost function (E)
to be minimized for reducing the data dimensionality from
nto p is given as

DI

i =i

y[F@.), (1)

where X, = d(x,, x)) describes the Euclidean distance between
n-dimensional vectors x,and x, and Y, = d(y, y,) refers to
the corresponding d1stance between p- dlmensronal vectors
y, and y, in the CCA network’s output space. The objective
of minimizing £ is to force ¥, to match X, for each possible
vector pair (i, j). As a perfect match between X, and Y,
is not possible while mapping to a lower p- drmensronal
space, a weighting function FXx,, /1) is used to favour
the conservation of the local topology For preserving
this topology, a bounded and monotonically decreasing
weighting function such as the decreasing exponential
or sigmoid function is commonly chosen. The weighting
function assigns greater weighting to points lying closer in
the output space.

In the beginning, the set of p-dimensional output
vectors {y,} are initialized randomly to small magnitudes.
The minimization of £ with respect to the vectors {y,} is
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performed by following the procedure outlined in Roweis
and Saul (2000). This procedure temporarily fixes one of
the y, vectors and moves all the other y, vectors around it
without taking into consideration the interactions among
the y, vectors. The updating rule for y, vector to effect
minimization of £ is given as:

Ay, (H)=a®)V,E; =—a(t)V E;

= a(OF (5\)(X, - @

ij>

where, i refers to the index of a randomly chosen vector;
V. E, represents the gradient of £ with respect to y, and

()—

(1 + ) denotes the learning rate that decreases with

time. The optimized y -updation rule in Eq.
(2) is numerically efficient, and its 1mp1ementat10n results
in the output vectors eventually converging to L number of
prototypes (v,., i =1, 2, ..., L) in a certain number (<100) of
training iterations. The CCA training algorithm can now be
briefly summarized as follows:

Step 1: Perform (if needed) VQ to reduce the size of
the data set.
Step 2: Compute all pair-wise Euclidean distances

d(x, x) in the n-dimensional input space.

Step 3: Initialize the p-dimensional co-ordinates of all
points {y} either randomly or on the hyperplane
spanned by the first principal components
(obtained using PCA).

Step 4: Initialize the iteration index # (to 1).

Step 5 Specify learning rate o) and neighbourhood
width 4 (width to be decreased with increasing
magnitude of the iteration index, 7).

Step 6 Compute Euclidean distances d(y, yj) in the
p-dimensional output (projected) space.

Step 7 Update all the projected vectors according to
equation 2.

Step 8 Increase ¢ by 1.

Step 9 Repeat steps 5-8 until the change, ij(i), in

the projected space is less than a pre-specified
threshold or the maximum number of iterations
(z,,.) is reached.

An important issue in the CCA implementation is to choose
the dimension of the output space (p). Ideally, p should
be chosen equal to the intrinsic dimensionality (ID) of the
input data. The ID is defined as the smallest number (p) of
variables that are needed to describe the set of data without
any significant loss of information. Usually, the intrinsic
dimensionality of a given data set is not known a priori. To
overcome this difficulty, the above-stated step-wise CCA
procedure is repeated a number of times by systematically
varying the magnitude of p, and the magnitude resulting
in the overall least converged value for the cost function
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(E) is taken as a reasonable approximation of the intrinsic
dimensionality, p.

The CCA is an efficient non-linear dimensionality
reduction technique although other formalisms such as
the SOM are necessary for classification and projection
if the dimensionality of the projected space is very
high (p > 3). Accordingly, in the present study, we have
used purohit8655SOM for classifying and projecting
the dimensionality reduced tetra- and penta-nucleotide
frequency data onto a 2D lattice.

In the present study, all CCA-based non-linear
dimensionality reduction simulations were performed
using following parameter values: (i) initial step-size in the
neighbourhood function (&) = 0.5, (ii) maximum number of
iterations (¢ ) = 500, (iii) initial radius of influence (4,) =
3 times the maximum of the standard deviation of the input
data and (iv)

X

where d(y, yj) denotes distances in the output space.

