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1. Introduction

Molecular phylogenetic methods have revolutionized the 

classifying and identifi cation of organisms that occur in 

microbial communities (Hugenholtz et al.1998). Prior to 

this development, the chemo-biochemical characteristics 

of strains were used to derive the coeffi cient of similarity 

(or percentage similarity) between the strains, leading to 

what is known as numerical taxonomy (Garrity et al. 2001). 

However, with the increase in the number of bacterial 

isolates, it became apparent that many such phenotypic 

criteria have limitations. For a new isolate based only on 

biochemical properties, quite often it is diffi cult to predict 

the phylogeny or additional associated characteristics of 

the isolate. Anticipating this, Woese (1987) suggested 

the use of nucleotide sequence differences in a single 

gene to investigate the evolutionary relationships. They 

pioneered the use of rRNA for phylogenetic analysis, which 

subsequently led to redrawing the universal tree of life and 

opened a new era of molecular taxonomy.

The 16S rRNA gene is widely used to investigate the 

evolutionary relationships of prokaryotes. Over the years, 
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the 16S rDNA database has grown tremendously. In 

taxonomy, the highly conserved regions group bacteria into 

higher taxonomic orders, whereas the variable regions allow 

classifi cation at lower taxonomic levels, such as the genus 

or species level (Amann et al. 1995). The method consist 

of aligning the sequences using ClustalW/ClustalX and 

then obtaining the pair-wise distance matrix based on the 

alignment in order to provide taxonomic relatedness (Durbin 

et al. 1998). The analysis also provides an estimate of the 

evolutionary distance between sequences.

The early classifi cation of life based on the rRNA gene by 

Carl Woese showed that bacteria could be divided into two 

different groups, and Archaea has been made as an additional 

group. The study led to the generation of the ribosomal RNA 

data base that contained the sequence data originating from 

either RNA or DNA versions of the 16S rRNA molecule 

(Maidak et al. 1994). The majority of the sequences in the 

database are generated from amplifi ed PCR products of the 

16S rRNA gene, where the templates were derived from 

either genomic DNA of isolates or environmental DNA. 

However, use of 16S rRNA data does have some problems, 

which are mostly due to techniques involved in developing 

the sequence data. In cases in which cDNA is synthesized 

from the extracted total RNA from bacteria, the process is 

carried out by reverse transcriptase, which has its limitations. 

In cases in which rDNA is amplifi ed from the metagenome 

and cloned, sometimes, hybrids are formed between two 

16S rRNA genes derived from different organisms present 

in the same environment and they generate chimeras that 

are diffi cult to classify (Ward et al. 1990; Amann et al. 

1995). Yet, 16S rDNA is the usual data used for classifying 

microorganisms, and in this study as well, we have used 16S 

rDNA sequences in the analysis.

In this study, we have made an attempt to classify 

organisms based on abstract information from sequences, 

such short nucleotide patterns of length four or fi ve base 

pairs. In other words, the interest in this study was to know 

whether the patterns and their occurrences in 16S rDNA 

sequences hold information that can be used to distinguish 

a set of genera from each other. This assertion rests on our 

earlier study wherein we showed that the fi ve most dominant 

and closely related bacterial genera could be discriminated 

using the di-nucleotide compositions of 16S rRNA gene 

(Raje et al. 2002).

In recent years, artifi cial neural network (ANN)-based 

tools have received wide acceptance in different application 

domains, especially when the variable space is large. One 

such well-known tool is the self-organizing maps (SOM). 

This tool undergoes unsupervised learning and is particularly 

useful in projecting/visualizing high-dimensional data 

(Kohonen 1990). The important application of SOM is 

classifi cation (clustering), which has been exemplifi ed in a 

number of recent genomic studies. To cite a few, SOM along 

with PCA was used for sub-cellular locations of bacterial 

proteins, resulting in a clear separation of cytoplasmic, 

periplasmic and extra-cellular proteins (Schneider 1999). In 

this study, the global sequence features based on amino acid 

composition were used for localization. Later, SOM was also 

used for the analysis of codon usage patterns of bacterial 

genomes wherein the clustering of average codon usage of 

main gene categories of genomes showed mixing of gene 

classes (Wang et al. 2001). Further, SOM was employed to 

analyse di- and tri-nucleotide frequencies in nine eukaryote 

genomes and were able to recognize the species-specifi c 

characteristics as a signature representation of each genome 

(Abe et al. 2003). Subsequently, they used SOM in a wide 

variety of prokaryotic and eukaryotic genomes wherein 

the analysis of 1- and 10-kb genomic sequences from 65 

prokaryotes and 6 from eukaryotes provided a clear species-

specifi c separation of major portions of the sequences 

using SOM. Also, Kasturi et al. (2003) studied the relative 

dissimilarity between the gene expression profi les in 

conjunction with an unsupervised SOM algorithm.

