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1. INTRODUCTION AND DEFINITIONS.

DEFINITION 1.1. An entire function f: ¢ + ¢ is said to be of bounded index

(b.1.) if there exists an integer N = 0 such that

max lfsz_lill. z f(n) (2) 1.1y
0<is<n it ) n! ‘

for all z € ¢ and all n

i
jol
v
=
N

The least such integer N is called the in-

dex of f (see Lepson [30], Shah [40]).
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DEFINITION 1.2. An entire function f is said to be of bounded value distribu-
tion (b.v.d.) if for every r > 0, there exists a fixed integer P(r) > 0 such that
the equation f(z) = w has never more that P(r) roots in any disc of radius r and
for any w € ¢ (see Hayman [16,17]).

A survey of the proverties of functions of b.i., and of b.v.d., and a list of
references published up to 1975 and some up to 1976, are given in [40].

In Section 2 we give some extensions of these concepts to meromorphic functions
{3]. 1If an entire function is of b.i. N, then its growth is (1; N + 1) ({177,
[37]1, [13]). 1In Section 3 we study extensions of (1.1) suitable for entire func-
tions of finite order. Fere we show, following Hennekemper [19], that if E[p,«)
be the set of all entire functions of order not exceeding p, and not of maximal

l,...,f(N))1 = E[1l,»), where the left

side denotes the ideal in E[1,») finitelv generated by f,fl,...,f(N). In Section

type order p, and if f be of b.i. N, then (f,f

4 we consider entire solutions of linear differential equations with polvnomial
coefficients and give theorems relating to the property of b.i., and bounds on the
index Nf of an entire solution f of bounded index, and also a bound on the growth
rate of f, Here and in the preceding section we have included some new results

and shorter proofs of some known results. (Theorems and Examples without accom-
panyving references are new.) The summability methods related to bounded index
property are given in Section 5. TFinally in Section 6 we give some recent results,
on functions defined by Dirichlet series and on functions of several variables.

2. TFUNCTIONS OF B.I. AND B.V.D.

It is known that if f is of b.i., then it is of exponential type ([17], [13])
but functions of exnonen;ial type need not be of b.i. 1In fact there exist func-
tions of exponential type and having simple zeros and of unbounded index [39].

The following theorem gives a necessary and sufficient condition for an entire
function of exponential type to be of b.i.

THEOREM 2.1. (Fricke [10]). 1Let f be an entire function of exponential type.

Then f is of b.i. if and only if for each d > 0, there exists M = M(d) > 0 such

that |f'(z)] i»M]f(z)[ for all z with |z - an[ > d for all n. Here an's denote
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the zeros of f.
The bound M depends on the closeness to the zeros of f. If we now examine the

behavior of the logarithmic derivative near a zero at of order m, we see that

f'(z) _ m
f(z) z - a,
is bounded in a neighborhood of at; that is
1f'(z) m+ 1
f(z) lz - atl

for z sufficiently close to a . This simple observation is used to improve

Theorem 2.1. For an entire function f, let

n= 1,2,...}}

R(z) = Rf(z) = max [ {1y u { T;—%—;;T

where the an's are the zeros of f.

THEOREM 2.2. (Fricke [10]). An entire function of finite order is of b.i. if

and only if there exists a constant M > 0 such that

£ (2)] < MR [£(2)] for all z .
The proof of Theorem 2.2 makes use of the following lemma [10]: 1If f is an entire
function of finite order such that for some M > O,

[£' ()| < MR(2)|£(2)] for all z ,
then there exists an integer N such that any closed disk of radius 1 contains at
most N zeros of f.

Beauchamp [3] extended tha basic ideas in Theorem 2.2 to meromorphic functions.
To present his results we need the following notations.

DEFINITION 2.3, Let Ac ¢ u {»}. A function f meromorphic on ¢ is said to be
A-b.v.d. if there exists an integer P such that for any w € A, f(z) - w has at most
P zeros in any disk of radius 1. If w = = ¢ A this implies that f has at most P
poles in any disk of radius 1. If A = ¢ u {»}, we simply say that f is b.v.d.