—d.y,
F@A©y,»y)= eXp[(y—IY/)]’

2.2.2  Self-organizing map: The SOM network archi-
tecture, as shown in figure 3, consists of a 2D array of units
each of which is connected to all the p input nodes. It is
also possible to use a grid of higher dimensions although
such a grid is difficult to visualize conveniently. The SOM
neural network architecture and its training method possess
the following properties: (i) an array of neurons, which as a
function of its input of arbitrary dimensionality, calculates
the outputs using a simple output function, (ii) a criterion to
determine the “winner” neuron possessing the largest output
and (iii) an adaptive rule for updating the weights of the
chosen neuron and its neighbours.

2.2.3 SOM training algorithm: Letx,i=1,2,..., N be the
p-dimensional patterns and W, be the p-dimensional weight
vector associated with the processing element at location (i,
j) of the 2D array (figure 2). The step-wise procedure for
training the SOM network is as given below.

Step 1 (Initialization): Choose small random values

for the initial weights, w (0), and fix the initial

learning rate (¢,) and the neighbourhood.

Step 2 (Determining the winner): Select a sample
pattern, x, from the data set and determine
the winner neuron (C, Cj) at time ¢, using the

minimum-distance Euclidean criterion:
[x- e, | = min -, |: 3)
Ly

i=1,2,&,L; j=1,2&1L,

where ||.|| refers to the Euclidean norm and L denotes the
number of rows (as also columns) in the square 2D array.

Step 3 (Weight update): Update all the weights
according to the kernel-based learning rule:

w, (D) =w (@O + @) | x () =w @) [|if (i, /) € N.o. (1

= wl.j(t), otherwise

4)

where ¢ denotes training iteration index; N.. (7) is the
neighbourhood of the winner unit (C, Cj) at iteration 7, and
a(f) = a, /(1+4) is the learning rate.

Step 4 Decrease the value of the learning rate, a(7), by
incrementing the iteration index ¢, by unity and
shrink the neighbourhood, N . (7).

Repeat steps 2—4 until the chﬁ’nge in the weight
values is less than the specified threshold, or the
maximum number of iterations (7__ ) is reached.

Step 5

It should be emphasized that the success of SOM training
depends critically on the judicious selection of the main
algorithm-specific parameters (i.e., a(¢) and N (1)), initial
values of the weight vectors and the number of ﬁrje—speciﬁed
training iterations, 7__. These are commonly optimised using
a heuristic procedure. Further, the lattice of the 2D grid could
be either rectangular or hexagonal. In this study, hexagonal
lattice has been used since it is visually appealing. The
square grid had a 45x45 neuron architecture, and the initial
learning rate (¢,) was fixed to be 0.5. For the implementation
of SOM as also CCA, the Matlab-based SOM Toolbox 2.0
was used (Vasanto et al. 1999). Neighbouring neurons on
the map need not suggest a small distance in the data space.
Although the SOM automatically groups together similar
data items, for practical purposes it is still desirable to
demarcate similar data items into clearly visible distinct
clusters. This can be achieved by using the U-matrix method
for demarcating boundaries between different clusters. The
U-matrix determines the distance between neurons and
in the present study different shades of grey are used to
portray the distances. The dark-shaded borders between two
neurons represent large distances between the data mapped
into the respective neurons, whereas a light-shaded border
indicates similarities between the data items. Additionally,
the data points in the projected space, representing different
organisms, are depicted using a colour coding to visualize
the clusters formed by the data.

3. Results

The question we raised in this study was: Could 16S rDNA
sequences be grouped based on their abstract information?
The conceptual framework of the study has been presented
in figure 1. From the selected 40 genera (table 1), 800
complete 16S rDNA sequences (20 from each genus)
representing different species were retrieved from GenBank.
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Figure 3. U-matrix visualization of a self-organizing maps (SOMs) showing the relatedness of the organisms and the groups of
organisms using tetra-nucleotide (a(i)—a(iii)) and penta-nucleotide data (b(i)-b(iii)) using three methods SOM, PCA-SOM and CCA-SOM
respectively. The numbers indicate the bacterial genera as referred in table 1. The polygons represent the territory for different bacterial
genera. The organisms from the same genus but placed in different polygons are indicated by letters suffixing the genus identification
number. The gray colour scale represents the magnitude of distance between the two adjacent groups.