In this exercise, SOM has been used exclusively and also 

in conjunction with linear and non-linear feature extraction 

approaches such as PCA and curvilinear component analysis 

(CCA). For training purpose, 800 16S rDNA sequences 

belonging to 40 different genera were considered and each 

sequence was represented by the frequency of occurrence 

of various tetra- and penta-nucleotides. These tetra- and 

penta-nucleotide combinations were treated as features 

in this exercise. SOM along with the feature extraction 

techniques could discriminate the sample sequences with 

more than 90% accuracy. Moreover, the map also outlined 

the territory for different taxonomic classes for the selected 

genera, thereby highlighting the strength of the tool and the 

relevance of features.

2. Methods

2.1 Feature extraction

Feature extraction is a process of mapping a set of 

measurements (data) into fewer features, which preserve 

the main information of the original data structure. One 

of the important components of feature extraction is data 

projection, wherein the data in the original high-dimensional 

space is projected/transformed onto a lower-dimensional 

space (usually 2D or 3D) so that it can be visualized 

easily and the relationships and structure in the data can be 

clearly identifi ed. While projecting the data onto a reduced 

dimensional space, it is necessary to perform dimensionality 

reduction of the original data. The methods performing 

dimensionality reduction search for a smaller set of variables 

(known as “features”) for describing a large set of observed 
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dimensions. Data projection onto a lower-dimensional 

feature space enables better understanding of the data 

structure, exploration of the intrinsic data dimensionality 

and analysis of the clusters present in the original high-

dimensional data.

2.2 Dimensionality reduction

In principle, feature extraction and data projection can be 

formulated as a mapping Ψ from an n-dimensional input 

space to a p-dimensional mapping space (Ψ: ℜ
n

 → ℜ
p

, 

p ≤ n) such that some criterion, E, is optimized. For data 

visualization purposes, the value of p is usually set to 2 

or 3. A large number of approaches for feature extraction 

and data projection are available in the literature on pattern 

recognition. These approaches differ from each other in 

the characteristics of the mapping function, Ψ, and how 

Ψ is learned. The widely used feature extraction and 

dimensionality reduction method is PCA (Wold et al.1987). 

However, this technique captures only linear relationships 

among the multiple variables of a data set. Invariably, when 

data variables are correlated non-linearly, the linear PCA fails 

to capture these correlations. To overcome this drawback of 

linear PCA, a number of non-linear feature extraction and 

dimensionality reduction methods have been proposed. 

The signifi cant ones among these are the multi-dimensional 

scaling (MDS)-based Kruskal mapping (Kruskal 1964), 

the Sammon mapping (Sammon 1967), isometric feature 

mapping IsoMap (Tenebaum et al. 2000) and locally linear 

embedding (LLE) (Roweis and Saul 2000). A signifi cant 

drawback of these methods is that they do not possess the 

generalization capability of reducing/projecting new data 

without re-mapping the combined set and hence comprising 

the original and new data. The recently proposed CCA 

(Demartines and Herault 1997), which is an ANN-based 

non-linear feature extraction and dimensionality reduction 

paradigm, has overcome the above-stated (i.e. inability to 

generalize) drawback. Accordingly, the CCA formalism has 

been used in this study for conducting non-linear feature 

extraction of tetra- and penta-nucleotide frequency data. 

Specifi cally, the dimensionality of these two data sets has 

been reduced using the CCA formalism to afford subsequent 

classifi cation and visualization using the SOM neural 

network (fi gures 1 and 2). 

2.2.1 Curvilinear component analysis: The primary 

objective of the CCA is to generate a revealing represen-

tation of the original data in a lower-dimensional feature 

space so as to prepare a foundation for the further 

clustering of the input data. The CCA operates on the 

principle of preserving distances in its input and output 

spaces. However, in case of non-linearly correlated input 

data, it may not be possible to preserve distances of large 

magnitudes because the task necessitates unfolding of the 

manifold to effect dimensionality reduction in the projected 

space. For achieving the preservation of local distances, the 

CCA employs a neighbourhood function, which fulfi lls the 

condition of preservation of smaller distances while relaxing 

the condition for larger distances (Buchala et al. 2004a). 