DEFINITION 2.4. A function f meromorphic on C is said to be D.I. (differen-
tial inequality) if

(1) f is {~}-b.v.d.
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(ii) f satisfies an inequality of the form

If(N+1) (2) ! < R(z) max I f(j) (z)]
0<j<N

for all z ¢ ¢\P, where N is a positive integer,
P = {b ecC | f has a pole at bn} ,
and R(z) is a real yalued function with R(z) > 1 and R(z) decreasing
with respect to the distance of z to the poles, that is,
R(z) = D[d(z,P)] where D : (0,~] » [1,o) is a decreasing
function. (If f is entire we may consider R(z) to be constant.)
For entire functions and for R(z) = C, Hayman [17] showed that the above con-
dition is equivalent to bounded index.
DEFINITION 2.5. A function f meromorphic on ¢ is said to be L.D.I. (logarith-
mic differential inequality) if
(1) £ is {0,=}-b.v.d.
(ii) the logarithmic derivative satisfies

l £ (Z_) < L(z) for all z € ¢\D

f(z)

where D is the set of zeros and poles of f and L(z) is a decreasing
function with respect to the distance of z to U and L(z) > 1.
Using the above definitions, Beauchamp was able to obtain among other results
the following:
THEOREM 2.6. (Beauchamp [3]). A function f meromorphic on ¢ is D.I. if and
only if it is L.D.I.; in fact if f is D.I. then R(z) in Definition 2.4 may be

K
chosen to be of the form R(z) = M Eéax {1, E?%_77 i} , where M is a constant > 1,

and N and K are integers with 1 < K < N.

THEOREM 2.7. (Beauchamp [3]). A function f meromorphic on ¢ is b.v.d. if
and only if £'(z) is D.I.

THEOREM 2.8. (Beauchamp [3]). Let f and g be D.I. Then

(i) the function %-is D.I.

(ii) The product h = fg is D.I.
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THEOREM 2.9. (Beauchamp {3]). Let f be D.I. Then f is of order not exceed-
ing 2 and finite type.

In [3] Beauchamp also examines and obtains similar results for functions mero-
morphic on the unit disk. Here R(z) and L(z) depend not only on the distance to
the zeros, respectively zeros and poles, but also on the distance to the boundary

of the unit disk.

3. BOUNDED INDEX CONCEPT FOR FUNCTIONS OF FINITE ORDER.

It is known that if f, entire on ¢, is of order > 1 or of order 1 and maximal
type then the growth rate of the derivative may be larger than that of the function
(Shah [36], Vijayaraghavan [46], Kovari [28]) and so inequalities of the type (1.1)
may not hold. To overcome this difficulty both sides of the inequality (1.1) are
multiplied by a factor. Thus we have:

DEFINITION 3.1. (Beauchamp [3]). Let f be entire on ¢ and v = 0. The
function f is y-b.i. (y-bounded index) if there exist a number r, > 0 and an inte-
ger N 2 0 such that

@l Y @ R
n!lz]wY 0<vsN \)!lzl\)Y
for all lz] z r and n = N.

This definition is an extension of (1.1) to entire functions of finite order.

If f is of b.i. N then f is of growth (1, N+1) ([40]). Here we have

THEOREM 3.2. (Beauchamp [3]). If f is vy-b.i. satisfying (3.1) then f is of

N+1
growth (v + 1, Vii-)'
Another extension of (1.1) is as follows:

DEFINITION 3.3. (Hennekemper [19]). An entire function f is said to be of

bounded o-index N if o € R and N is the smallest integer such that for all n,

(i) max { 31 b2 o for all z : lz{ <1,
0<j<N : :
and
H . (n)
(ii) max { E: (2] } ]zlocJ > _li————SElL ‘z‘an for all z : |z| = 1.

1
0<3i<N e
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This definition is a slight variation of the one given by G. Frank [6], and is
used by Hennekemper to prove Theorem 3.4 below.
Let E[p,») be the set of all entire functions which are of order not exceeding
p (0 < p < ») and not of maximal type order p, that is,
Elp,») = {f entire lf(z)] < C1 exp(Czlzlp) for all z € ¢ and

constants C1 = Cl(f) and C2 = Cz(f)}.