The data on the number of occurrences (frequencies) of
various tetra- and penta-nucleotides for each sequence were
generated for the analysis. It may be noted that there are 256
(=4%) and 1024 (=4°) possible combinations for tetra- and
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penta-nucleotides, respectively. Thus, the tetra- and penta-
nucleotide frequency data for each of the 800 sequences
resulted into two data matrices of dimensions 800x256
(set 1) and 800%1024 (set II), respectively. The frequency
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Table 1. Bacteria selected from the effluent treatment plant

S. No. Bacteria S. No. Bacteria S. No. Bacteria S. No. Bacteria

1. Acetobacter 11. Desulfovibrio 21. Moraxella 31. Salmonella

2. Acinetobacter 12. Enterobacter 22. Methylococcus 32. Sphingomonas
3. Aeromonas 13. Flavobacterium  23. Mycobacterium 33. Staphylococcus
4. Alcaligenes 14. Gluconobacter 24, Nitrobacter 34, Streptococcus
5. Arthobacter 15. Haemophilus 25. Nocardia 35. Sulpholobus
6. Azospirillum 16. Halobacterium 26. Nitrosomonas 36. Thermus

7. Bacillus 17. Lactobacillus 27. Pseudomonas 37. Thiobacillus
8. Burkholderia 18. Methanococcus ~ 28. Ralstonia 38. Vibrio

9. Clostridium 19. Methanosarcia 29. Rhizobium 39. Xanthobacter
10. Commamonas 20. Micrococcus 30. Rhodococcus 40. Xanthomonas

values in each column of set I and II were separately
normalized between 0 and 1, and the normalized data sets
were used for SOM-based classification and projection.
The architecture of SOM has been depicted in figure 2 and
described in Methods. The classification analysis was done
separately for tetra- and penta-nucleotide frequency data.
In this study, three different approaches have been used
for the classification and visualization of 16S sequence
data: (i) SOM was used directly for the classification, (ii)
dimensionality of the data sets was reduced using the linear
PCA and the dimensionally-reduced data was used in SOM
and (iii) dimensionality of the frequency data was reduced
using the CCA and SOM was used subsequently for the
classification. The CCA is a self-organizing neural network
that performs two tasks, i.e. VQ and non-linearly projecting
the quantized vectors onto the output space.

For tetra-nucleotides-based classification, the normalized
matrix of dimension 800%256 was considered in SOM
analysis. The grouping of organisms and the position of
different groups obtained are as shown in figure 3a(i),
wherein each point in the map represents an organism. Next,
the linear relationships among the frequencies of various
tetra-nucleotides were extracted using the standard PCA.
It was observed that the first 100 latent variables (principal
components) could capture nearly 97% variability of the
original tetra-nucleotide frequency data. This suggests that
the PCA could reduce the data dimensionality from 256
variables to 100. PCA-reduced data of dimensions 800x100
was then used in SOM-based classification, and the results
obtained thereby are shown in figure 3a(ii). Further, for
extracting non-linear relationships among the variables,
CCA was performed on the same data matrix (800%256).
It was observed that 80 non-linear principal components
could capture approximately 99% variance of the original
data. This indicated the existence of non-linearity among
variables, and as a result CCA could impart more reduction
in the dimensionality (i.e. reduction from 256 to 80 variables)
as compared to the linear PCA (from 256 to 100 variables).

Thereafter, SOM-based classification was performed using
the CCA-reduced data set and the results were obtained are
shown in figure 3a(iii).