The CCA can be considered as a self-organizing neural 

network (fi gure 2) that performs two tasks: (i) vector 

quantization (VQ) of the submanifold in the data set 

(input space) and (ii) non-linearly projecting the quantized 

vectors onto the output space. A vector quantizer maps n-

dimensional vectors in the vector space, ℜ
n

, into a fi nite 

set of vectors, where p < n. That is, while dimensionality 

reduction methods reduce the dimension of the data, 

vector quantization reduces the number of data points 

that are termed “prototypes”. The main purpose of vector 

quantization in CCA is to reduce computational cost. If the 

data set is relatively small (a few hundred data points), then 

it may not even be essential to perform vector quantization. 

Figure 1. A schematic of the CCA network.

Figure 2. A schematic of self-organizing map.



In such a case, only the projection part of the CCA needs 

to be conducted (Buchala et al. 2004b). After training, the 

CCA network has the ability of generalization owing to 

which it can continuously map any new point in the forward 

or backward direction. The CCA as shown in fi gure 2 

performs the VQ and non-linear projection tasks separately 

using two layers of connections. The fi rst network layer 

performs VQ on the data set and the second layer, known as 

the “projection layer”, conducts topographic mapping of the 

quantized vectors. The projection layer is a free space, which 

takes the shape of the sub-manifold of the data. 

The training algorithm for the CCA network was proposed 

as an improvement to the Kohonen SOM, wherein the output 

is not a fi xed lattice but a continuous space capable of taking 

the shape of the manifolds of the input data. In what follows, 

the procedural details of the CCA training are described.

Let {x
i
}, i = 1, 2,…, N, be the set of data vectors

(x
i
 = [x

i1
, x

i2
,..., x

in
]T) in an n-dimensional input space, 

and {y
i
} be the corresponding lower-dimensional vectors

(y
i 
= [y

i1
, y

i2
,..., y

ip
]T) in the p-dimensional (p<n) feature 

space. Accordingly, each of the n neurons (processing 

elements) in the CCA network has two weight vectors (x
i
 

and y
i
) associated with it. During training of the network, the 

processing elements (PEs) in the fi rst layer force the input 

vectors to become the prototypes of the distribution by using 

any standard VQ method. The output-layers PEs are required 

to construct a non-linear mapping of the input vectors. This 

objective is fulfi lled by minimizing the structure differences 

between the quantized and output spaces. The structure 

differences can be described in terms of the Euclidean 

distances and the corresponding quadratic cost function (E) 

to be minimized for reducing the data dimensionality from 

n to p is given as

where X
ij 
= d(x

i
, x

j
) describes the Euclidean distance between 

n-dimensional vectors x
i 
and x

j
, and Y

ij 
= d(y

i
, y

j
) refers to 

the corresponding distance between p-dimensional vectors 

y
i
 and y

j
 in the CCA network’s output space. The objective 

of minimizing E is to force Y
ij 
to match X

ij
 for each possible 

vector pair (i, j). As a perfect match between X
ij
 and Y

ij
 

is not possible while mapping to a lower p-dimensional 

space, a weighting function F(X
ij
, λ

y
) is used to favour 

the conservation of the local topology. For preserving 

this topology, a bounded and monotonically decreasing 

weighting function such as the decreasing exponential 

or sigmoid function is commonly chosen. The weighting 

function assigns greater weighting to points lying closer in 

the output space.

In the beginning, the set of p-dimensional output 

vectors {y
i
} are initialized randomly to small magnitudes. 

The minimization of E with respect to the vectors {y
I
} is 

performed by following the procedure outlined in Roweis 

and Saul (2000). This procedure temporarily fi xes one of 

the y
i
 vectors and moves all the other y

j
 vectors around it 

without taking into consideration the interactions among 

the y
i
 vectors. The updating rule for y

j
 vector to effect 

minimization of E is given as:

where, i refers to the index of a randomly chosen vector;

∇
i
 Ε

ij
 represents the gradient of E with respect to y

i
, and 

denotes the learning rate that decreases with 

time. The optimized y
j
-updation rule in Eq. 

(2) is numerically effi cient, and its implementation results 

in the output vectors eventually converging to L number of 

prototypes (y
i*
, i = 1, 2, …, L) in a certain number (<100) of 

training iterations. The CCA training algorithm can now be 

briefl y summarized as follows:

Step 1:  Perform (if needed) VQ to reduce the size of 

the data set. 

Step 2:  Compute all pair-wise Euclidean distances

d(x
i
, x

j
) in the n-dimensional input space.

