THE GREATEST PRIME FACTOR OF x2-1.

By S. CHOWLA,

Department of Mathematics, Andhra University, Wallair.

Received October 11, 1934.

Theorem. If P_x is the greatest prime factor of $x^2 - 1$, then

(1) $P_x > c \log \log x$

where c is an absolute positive constant.

Remarks. (1) is a sharper form of the well-known result $P_x \to \infty$ as $x \to \infty$,

which is a consequence of the Thue-Siegel theorem.1

It is noteworthy that it is not possible to derive (1) from Siegel's method.² Proof. We need the following lemmas.

Lemma 1.3 Let $x = t_1$, $y = u_1$, be the smallest solution in positive integers of

$$x^2 - Dy^2 = 1$$

where D is not a perfect square. We define $t_{m}=t_{m}$ (D),

$$u_m = u_m$$
 (D) by

$$t_m + u_m \vee D = (t_1 + u_1 \vee D)^m$$

Then for every m > 1, u_m contains at least one prime factor not contained in D.

Lemma 2.4

$$t_1$$
 (D) $< \exp. (c_1 \ \sqrt{D} \log D)$,

$$u_1(D) < \exp(c_1 / D \log D),$$

where c₁ is an absolute positive constant independent of D.

Now let p_r denote the rth prime, $p_1 = 2$, $N_r = p_1, p_2, p_3, \ldots, p_r$ the product of the first r primes. Let m be a positive integer (not a perfect square) composed of powers not higher than the second of primes chosen from p_1, \ldots, p_r . It is a consequence of lemmas 1 and 2 that for every

$$x > e^{c_1 \sqrt{m \log m}}$$

¹ See Landau, Vorlesungen über Zahlentheorie, 3.

² Landau, ibid., 230.

³ See Dickson's History of the Theory of Numbers, 2, 391 and 396. The result is due to Störmer, 396.

⁴ Schur, Göltinger Nachrichten, 1918.

⁵ Remembering that if $x^2 - Dy^2 = 1$ there is a unique m such that $x = t_m(D)$, $y = u_m(D)$ [$y \neq 0$].

the expression (x^2-1) has at least one prime factor not contained in m. It now follows that if

$$x > e^{2c_1 \operatorname{N} r \log \operatorname{N} r}$$

then (x^2-1) has at least one prime factor greater than p_r . Hence if

(2) exp. $(2c_1N_r \log N_r) < x \le \exp$. $(2c_1N_{r+1} \log N_{r+1})$ then $P_x > p_r$.

But

(3) $\log N_r \sim p_r$

From (2) and (3) it follows that for all x in (2),

(4) $P_x > p_r > c_2 \log \log x$,

where c_2 is an absolute positive constant. Since to every large x we can find a unique r to satisfy (2) our theorem is now proved.