Similar to the tetra-nucleotide frequency data, the analysis
was performed using the penta-nucleotide frequency data of
dimensions 800x1024. The classification results obtained
using the above-stated three methodologies (i.e. SOM,
PCA-SOM and CCA-SOM) have been shown in figures
3b(i)-b(iii), respectively. In the PCA—SOM method, PCA
reduced the dimensionality of data from 1024 frequency
variables to 275 principal components, accounting for 99%
of variance of the original data; whereas in the CCA-SOM
method, CCA reduced the dimensionality to 382 non-linear
principal components, retaining nearly 99% of variation of
the original data. Thus, the linear correlations were found
predominant in the penta-nucleotide data, and therefore, the
linear PCA could impart more reduction in dimensionality
(1024 to 275) as compared with that of CCA (1024 to 382).
It is pertinent to mention here that the /6S rRNA gene is
highly conserved across the species of particular genus, and
for few species, the frequency of tetra- or penta-nucleotides
might coincide, and hence, in some cases, there exists an
obvious overlap of points within the polygon. The boundary
of each polygon is indicated by gray pixels with varying
intensities. It is also seen that the demarcation of polygons
is much clearer for the penta-nucleotides as compared with
the tetra-nucleotides, indicating that the organisms and
their groups could be better distinguished on the basis of
the penta-nucleotide frequencies. Moreover, the chances of
misclassification of organisms are higher on the basis of tetra-
nucleotide frequencies as compared with penta-nucleotide
frequencies, because larger patterns consistently observed
in sequences of particular genus provide better specificity
than that of smaller patterns. Table 2 shows the percentage
of correct classification of organisms obtained using the
three approaches for the tetra- and penta-nucleotide data,
respectively. These percentages have been deduced from
780 sequences belonging to 39 groups. For one group, i.e.
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Thiobacillus, the points exhibited a high scatter irrespective
of the method used. The reason for such scatter has been
discussed later. Therefore, in the overall analysis we have
omitted this genus while estimating the classification
accuracy. Table 2 also reveals that the grouping of sequences
is somewhat better for the penta-nucleotide frequencies as
compared with tetra-nucleotides. Hence, the results obtained
with penta-nucleotide frequencies were considered for
further analysis.

The table also shows that when using penta-nucleotides,
all the three approaches, viz. SOM, PCA-SOM and
CCA-SOM, resulted into almost the same classification
accuracy for the training data set, indicating the existence
of significant linear relationships among the frequencies of
penta-nucleotides. In order to validate the three classification
methods and assess their generalization performance, a
test set of 125 known 16S sequences belonging to the
selected genera were retrieved from the NCBI GenBank.

Table 2. Classification accuracy of the training set using three different approaches

SOM PCA-SOM CCA-SOM
Method Penta-mer Tetra-mer Penta-mer Tetra-mer Penta-mer Tetra-mer
Sequences 729 712 727 721 723 714
classified correctly
out of 780 (%) (93.46%) (91.28%) (93.20%) (92.43%) (92.69%) (91.53%)

1

rProtobackrar
Metharococail

a
— AIODOCRT AT
| — Baeitd
—SProteobackr st
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Figure 4. The grouping of test set of organisms based on the penta-nucleotide frequencies (a—c) using SOM, PCA-SOM and CCA-SOM,
respectively. The marked areas indicate various classes of taxonomic hierarchy.
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Interestingly, the classification accuracy for this data was
found to be more than 95% (figures 4(i)—(iii)). This suggests
the excellent generalization capability of SOM-based
classification.

4. Discussion

We have earlier reported that on the basis of di- and tri-
nucleotide frequencies, we could discriminate closely related
sequences (Raje ef al. 2002). However, when we applied the
same strategy with sequences retrieved from different group
of bacteria, the sequences could not be grouped even after
using the tools developed in this study. This prompted us to
use tetra- and penta-nucleotide features for classification to
arrive at class-/group-specific features.