Let fl’fZ""’fn € E[p,») and denote by (fl’fZ"°"fn)p the ideal in E{p,=)

finitely generated by fl’f2""’fn'
THEOREM 3.4. (Hennekemper [19]). Let f € E[p,») be of bounded a-index N and
let ¢ > 0. Then
(€600t W) L Blove,).
We give below a different proof of this theorem when p = 1 and a« = 0. For another
proof see [19].
THEOREM 3.5. Let f be an entire function of b.i. N, not identically zero.
Then
(£, e ™) = EiLe) |
PROOF. Since f is of b.i. N, we have for any j

!f(j) ()| <3 ! max {[f(k) )|} for all z ¢ ¢.
0<k<N

Thus, for C = (N + 1) !

. N
£ @yl <c 150 ()]
k=0

for all z, and j = 1,2,...,N+1. Let a ¢ £ , ja] = 1 and
N
z

e = & % o) .
k=0

Then G(r) is continuous and piecewise continuously differentiable. Also because of

the definition of b.i.,
(%)

a}
[\
o

max |f (z)} >0 and thus G(r) >0 for

0<2<N

Hence for all r, except possibly for a set of measure zero,
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o' @] = kgo d|f(kzr(ar)' g kgo 120D (o
<@ + £ (@]
< G(r) + CG(x)
Thus
ler@)|/6(x) sc+1, G'(r)/G(xr) 2 ~(C + 1)
Hence

¢ _ e
log co) - Jo IS dx 2 ~(C +1)r .

Now if we let C1 = 1/G(0) and C2 = C+ 1, then for all r > 0

G(r)
G(0)

= ClG(r) > exp(-Czr) R

and thus for all r 2 0

C1 exp(Czr)G(r) 21,

Since arg ¢ was arbitrary, we obtain by considering z = ar,

Yo
1< ¢ exp(C,lz]) L £ (2)]

for all z. The proof can now be concluded by applying the following ([21], [23],

[19D
LEMMA. Let fo,fl,...,fn € E[p,»). The (fo’fl""’fn)p = E[p,») if and only
if there exist Cl’CZ > 0 such that
o n
1sc exp(Czlz[ ) { jEO lfj(z)l }
for all z ¢ ¢.
4. ENTIRE SOLUTIONS OF DIFFERENTIAL EQUATIONS.
(i) Consider the differential equation (d.e.)
- (n) (n-1) -
Ln(w,a) =aw + alw + ...+ a w 0, a = 0 4.1)
and the d.e.
(n) (n-1)
P) = ceo ¥ = .
Ln(w, ) Po(z)w + Pl(z)w + Pn(z)w 0 (4.2)

where a € ¢, Pk are all polynomials and
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P (2) = Akza“u +0o(1)) , lz] » = . (4.3)

The following results are known.

THEOREM 4.1. (Shah [37]). All solutions of the equation Ln(w,a) =0, a ¢ ¢,
are entire functions of b.i. and b.v.d.

There it is shown that every solution f(z) is of b.i., and a bound on the
index of f is also given. By differentiating (4.1), one sees easily that every
solution is of b.v.d.

THEOREM 4.2, (Shah [38]1). If

deg Po > max deg P (4.4)

1<k<n k-’
then all those solutions of the equation Ln(w,P) = 0, which are entire functions,
are of b.1i. and b.v.d.

Extensions of this theorem are given by Fricke and Shah ({11],[13]). Bounds

for the index N_ = N(f) of an entire solution f of (4.2) are known in some particu-

f
lar cases ([31], [22], [44]). Note that Theorem 4.2 implies that any entire solu-
tion w is of exponential type N(fw) + 1. A bounded index on the growth rate of a

solution, without the hypothesis (4.4), is given in the next theorem. Write

% "%
Y= max ——— , o = - if Pk =0,
1<k<n k
if - a = ky
£k={Ak % T %
0 if @ T o < ky .

THEOREM 4.3. (Beauchamp [3]). If f is an entire solution of the equation

Ln(w,P) = 0, and if vy 2 0, then f has growth

n

{y+1,( llkkl) / e+ A}, (4.5)

z
k=
The following examples show that the growth bound (4.5) cannot, in general,

be improved.

exp(zk) where k 2 1 is an integer.

