ON A CERTAIN ARITHMETICAL FUNCTION.

By S. CHOWLA,

Andhra University, Waltair.

Received April 1, 1935.

1. We define $\epsilon(k)$ as the least value of s such that the equation

$$\sum_{n=1}^{s} \epsilon_n \ m_n^k = 0$$

[where each $\epsilon_n = +1$ or -1 and the m's are positive integers] has infinitely many solutions in m_r ($r \le s$) with

$$(m_1, \cdots, m_s) = 1.$$

The symbol (a_1, \dots, a_t) denotes the greatest common divisor of a_1, \dots, a_t .

We observe that

(1) It is not yet known whether

$$\epsilon(k) \geqslant 4$$

for all positive integers $k \geqslant 5$.

(2) It is trivial that

$$\epsilon(k) \leq 2k+2$$
.

(3) The conjecture that

$$\epsilon(k) \rightarrow \infty$$
 as $k \rightarrow \infty$

is a natural generalisation of the Thue-Siegel theorem.1

- (4) We have²
 - (1) ϵ (3) = ϵ (4) = 4.
 - (2) $4 \leqslant \epsilon$ (5) \leqslant 6, $4 \leqslant \epsilon$ (8) \leqslant 16.
 - (3) $4 \leqslant \epsilon$ (6) $\leqslant 12$.
 - (4) $4 \leqslant \epsilon$ (7) $\leqslant 13$, $4 \leqslant \epsilon$ (9) $\leqslant 17$.

In all these cases $\epsilon(k) \leq 2k$. We do not know whether this inequality is true for $k \geq 10$.

In what follows we say that k is 'exceptional' when it belongs to any of the following four forms:

¹ See Landau, Vorlesungen über Zahlentheorie, Bd. 3.

² That $\epsilon(k) \geqslant 4$ for $3 \leqslant k \leqslant 9$ is a consequence of the impossibility of $x^k + y^k = z^k$ $(xyz \neq 0)$ for these values of k. The right hand side inequalities in (2), (3), (4) are due to Sastry, Subba Rao and S. Chowla respectively. See *Journ. London Math. Soc.*, 1934, 9, 172-73, 242-46, and *Proc. Ind. Acad. Sci.* (A), 1935, 1, 590-591.

I.
$$k = 2^{\mathfrak{S}} (\mathfrak{S} > 1)$$
.
II. $k = 2^{\mathfrak{S}} \cdot 3 (\mathfrak{S} > 1)$.
III. $k = \pi^{\mathfrak{S}} (\pi - 1) (\mathfrak{S} > 0)$.
IV. $k = \frac{1}{2}\pi^{\mathfrak{S}} (\pi - 1) (\mathfrak{S} > 0)$.

Here π denotes any odd prime.

Our main object is to prove

Theorem 1. If k is not 'exceptional', then

$$\epsilon(k) \leqslant 2k + 1.$$

A special case is

Theorem 2. If k is odd and not of the form IV above (the forms I, II, III can only represent even numbers), then there is an $s \le 2k+1$ such that the diophantime equation

$$\sum_{m=1}^{s} x_m^k = 0$$

has infinitely many solutions with $(x_1, \dots, x_s) = 1$.

It seems not impossible that our theorems should be capable of elementary proof for all integers k, but our proof of Theorem 1 is based on the following deep result of Hardy and Littlewood³:

Theorem A. If 'Hypothesis K' is true and k is not exceptional then almost all positive integers are expressible as the sum of (k+1) non-negative kth powers of integers.

We write4

(5)
$$(m)^k = (n)^k i. o.$$

when there exist infinitely many sets of positive integers x_s $(s \leq m)$, y_t $(t \leq n)$ such that

(6)
$$\Sigma \quad x_s^k = \Sigma \quad y_t^k \\ s \leqslant m \quad t \leqslant n$$

where

(7)
$$(x_1, \dots, x_m, y_1, \dots, y_n) = 1.$$

2. If

(8)
$$(k)^k = (k)^k i. o.$$

is true then $\epsilon(k) \leq 2k$, and hence our theorem is proved. Hence we may assume that (8) is false and hence that⁵

(B)
$$r_{k,k}(n) = 0 (1),$$

³ P. N. (VI) in Math. Ztschr., 1925, 23, 1-37.

See also P. N. (VIII) in Proc. London Math. Soc., 1928, 27, 518-42.

^{4 &#}x27; $i. o.' \equiv$ 'infinitely often'.

⁵ $r \not k k(n)$ is the number of representations of n as a sum of k positive kth powers of integers.

so that 'Hypothesis K' is certainly true. But from (B),

(C)
$$\sum_{\substack{n \leq x \\ n = n_1^k + \dots + n_k^k}} 1 > c x$$

where c is a positive constant independent of x. In words (C) means that the sequence of integers which are sums of k non-negative kth powers (of integers) has 'positive density'.

From theorem (A) if k is not 'exceptional' then in virtue of (B),

(D)
$$\sum_{\substack{n \leqslant x \\ n = n_1^k + \dots + n^k_{k+1} \\ n_1, \dots, n_{k+1} \geqslant 0}} 1 \sim x.$$

From (C) and (D) it follows that if k is not 'exceptional' then

$$(k)^k = (k+1)^k \quad i. \ o.$$

i.e.

$$\epsilon(k) \leqslant 2k+1.$$

Hence our Theorem 1.