A closer inspection of the locations of different bacterial
genera using the penta-nucleotide frequencies data led to
some interesting findings. Figure 5 shows the groupings
of 32 organisms taking into consideration the similarity
of taxonomic hierarchy of organisms. For instance,
Methanococcus and Methanosarcia (No. 18, 19 in table
1) have same hierarchy up to the “Class” level, but they
split at the “order” level, while genera Acetobacter and
Gluconobacter (No. 1, 14) share same hierarchy up to the
“Family” level. The placing of these 32 genera was observed
in the maps generated through each of the three approaches
using penta-nucleotide data. The organisms within a group
(figure 4) are mostly found adjacent to each other and
this finding was consistent with all the three approaches.
A closer inspection of the groups showing similarity up
to the “Family” level (figure 4(i)—(iii)) reveals that the

Taxonomic Hierarchy

Order

=]
-1
E
2
5

Group
(18,19)

Phylum Class Family Genus

(26,37)
(22, 40)
(3,15, 38)
(17,34)
7,33)
(24,2939
(4,8,10,28)
(25,30)
{1,14)
{12,31)
@21)
(5,20)

(6,27)

Figure 5. Taxonomic classification of the closely related bacteria
based on the Bergey manual. The horizontal bars indicate the
taxonomic level up to which the bacterial genera, indicated by
numbers, show identity.

pixel intensities between the genera Acetobacter (1) and
Gluconobacter (14), Arthobacter (5) and Micrococcus
(20), Enterobacter (12) and Salmonella (31), Nocardia (25)
and Rhodococcus (30), Acinetobacter (2) and Moraxella
(21) were found to be much lower irrespective of the
approach used. Such a close adjacency suggests that the
penta-nucleotide distribution of the stated pairs of genera
is necessarily similar but sufficiently distinct to avoid
misclassification of the respective organisms. Similarly,
the adjacency was observed for other groups of organisms
showing taxonomic similarity up to the “Order” level or
“Class” level; however, the pixel intensities are somewhat
higher than in the earlier case. In this regard, it becomes
interesting to ensure through some more case studies,
using different organisms, whether the level of taxonomic
relatedness between the organisms has any bearing on the
pixel intensity of the boundary separating the organisms.

When the groups of organisms were formed at the
“Class” level, there was an interesting finding that was
consistent irrespective of the approach used. Table 3 shows
the grouping of organisms based on “taxonomic class”, and
figure 4(i)—(iii) shows the territory for different classes,
which includes the selected genera. A definite topological
arrangement of taxonomic classes is seen in the panels of
figure depicting the evolutionary trend of organisms. The left
most area of the map is occupied by all Actinobacteria and
Methanococii, which are ancient bacteria on the evolutionary
scale. The Bacilli is adjacent to Actinobacteria, whereas
the central area and the right most area is occupied by
Betaproteobacteria and Gammaproteobacteria respectively,
which imitate the evolutionary trend.

Another important observation was about genus
Thiobacillus (No. 37). The sequences belonging to this
genus exhibited a wide scatter; hence, the misclassified
sequences were investigated for their non-memberships to
genus Thiobacillus. Some of the sequences belonging to this

Table 3. Taxonomic class of the selected bacterial genera

S.  Taxonomic class Bacterial genera*

Actinobacteria
a-Proteobacteria
f-Proteobacteria

1 (5,17, 20, 23, 25, 30, 34)
2 (1, 14, 24, 29, 32, 39)

3 (4, 8, 10, 26, 28, 37)

4 y-Proteobacteria (2, 3, 6, 12, 15, 21, 22, 27, 31, 38, 40)
5. Bacilli (7, 33)