[]

EXAMPLE 4.4, (Beauchamp [3]). Let f(z)

Then f satisfies the equation

w' - kz(k_l)w =0

.
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Here vy = k - 1, Ao =1, 2 = -k and f has growth (k,1).

EXAMPLE 4.5. The Bessel function Jn(z) of order n, where n is a positive or
negative integer or zero, satisfies the equation
zzw" + zw' + (22 - nz)w =0 .
Here vy = 0, Ao =1, Zl

(ii) We now consider one type of converse of Theorem 4.2. We seek a set of

=0, 2, =1 and Jn has growth (1,1).

2

entire functions & such that every entire function f of b.i. satisfies a linear

d.e. of the form

f(n) g@-1)

+ 81 vee + gof =0,
where go,gl,...,gn_1 are entire functions.
THEOREM 4.6. (Hennekemper [19],[20]). Let f be of b.i. N. Then f satisfies

a linear differential equation of the form
f(N+l) ()]

1]
]

+ ... +gf (4.6)

+ ng
with g, € E{1,«).

COROLLARY 4.7. (Hennekemper [20]). Any entire function of exponential type
can be written as the difference of two functions each satisfying a linear d.e. of
order N with coefficients from E[1l,x).

For the proof of Theorem 4.6 we only need to note that (Theorem 3.5)
R I LGS SRR AL VN
The Corollary relies on the fact that any function of exponential type can be
written as the sum of two functions of b.i. ([42]).
REMARK, Simple examples such as Sin z, Cos z (N = 1), eZ (N = 0) show that
the order of the equation (4.6) is best possible.

(iii) Another type of converse to Theorem 4.2 is as follows:

THEOREM 4.8. If all n solutions of d.e. Ln(w,P) = 0 are entire functions of

exponential type, thendeg Po > deg P for k = 1,2,...,n; and thus the solutions

k’
are of b.i. and b.v.d.
We shall deduce this from

THEOREM 4.9. If all n solutions are entire functions and

deg P < max deg Pk 4.7)
R
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then at least one solution w is of order Al where

Y T %
A, =1 +max ——> 1., (4.8)

1 K0 Kk
PROOF. This result follows easily from the results and methods of Knab [24-2717,
Wittich [47], Poschl [34], Boehmer [4] and Frank [5]. We sketch briefly the main
argument. By our hypothesis
a < g= mZx {ai +1i} . (4.9)
i=1
Hence there is a region S, the plane cut along a half ray, in which a single-valued

branch W of the solution w can be defined with the property that if

M(r,W) = max {|W(z)|, z ¢ S
zi=r

then

AGH) = 1lim sup 08LoB M(r,W) o

e log r
Since all the solutions, by our hypothesis, are entire, we can choose the branch
to be the solution itself and this implies that there is at least one transcendental
solution with positive order (see also Ince [22, 424-427]).
Now we use Wiman-Valiron central index method (cf: Wittich [47, &4-11; 65-73],

Valiron [45, 105-109; 177-181}). For the transcendental solutions

(k) k
v~ (@) (3) yk=1,2,... ;3 as >,

w(z) z
except for a set of values of r = ‘c] of finite logarithmic measure. Here N = N(r)
is the central index and the points g, on |z| = r, are the points at which the

maximum modulus is attained:

w(z) = max ‘w(z)’ .
zi=r

We substitute this asymptotic relation in (4.2) and put N = 1/Y, ¢ = 1/X and then
the equation (4.2) becomes

n
k
Eo AkakY (1 +mn (X)) =0

where mk =K+n+ ao -a -k, K= maxk>0 (ak - ao) and nk + 0 as X > 0. One

k
next constructs a Newton's polygon (cf: [33], [47; 67-72]) with points (k,m ) and
m

it follows (cf: Knob [25,27]) that the negative slopes of the sides of the polygon
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give the orders of the solutions and that the negative of the slope of the side
through (O,mo) is the order of the solution of maximal growth. The negative of

"k "%

this slope is in fact 1 + max .o T % > 1.