Step 3:  Initialize the p-dimensional co-ordinates of all 

points {y
i
} either randomly or on the hyperplane 

spanned by the fi rst principal components 

(obtained using PCA). 

Step 4: Initialize the iteration index t (to 1).

Step 5  Specify learning rate α(t) and neighbourhood 

width λ
y
 (width to be decreased with increasing 

magnitude of the iteration index, t).

Step 6  Compute Euclidean distances d(y
i
, y

j
) in the

p-dimensional output (projected) space.

Step 7  Update all the projected vectors according to 

equation 2.

Step 8  Increase t by 1. 

Step 9  Repeat steps 5–8 until the change, Δy
j
(i), in 

the projected space is less than a pre-specifi ed 

threshold or the maximum number of iterations 

(t
max

) is reached.

An important issue in the CCA implementation is to choose 

the dimension of the output space (p). Ideally, p should 

be chosen equal to the intrinsic dimensionality (ID) of the 

input data. The ID is defi ned as the smallest number (p) of 

variables that are needed to describe the set of data without 

any signifi cant loss of information. Usually, the intrinsic 

dimensionality of a given data set is not known a priori. To 

overcome this diffi culty, the above-stated step-wise CCA 

procedure is repeated a number of times by systematically 

varying the magnitude of p, and the magnitude resulting 

in the overall least converged value for the cost function 
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(E) is taken as a reasonable approximation of the intrinsic 

dimensionality, p. 

The CCA is an effi cient non-linear dimensionality 

reduction technique although other formalisms such as 

the SOM are necessary for classifi cation and projection 

if the dimensionality of the projected space is very 

high (p > 3). Accordingly, in the present study, we have 

used purohit8655SOM for classifying and projecting 

the dimensionality reduced tetra- and penta-nucleotide 

frequency data onto a 2D lattice.

In the present study, all CCA-based non-linear 

dimensionality reduction simulations were performed 

using following parameter values: (i) initial step-size in the 

neighbourhood function (α
0
) = 0.5, (ii) maximum number of 

iterations (t
max

) = 500, (iii) initial radius of infl uence (λ
0
) = 

3 times the maximum of the standard deviation of the input 

data and (iv) 

where d(y
i
, y

j
) denotes distances in the output space.

2.2.2 Self-organizing map: The SOM network archi-

tecture, as shown in fi gure 3, consists of a 2D array of units 

each of which is connected to all the p input nodes. It is 

also possible to use a grid of higher dimensions although 

such a grid is diffi cult to visualize conveniently. The SOM 

neural network architecture and its training method possess 

the following properties: (i) an array of neurons, which as a 

function of its input of arbitrary dimensionality, calculates 

the outputs using a simple output function, (ii) a criterion to 

determine the “winner” neuron possessing the largest output 

and (iii) an adaptive rule for updating the weights of the 

chosen neuron and its neighbours. 

2.2.3 SOM training algorithm: Let x
i
, i = 1,2,…, N be the 

p-dimensional patterns and w
ij
 be the p-dimensional weight 

vector associated with the processing element at location (i, 

j) of the 2D array (fi gure 2). The step-wise procedure for 

training the SOM network is as given below.

Step 1  (Initialization): Choose small random values 

for the initial weights, w
ij
(0), and fi x the initial 

learning rate (α
^ 

0
)

 
and the neighbourhood.

Step 2  (Determining the winner): Select a sample 

pattern, x, from the data set and determine 

the winner neuron (C
i
, C

j
) at time t, using the 

minimum-distance Euclidean criterion:

where ||.|| refers to the Euclidean norm and L denotes the 

number of rows (as also columns) in the square 2D array.

Step 3  (Weight update): Update all the weights 

according to the kernel-based learning rule:

w
ij
 (t+1) = w

ij
(t) + α

^ 

(t) || x (t) – w
ij
(t) || if (i, j) ∈ N

CiCj 
(t)

  = w
ij
(t),  otherwise   

 (4)

where t denotes training iteration index; N
CiCj

 (t) is the 

neighbourhood of the winner unit (C
i
, C

j
) at iteration t, and

α
^ 

(t) = α
^ 

0
 /(1+t) is the learning rate.

Step 4  Decrease the value of the learning rate, α
^ 

(t), by 

incrementing the iteration index t, by unity and 

shrink the neighbourhood, N
CiCj

 (t).

Step 5  Repeat steps 2–4 until the change in the weight 

values is less than the specifi ed threshold, or the 

maximum number of iterations (t
^

max
) is reached. 