6. Methanococci (18, 19)

7 Thermoprotei (35)

8 Halobacteria (16)

9. Flavobacteria (13)

10.  Deinococci (36)

11.  Clostridia 6- )

12.  Proteobacteria (11)

*The numbers in the parenthesis indicate the bacterial genera as
mentioned in table 1.
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genus showed nice grouping under the Betaproteobacteria
class as evident in figure 4, while four sequences were placed
at different locations falling in the Alphaproteobacteria
region in the maps. Thiobacillus acidophilus (Acc. No.
D86511), which is one of such sequences, exhibited good
similarity with genus Acidiphilium. Another misclassified
sequence (Acc. No. D32238) revealed that it belongs to
genus Paracoccus and the sequence exactly matched with
Paracoccus alcaliphilu. The sequence was earlier named
as Thiobacillus versutus belonging to genus Thiobacillus.
However, Katayama et al. (1995) noticed that the sequence
resembles more to genus Paracoccus. The SOM-map also
revealed that the species does not fall into Thiobacillus
lattice. Further, similar result was obtained for sequence (Acc.
No. D32241), which earlier was referred as Thiobacillus
versutus, but now has been classified as belonging to
genus Paracoccus and exactly matching with Paracoccus
kocurii. Also the sequence with accession numbers D32247
belonged to genus Starkeya. All these sequences belonging
to genus Acidiphilium, Paracoccus and Starkeya belonged
to Alphaproteobacteria. The placing of these sequences
in SOM-maps is also in the Alphaproteobacteria region,
demonstrating the SOM capabilities based on penta-
nucleotide sequence features.

Further, we tested seven unknown sequences
(unculturable isolates) obtained from few effluent treatment
plants. The 16S rDNA sequence clones of these isolates
showed significant similarity with wunidentified bacterium
through BLAST. Equivalently, we obtained the classification
of these isolates using the above three approaches using
penta-nucleotide frequencies. Although these organisms are
outside the set of selected 40 genera, we could predict their
taxonomic classes using SOM analysis. The scatter of these
isolates and their clustering in different taxonomic classes
using the three approaches has been carried out. There was
absolute consensus of methods for three isolates (No. 2
(DQ309369), 6 (DQ309372), 7 (DQ309373)) in regard to
the taxonomic class, i.e. Alphaproteobacteria. For two other
isolates (No. 3 (DQ309370), 4 (DQ309371)), the taxonomic
class suggested by PCA—SOM agreed with CCA—SOM. For
isolate No. 5 (DQ309379), the results of PCA and SOM
matched with SOM, whereas for isolate No. 1 (DQ309368),
there was no consensus amongst the methods. Since, the
linear correlations are predominant in the penta-nucleotide
frequency data, the classification suggested by PCA and
SOM was relied upon in this study. So referring to this
classification, it is possible to predict the belongingness of
such unknown sequences at least at the “Class” level, which
otherwise is difficult to know through the BLAST results.

Thus, a sample study with 40 genera revealed that
sequence characterization, data reduction and data
visualization approaches using abstract information on
patterns could support the reported taxonomic knowledge.
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The relatedness of organisms could be displayed through
elegant graphics, which is a novel representation. Another
resultant of the analysis is the set of features (penta-
nucleotides) that distinguish the selected organisms with
higher accuracy. This opens further areas of research such as
genus-specific features could be identified with due regard
to their frequencies and could be used to generate regular
expressions. The specificity of the regular expressions to
genus could be tested using matching algorithms against
the 16S rDNA database. The expressions yielding high
specificity and sensitivity could act as signature to the genus.
Also the features could be used to develop organism specific
PCR primers for their rapid identification. Moreover, the
variable regions between features could also be used as a
seed to develop genus-specific signatures (Purohit ef al.
2003; Liskiewicz ef al. 2004).

5. Conclusions

In essence, this study describes a classification mechanism
that provides a unique visual representation of the
taxonomic relationships. Such a classification system could
be developed spanning different taxonomic classes by using
sample sequences from each of the classes. This could be
an alternative approach to ascertain the membership of
new sequence at least at the “Class” level in addition to the
alignment-based approach. Today it is believed that nearly
95% of microbial diversity is still unknown (Torsvik et al.
2002). In the years to come, with the growing size of 16S
rDNA database, the use of such tools in conjunction with
the conventional classification tools could strengthen our
understanding of relatedness of existing and the unexplored
microbial wealth in nature.
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