REMARKS., (i) Note that the condition (4.7) implies (4.9). We require (4.7)
for the concluding part of the proof of Theorem (4.9).
(11) The following example shows that the hypothesis, in Theorem 4.9, that all
solutions are entire is necessary.

EXAMPLE 4.10. [40].
zw'" + (z2 -z - %)w' - (22 - %

Here (4.7) is satisfied. One solution wl(z) = e? is entire but the second solution

Yw =0 .

is not entire, and the conclusion of Theorem (4.9) does not hold.
We now give two more examples.

EXAMPLE 4.11. (5, p. 61~621).

(2z2 -2z - Lyw''' + (-—823 + 622 + 2z + 3w + (824 - 10z

+ (—824 + 823 + Zz2 -2z -9w=0.

2 + 2z + '

Here all three solutions are entire functions:

2 2
z -~z z +z 4
v, =e > W, = e s Wy =e
Here
a = 2, a; = 3, a, = 4, ay = 4 o, = 5, m = 3, m, = 1, my = 0
o = o
Al = 1 + max =2 .
k>0 k
EXAMPLE 4.12,

w"' - 2zw' + 2nw = 0 .
Here both solutions are entire functions, one a polynomial (Hermite polynomial,
when normalized) and the second, a transcendental function of order
Al =1+ max {1,0} = 2 .
Herem =3, m
o
(1ii1) Frank and Frank and Mues ([6-8); see also [40]) introduce a function I(r,f)

to define a function of b.i. Consider the Taylor expansion of an entire function
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f about a point a:
® (n)
f(z) = £ @ (z - a)n , ace€ ¢ 3
0

1
n= n!

and let ka be the largest nonnegative integer such that

(k)
le 2 (o] N e ® (]

(ka)! n!

for n=10,1,2,... .
Define I(r,f) = Supfalsr ka .
If 1lim SUP_ .. I(r,f) < « then f is said to be of b.i. This definition is equiva-

lent to (l.1). Frank and Mues [8] showed that if f is an entire function of finite

order p, then

+
max{0,p-1) £ 1im sup Lo loé(:,f) <p

<o
We now state an extension of this theorem.
THEOREM 4.13. (a) Suppose the hypothesis of Theorem 4.9 is satisfied. Then
there is a solution w of order Xl given by (4.8). The index I(r,w) of this solution

w satisfies

+

1im log I(xw) _ 4 _ 4
log r 1

T

(b) 1If deg Po > max, .o deg Pk’ then
o, - @
A, = 1 + max ko <1

1 k>0 k -

and any entire solution of (4.2) satisfies

lim I(r,w) < « .
-

We omit the proof of (a) which is similar to the proof of Theorem 2 of [7]. The
second part (b) is a restatement of Theorem 4.8.
(iv) Heath considers vector-valued entire functions of b.i. and proves a result,
similar to Theorem 4.2, for vector equations.

THEOREM 4.14. (Heath [18]). If T is an entire solution of F' = AF + Q where
A= [rij] is a matrix whose entries are rational functions which are bounded at
infinity and Q is a vector whose entries are rational functions which are bounded

at infinity, then F is a function of bounded index.
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5. BOUNDED INDEX AND SUMMABILITY METHODS.

We begin with definitions and notations. A sequence X = {Xk}: of complex num-
bers is an entire sequence if Z:=O ‘Xquk converges for every positive integer g,
that is, if f(2) = Z;=O szk is an entire function. We will denote the set of
entire sequences by E. An entire sequence X = {Xk}: is of bounded index if f(z) =
X:=O szk is of b.i., and we denote the set of sequences of b.i. by B.

Furthermore, let < be the set of null sequences, ¢ the set of convergent

sequences, % be the set of absolutely convergent sequences, that is

n={x={xk}::k°z°o I | <=}

and let

=

Ex is bounded}

(X = {g{}: 2o x ]
and 1
I @K D >0 as kv ).

x = {X
Then x can be regarded as the collection of functions f(z) = Z;=0 szk of

exponential type of order 1 and type O.
If R and S are collections of sequences, then a matrix A = (an k) is an R-S
b

method if it maps sequences of R to sequences in S.