It should be emphasized that the success of SOM training 

depends critically on the judicious selection of the main 

algorithm-specifi c parameters (i.e., α
^ 

(t) and N
CiCj

(t)), initial 

values of the weight vectors and the number of pre-specifi ed 

training iterations, t
^

max
. These are commonly optimised using 

a heuristic procedure. Further, the lattice of the 2D grid could 

be either rectangular or hexagonal. In this study, hexagonal 

lattice has been used since it is visually appealing. The 

square grid had a 45×45 neuron architecture, and the initial 

learning rate (α
^ 

0
) was fi xed to be 0.5. For the implementation 

of SOM as also CCA, the Matlab-based SOM Toolbox 2.0 

was used (Vasanto et al. 1999). Neighbouring neurons on 

the map need not suggest a small distance in the data space. 

Although the SOM automatically groups together similar 

data items, for practical purposes it is still desirable to 

demarcate similar data items into clearly visible distinct 

clusters. This can be achieved by using the U-matrix method 

for demarcating boundaries between different clusters. The 

U-matrix determines the distance between neurons and 

in the present study different shades of grey are used to 

portray the distances. The dark-shaded borders between two 

neurons represent large distances between the data mapped 

into the respective neurons, whereas a light-shaded border 

indicates similarities between the data items. Additionally, 

the data points in the projected space, representing different 

organisms, are depicted using a colour coding to visualize 

the clusters formed by the data.

3. Results

The question we raised in this study was: Could 16S rDNA 

sequences be grouped based on their abstract information? 

The conceptual framework of the study has been presented 

in fi gure 1. From the selected 40 genera (table 1), 800 

complete 16S rDNA sequences (20 from each genus) 

representing different species were retrieved from GenBank. 
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The data on the number of occurrences (frequencies) of 

various tetra- and penta-nucleotides for each sequence were 

generated for the analysis. It may be noted that there are 256 

(=44) and 1024 (=45) possible combinations for tetra- and 

penta-nucleotides, respectively. Thus, the tetra- and penta-

nucleotide frequency data for each of the 800 sequences 

resulted into two data matrices of dimensions 800×256 

(set I) and 800×1024 (set II), respectively. The frequency 

Figure 3. U-matrix visualization of a self-organizing maps (SOMs) showing the relatedness of the organisms and the groups of 

organisms using tetra-nucleotide (a(i)–a(iii)) and penta-nucleotide data (b(i)–b(iii)) using three methods SOM, PCA–SOM and CCA–SOM 

respectively. The numbers indicate the bacterial genera as referred in table 1. The polygons represent the territory for different bacterial 

genera. The organisms from the same genus but placed in different polygons are indicated by letters suffi xing the genus identifi cation 

number. The gray colour scale represents the magnitude of distance between the two adjacent groups.
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values in each column of set I and II were separately 

normalized between 0 and 1, and the normalized data sets 

were used for SOM-based classifi cation and projection. 

The architecture of SOM has been depicted in fi gure 2 and 

described in Methods. The classifi cation analysis was done 

separately for tetra- and penta-nucleotide frequency data. 

In this study, three different approaches have been used 

for the classifi cation and visualization of 16S sequence 

data: (i) SOM was used directly for the classifi cation, (ii) 

dimensionality of the data sets was reduced using the linear 

PCA and the dimensionally-reduced data was used in SOM 

and (iii) dimensionality of the frequency data was reduced 

using the CCA and SOM was used subsequently for the 

classifi cation. The CCA is a self-organizing neural network 

that performs two tasks, i.e. VQ and non-linearly projecting 

the quantized vectors onto the output space.

For tetra-nucleotides-based classifi cation, the normalized 

matrix of dimension 800×256 was considered in SOM 

analysis. The grouping of organisms and the position of 

different groups obtained are as shown in fi gure 3a(i), 

wherein each point in the map represents an organism. Next, 

the linear relationships among the frequencies of various 

tetra-nucleotides were extracted using the standard PCA. 

It was observed that the fi rst 100 latent variables (principal 

components) could capture nearly 97% variability of the 

original tetra-nucleotide frequency data. This suggests that 

the PCA could reduce the data dimensionality from 256 

variables to 100. PCA-reduced data of dimensions 800×100 

was then used in SOM-based classifi cation, and the results 

obtained thereby are shown in fi gure 3a(ii). Further, for 

extracting non-linear relationships among the variables, 

CCA was performed on the same data matrix (800×256). 

It was observed that 80 non-linear principal components 

could capture approximately 99% variance of the original 

data. This indicated the existence of non-linearity among 

variables, and as a result CCA could impart more reduction 

in the dimensionality (i.e. reduction from 256 to 80 variables) 

as compared to the linear PCA (from 256 to 100 variables). 

