THE GREATEST PRIME FACTOR OF $x^2 - 1$.

BY S. CHOWLA,

Department of Mathematics, Andhra University, Waltair.

Received October 11, 1934.

Theorem. If P_x is the greatest prime factor of $x^2 - 1$, then

(1) $P_x > c \log \log x$

where c is an absolute positive constant.

Remarks. (1) is a sharper form of the well-known result

$P_x \to \infty$ as $x \to \infty$,

which is a consequence of the Thue-Siegel theorem.¹

It is noteworthy that it is not possible to derive (1) from Siegel's method.²

Proof. We need the following lemmas.

Lemma 1.³ Let $x = t_1$, $y = u_1$, be the smallest solution in positive integers of

$x^2 - Dy^2 = 1$

where D is not a perfect square. We define $t_m = t_m(D)$, $u_m = u_m(D)$ by

$t_m + u_m \sqrt{D} = (t_1 + u_1 \sqrt{D})^m$

Then for every $m > 1$, u_m contains at least one prime factor not contained in D.

Lemma 2.⁴

$t_1(D) < \exp\left(c_1 \sqrt{D \log D}\right)$,

$u_1(D) < \exp\left(c_1 \sqrt{D \log D}\right)$,

where c_1 is an absolute positive constant independent of D.

Now let p_r denote the rth prime, $p_1 = 2$, $N_r = p_1, p_2, p_3, \ldots, p_r$ the product of the first r primes. Let m be a positive integer (not a perfect square) composed of powers not higher than the second of primes chosen from p_1, \ldots, p_r. It is a consequence of lemmas 1 and 2 that for every

$x > e^{c_1 \sqrt{m \log m}}$

² Landau, ibid., 230.
³ See Dickson’s History of the Theory of Numbers, 2, 391 and 396.
⁴ Schur, Göttinger Nachrichten, 1918.
⁵ Remembering that if $x^2 - Dy^2 = 1$ there is a unique m such that $x = t_m(D)$,
 $y = u_m(D) \left[y \doteq 0\right]$.

269
the expression \((x^2 - 1)\) has at least one prime factor not contained in \(m\). It now follows that if
\[
x > e^{2r_1 N_r \log N_r}
\]
then \((x^2 - 1)\) has at least one prime factor greater than \(p_r\). Hence if
\[
(2) \quad \exp(2c_1 N_r \log N_r) < x \leq \exp(2c_1 N_{r+1} \log N_{r+1})
\]
\[
P_x > p_r.
\]
But
\[
(3) \quad \log N_r - p_r
\]
From (2) and (3) it follows that for all \(x\) in (2),
\[
(4) \quad P_x > p_r > c_2 \log \log x,
\]
where \(c_2\) is an absolute positive constant. Since to every large \(x\) we can find a unique \(r\) to satisfy (2) our theorem is now proved.