ON A CERTAIN ARITHMETICAL FUNCTION.

BY S. CHOWLA,

Andhra University, Waltair.

Received April 1, 1935.

1. We define $\epsilon (k)$ as the least value of s such that the equation

$$\sum_{n=1}^{s} \epsilon_n m_n^k = 0$$

[where each $\epsilon_n = +1$ or -1 and the m's are positive integers] has infinitely many solutions in m_r ($r \leq s$) with

$$(m_1, \ldots, m_s) = 1.$$

[The symbol (a_1, \ldots, a_i) denotes the greatest common divisor of a_1, \ldots, a_i].

We observe that

(1) It is not yet known whether

$$\epsilon (k) \geq 4$$

for all positive integers $k \geq 5$.

(2) It is trivial that

$$\epsilon (k) \leq 2k + 2.$$

(3) The conjecture that

$$\epsilon (k) \to \infty \text{ as } k \to \infty$$

is a natural generalisation of the Thue-Siegel theorem.\(^1\)

(4) We have\(^2\)

$$(1) \quad \epsilon (3) = \epsilon (4) = 4.$$

$$(2) \quad 4 \leq \epsilon (5) \leq 6, \quad 4 \leq \epsilon (8) \leq 16.$$

$$(3) \quad 4 \leq \epsilon (6) \leq 12.$$

$$(4) \quad 4 \leq \epsilon (7) \leq 13, \quad 4 \leq \epsilon (9) \leq 17.$$

In all these cases $\epsilon (k) \leq 2k$. We do not know whether this inequality is true for $k \geq 10$.

In what follows we say that k is 'exceptional' when it belongs to any of the following four forms:

\(^1\) See Landau, Vorlesungen über Zahlentheorie, Bd. 3.

\(^2\) That $\epsilon (k) \geq 4$ for $3 \leq k \leq 9$ is a consequence of the impossibility of $x^k + y^k = z^k$ ($xyz \neq 0$) for these values of k. The right hand side inequalities in (2), (3), (4) are due to Sastry, Subba Rao and S. Chowla respectively. See Journ. London Math. Soc., 1934, 9, 172-73, 242-46, and Proc. Ind. Acad. Sci. (A), 1935, 1, 580-591.

772
I. \(\mathcal{F} = 2^2 \) (\(\mathcal{F} > 1 \)).

II. \(\mathcal{F} = 2^2 \cdot 3 \) (\(\mathcal{F} > 1 \)).

III. \(\mathcal{F} = \pi^2 \cdot (\pi - 1) \) (\(\mathcal{F} > 0 \)).

IV. \(\mathcal{F} = \frac{1}{2} \pi^2 \cdot (\pi - 1) \) (\(\mathcal{F} > 0 \)).

Here \(\pi \) denotes any odd prime.

Our main object is to prove

Theorem 1. If \(k \) is not ‘exceptional’, then

\[\epsilon (k) \leq 2k + 1. \]

A special case is

Theorem 2. If \(k \) is odd and not of the form IV above (the forms I, II, III can only represent even numbers), then there is an \(s \leq 2k + 1 \) such that the diophantine equation

\[\sum_{m=1}^{s} x_m^k = 0 \]

has infinitely many solutions with \((x_1, \ldots, x_s) = 1 \).

It seems not impossible that our theorems should be capable of elementary proof for all integers \(k \), but our proof of Theorem 1 is based on the following deep result of Hardy and Littlewood³:

Theorem A. If ‘Hypothesis K’ is true and \(k \) is not exceptional then almost all positive integers are expressible as the sum of \((k + 1) \) non-negative \(k \)th powers of integers.

We write⁴

\[(m)^k = (n)^k \quad \text{i. o.} \]

when there exist infinitely many sets of positive integers \(x_s \) (\(s \leq m \)), \(y_t \) (\(t \leq n \)) such that

\[\sum_{s \leq m} x_s^k = \sum_{i \leq n} y_i^k \]

where

\[(x_1, \ldots, x_m, y_1, \ldots, y_n) = 1. \]

2. If

\[(k)^k = (k)^k \quad \text{i. o.} \]

is true then \(\epsilon (k) \leq 2k \), and hence our theorem is proved. Hence we may assume that (8) is false and hence that⁵

\[r_{k, k} (n) = 0 \quad (1), \]

⁵ *r* \(k, k \) (n) is the number of representations of \(n \) as a sum of \(k \) positive \(k \)th powers of integers.
so that 'Hypothesis K' is certainly true. But from (B),

\[\sum \frac{1}{n} > c \sqrt[3]{x} \]

where \(c \) is a positive constant independent of \(x \). In words (C) means that the sequence of integers which are sums of \(k \) non-negative \(k \)th powers (of integers) has 'positive density'.

From theorem (A) if \(k \) is not 'exceptional' then in virtue of (B),

\[\sum \frac{1}{n} \sim x. \]

From (C) and (D) it follows that if \(k \) is not 'exceptional' then

\[(k)^k = (k+1)^k \quad i.e. \]

\[e(k) \leq 2k+1. \]

Hence our Theorem 1.