Thereafter, SOM-based classifi cation was performed using 

the CCA-reduced data set and the results were obtained are 

shown in fi gure 3a(iii). 

Similar to the tetra-nucleotide frequency data, the analysis 

was performed using the penta-nucleotide frequency data of 

dimensions 800×1024. The classifi cation results obtained 

using the above-stated three methodologies (i.e. SOM, 

PCA–SOM and CCA–SOM) have been shown in fi gures 

3b(i)–b(iii), respectively. In the PCA–SOM method, PCA 

reduced the dimensionality of data from 1024 frequency 

variables to 275 principal components, accounting for 99% 

of variance of the original data; whereas in the CCA–SOM 

method, CCA reduced the dimensionality to 382 non-linear 

principal components, retaining nearly 99% of variation of 

the original data. Thus, the linear correlations were found 

predominant in the penta-nucleotide data, and therefore, the 

linear PCA could impart more reduction in dimensionality 

(1024 to 275) as compared with that of CCA (1024 to 382). 

It is pertinent to mention here that the 16S rRNA gene is 

highly conserved across the species of particular genus, and 

for few species, the frequency of tetra- or penta-nucleotides 

might coincide, and hence, in some cases, there exists an 

obvious overlap of points within the polygon. The boundary 

of each polygon is indicated by gray pixels with varying 

intensities. It is also seen that the demarcation of polygons 

is much clearer for the penta-nucleotides as compared with 

the tetra-nucleotides, indicating that the organisms and 

their groups could be better distinguished on the basis of 

the penta-nucleotide frequencies. Moreover, the chances of 

misclassifi cation of organisms are higher on the basis of tetra-

nucleotide frequencies as compared with penta-nucleotide 

frequencies, because larger patterns consistently observed 

in sequences of particular genus provide better specifi city 

than that of smaller patterns. Table 2 shows the percentage 

of correct classifi cation of organisms obtained using the 

three approaches for the tetra- and penta-nucleotide data, 

respectively. These percentages have been deduced from 

780 sequences belonging to 39 groups. For one group, i.e. 

Table 1. Bacteria selected from the effl uent treatment plant

S. No. Bacteria S. No. Bacteria S. No. Bacteria S. No. Bacteria

1. Acetobacter 11. Desulfovibrio 21. Moraxella 31. Salmonella

2. Acinetobacter 12. Enterobacter 22. Methylococcus 32. Sphingomonas

3. Aeromonas 13. Flavobacterium 23. Mycobacterium 33. Staphylococcus

4. Alcaligenes 14. Gluconobacter 24. Nitrobacter 34. Streptococcus

5. Arthobacter 15. Haemophilus 25. Nocardia 35. Sulpholobus

6. Azospirillum 16. Halobacterium 26. Nitrosomonas 36. Thermus

7. Bacillus 17. Lactobacillus 27. Pseudomonas 37. Thiobacillus

8. Burkholderia 18. Methanococcus 28. Ralstonia 38. Vibrio

9. Clostridium 19. Methanosarcia 29. Rhizobium 39. Xanthobacter

10. Commamonas 20. Micrococcus 30. Rhodococcus 40. Xanthomonas
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Thiobacillus, the points exhibited a high scatter irrespective 

of the method used. The reason for such scatter has been 

discussed later. Therefore, in the overall analysis we have 

omitted this genus while estimating the classifi cation 

accuracy. Table 2 also reveals that the grouping of sequences 

is somewhat better for the penta-nucleotide frequencies as 

compared with tetra-nucleotides. Hence, the results obtained 

with penta-nucleotide frequencies were considered for 

further analysis. 

The table also shows that when using penta-nucleotides, 

all the three approaches, viz. SOM, PCA–SOM and 

CCA–SOM, resulted into almost the same classifi cation 

accuracy for the training data set, indicating the existence 

of signifi cant linear relationships among the frequencies of 

penta-nucleotides. In order to validate the three classifi cation 

methods and assess their generalization performance, a 

test set of 125 known 16S sequences belonging to the 

selected genera were retrieved from the NCBI GenBank. 

Figure 4. The grouping of test set of organisms based on the penta-nucleotide frequencies (a–c) using SOM, PCA–SOM and CCA–SOM, 

respectively. The marked areas indicate various classes of taxonomic hierarchy. 