The Taylor matrix T(r) = (an k) is defined by [35, p. 60]

>

(:) (1-1:)n+1rk-n for k 2 n

4,k
’ 0 otherwise .

THEOREM 5.1. (Fricke and Powell [12]). The Taylor matrix is a B-B method,
that is, maps sequences of b.i. to sequences of b.i. for any complex number r.
For an entire function f(z) and a sequence {zi}: of complex numbers, define

the matrix method A(f,zi) = (an,k) by

©

f(z) = ¢ a ,(z-2z )k for n = 0,1,2,...
k=0 n

n,k

We can express the Silverman-Toeplitz conditions for regularity as follows (cf:

[35, p. 23]):
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(1) 1im £® () =0 fork=0,1,...

n-><
(ii) lim f(z_ + 1) =1,
n>e o
and
(iii) b Ian kl < M for some M > 0 and all n = 0,1,...

THEOREM 5.2. (Fricke and Powell {121). 1If f is of b.i.., then A(f,zi) is not
regular for any sequence {zi}: .

The proof relies on the fact that if £ is a function of b.i. and {an} is a

sequence of complex numbers such that limn+w f(k)

{If(k)

(an) = 0 for all k = 0,1,...,

then for any r > 0, 1:i.mn_>u0 (z)l} =0 for k =0,1,...

maxlz_a [=r
n
Let A'(f,zi) = (bn k) denote the transpose of A(f,zi), that is,
s

(z - 2z )n for k =0,1,...

k

f(z) = nEO bn,k

We then have the following:
THEOREM 5.3. (Fricke and Powell [12]). Let f be of b.i.

(i) A'(f,zi) is an 2~2 method if and only if

sup {]f(k) (zn)‘} < ® for k=0,1,... .
n

(ii) A'(f,zi) is an E-E method if and only if for each integer n 2 0
there exist an integer p > 0 and a constant M > 0 such that
!f(n) (zk)] < pkM for k = 0,1,... .
The part (ii) of this theorem does not necessarily hold for functions of
exponential type and unbounded index.
THEOREM 5.4. (Fricke and Powell [12]). ©Let f be of b.i. If either A(f,zi)
or A'(f,zi) is an 2-% method then A'(f,zi) is an E-E method.
In a recent paper and its corregendum ([43]) Sridhar further examines the
A(f,zi) matrix transformation and obtains results which can be summarized as follows.
THEOREM 5.5. (Sridhar [43]). Let f be of b,i. Then the following are equi-
valent.
(i) A(f,zi) is a co-E method.

(ii) A(f,zi) is a e X method.
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(iii) A(f,zi) is a c~E method.
(iv) f(k) (zn) L. o{n) as n >« for all k = 0,1,...

THEOREM 5.6. (Sridhar {43]). Let f be of b.i. Then A(f,zi) is a ¢c-E* method

if and only if 1

f(k) (zn) . O(n) as n > o« for all k = 0,1,...

6. FUNCTIONS DEFINED BY DIRICHLET SERIES AND FUNCTIONS OF SEVERAL VARIABLES.

(1) Let

f(s) = ?

pd
Lo a exp(sln) s Ao 20, A > A

n+l n

be absolutely convergent everywhere and such that lim infn*w(k - Xn) > 0,

n+l
Azpeitia [1] considers entire functions f(s) and proves that if f(s) is of bounded
index N, then it reduces to an exponential polynomial. Bajpai [2] replaces the
condition of b.i. of f(s) by four conditions and proves that if any one of these
four conditions is satisfied then f(s) reduces to an exponential polynomial. Gross
[15] and Shah and Sisarcick [41] have considered similar conditions for functions
defined by Tayvlor series.

(ii) In [32] Salmassi considers functions f(z) = f(zl, zz) of two variables
and proves the following:

THEOREM 6.1. (Salmassi [32]). Let f(z) be of b.i. and a ¢ ¢. Then g(z) =
f(az) is also of b.i.

He also obtains a necessary and sufficient condition for £(z) to be of b.i.

A similar theorem for a function of one variable is due to Fricke [9].
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