Table 2. Classifi cation accuracy of the training set using three different approaches

SOM PCA–SOM CCA– SOM

Method Penta-mer Tetra-mer Penta-mer Tetra-mer Penta-mer Tetra-mer

Sequences 

classifi ed correctly 

out of 780 (%)

729

(93.46%)

712

(91.28%)

727

(93.20%)

721

(92.43%)

723

(92.69%)

714

(91.53%)
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Interestingly, the classifi cation accuracy for this data was 

found to be more than 95% (fi gures 4(i)–(iii)). This suggests 

the excellent generalization capability of SOM-based 

classifi cation.

4. Discussion

We have earlier reported that on the basis of di- and tri-

nucleotide frequencies, we could discriminate closely related 

sequences (Raje et al. 2002). However, when we applied the 

same strategy with sequences retrieved from different group 

of bacteria, the sequences could not be grouped even after 

using the tools developed in this study. This prompted us to 

use tetra- and penta-nucleotide features for classifi cation to 

arrive at class-/group-specifi c features. 

A closer inspection of the locations of different bacterial 

genera using the penta-nucleotide frequencies data led to 

some interesting fi ndings. Figure 5 shows the groupings 

of 32 organisms taking into consideration the similarity 

of taxonomic hierarchy of organisms. For instance, 

Methanococcus and Methanosarcia (No. 18, 19 in table 

1) have same hierarchy up to the “Class” level, but they 

split at the “order” level, while genera Acetobacter and 

Gluconobacter (No. 1, 14) share same hierarchy up to the 

“Family” level. The placing of these 32 genera was observed 

in the maps generated through each of the three approaches 

using penta-nucleotide data. The organisms within a group 

(fi gure 4) are mostly found adjacent to each other and 

this fi nding was consistent with all the three approaches. 

A closer inspection of the groups showing similarity up 

to the “Family” level (fi gure 4(i)–(iii)) reveals that the 

pixel intensities between the genera Acetobacter (1) and 

Gluconobacter (14), Arthobacter (5) and Micrococcus 

(20), Enterobacter (12) and Salmonella (31), Nocardia (25) 

and Rhodococcus (30), Acinetobacter (2) and Moraxella 

(21) were found to be much lower irrespective of the 

approach used. Such a close adjacency suggests that the 

penta-nucleotide distribution of the stated pairs of genera 

is necessarily similar but suffi ciently distinct to avoid 

misclassifi cation of the respective organisms. Similarly, 

the adjacency was observed for other groups of organisms 

showing taxonomic similarity up to the “Order” level or 

“Class” level; however, the pixel intensities are somewhat 

higher than in the earlier case. In this regard, it becomes 

interesting to ensure through some more case studies, 

using different organisms, whether the level of taxonomic 

relatedness between the organisms has any bearing on the 

pixel intensity of the boundary separating the organisms. 

When the groups of organisms were formed at the 

“Class” level, there was an interesting fi nding that was 

consistent irrespective of the approach used. Table 3 shows 

the grouping of organisms based on “taxonomic class”, and 

fi gure 4(i)–(iii) shows the territory for different classes, 

which includes the selected genera. A defi nite topological 

arrangement of taxonomic classes is seen in the panels of 

fi gure depicting the evolutionary trend of organisms. The left 

most area of the map is occupied by all Actinobacteria and 

Methanococii, which are ancient bacteria on the evolutionary 

scale. The Bacilli is adjacent to Actinobacteria, whereas 

the central area and the right most area is occupied by 

Betaproteobacteria and Gammaproteobacteria respectively, 

which imitate the evolutionary trend. 

Another important observation was about genus 

Thiobacillus (No. 37). The sequences belonging to this 

genus exhibited a wide scatter; hence, the misclassifi ed 

sequences were investigated for their non-memberships to 

genus Thiobacillus. Some of the sequences belonging to this 

Figure 5. Taxonomic classifi cation of the closely related bacteria 

based on the Bergey manual. The horizontal bars indicate the 

taxonomic level up to which the bacterial genera, indicated by 

numbers, show identity.

Table 3. Taxonomic class of the selected bacterial genera

S.

No.

Taxonomic class Bacterial genera*

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Actinobacteria 

α-Proteobacteria 

β-Proteobacteria 

γ-Proteobacteria 

Bacilli 

Methanococci 

Thermoprotei 

Halobacteria 

Flavobacteria 

Deinococci 

Clostridia δ-

Proteobacteria

(5, 17, 20, 23, 25, 30, 34)

(1, 14, 24, 29, 32, 39)

(4, 8, 10, 26, 28, 37)

(2, 3, 6, 12, 15, 21, 22, 27, 31, 38, 40)

(7, 33)

(18, 19)

(35)

(16)

(13)

(36)

(9)

(11)

*The numbers in the parenthesis indicate the bacterial genera as 

mentioned in table 1.
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genus showed nice grouping under the Betaproteobacteria 

class as evident in fi gure 4, while four sequences were placed 

at different locations falling in the Alphaproteobacteria 

region in the maps. Thiobacillus acidophilus (Acc. No. 

D86511), which is one of such sequences, exhibited good 

similarity with genus Acidiphilium. Another misclassifi ed 

sequence (Acc. No. D32238) revealed that it belongs to 

genus Paracoccus and the sequence exactly matched with 

Paracoccus alcaliphilu. The sequence was earlier named 

as Thiobacillus versutus belonging to genus Thiobacillus. 

However, Katayama et al. (1995) noticed that the sequence 

resembles more to genus Paracoccus. The SOM-map also 

revealed that the species does not fall into Thiobacillus 

lattice. Further, similar result was obtained for sequence (Acc. 

No. D32241), which earlier was referred as Thiobacillus 

versutus; but now has been classifi ed as belonging to 

genus Paracoccus and exactly matching with Paracoccus 

kocurii. Also the sequence with accession numbers D32247 

belonged to genus Starkeya. All these sequences belonging 

to genus Acidiphilium, Paracoccus and Starkeya belonged 

to Alphaproteobacteria. The placing of these sequences 

in SOM-maps is also in the Alphaproteobacteria region, 

demonstrating the SOM capabilities based on penta-

nucleotide sequence features. 

Further, we tested seven unknown sequences 

(unculturable isolates) obtained from few effl uent treatment 

plants. The 16S rDNA sequence clones of these isolates 

showed signifi cant similarity with unidentifi ed bacterium 

through BLAST. Equivalently, we obtained the classifi cation 

of these isolates using the above three approaches using 

penta-nucleotide frequencies. Although these organisms are 

outside the set of selected 40 genera, we could predict their 

taxonomic classes using SOM analysis. The scatter of these 

isolates and their clustering in different taxonomic classes 

using the three approaches has been carried out. There was 

absolute consensus of methods for three isolates (No. 2 

(DQ309369), 6 (DQ309372), 7 (DQ309373)) in regard to 

the taxonomic class, i.e. Alphaproteobacteria. For two other 

isolates (No. 3 (DQ309370), 4 (DQ309371)), the taxonomic 

class suggested by PCA–SOM agreed with CCA–SOM. For 

isolate No. 5 (DQ309379), the results of PCA and SOM 

matched with SOM, whereas for isolate No. 1 (DQ309368), 

there was no consensus amongst the methods. Since, the 

linear correlations are predominant in the penta-nucleotide 

frequency data, the classifi cation suggested by PCA and 

SOM was relied upon in this study. So referring to this 

classifi cation, it is possible to predict the belongingness of 

such unknown sequences at least at the “Class” level, which 

otherwise is diffi cult to know through the BLAST results. 

Thus, a sample study with 40 genera revealed that 

sequence characterization, data reduction and data 

visualization approaches using abstract information on 

patterns could support the reported taxonomic knowledge. 

The relatedness of organisms could be displayed through 

elegant graphics, which is a novel representation. Another 

resultant of the analysis is the set of features (penta-

nucleotides) that distinguish the selected organisms with 

higher accuracy. This opens further areas of research such as 

genus-specifi c features could be identifi ed with due regard 

to their frequencies and could be used to generate regular 

expressions. The specifi city of the regular expressions to 

genus could be tested using matching algorithms against 

the 16S rDNA database. The expressions yielding high 

specifi city and sensitivity could act as signature to the genus. 

Also the features could be used to develop organism specifi c 

PCR primers for their rapid identifi cation. Moreover, the 

variable regions between features could also be used as a 

seed to develop genus-specifi c signatures (Purohit et al. 

2003; Liskiewicz et al. 2004).

5. Conclusions

In essence, this study describes a classifi cation mechanism 

that provides a unique visual representation of the 

taxonomic relationships. Such a classifi cation system could 

be developed spanning different taxonomic classes by using 

sample sequences from each of the classes. This could be 

an alternative approach to ascertain the membership of 

new sequence at least at the “Class” level in addition to the 

alignment-based approach. Today it is believed that nearly 

95% of microbial diversity is still unknown (Torsvik et al. 

2002). In the years to come, with the growing size of 16S 

rDNA database, the use of such tools in conjunction with 

the conventional classifi cation tools could strengthen our 

understanding of relatedness of existing and the unexplored 

microbial wealth in nature.
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