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1. WE define ¢ (k) as the least value of s such that the equation
S
2 e, mF =0
n=1
[where each e, = + lor — 1 and the m's are positive integers] has
infinitely many solutions in m, (r < s) with
(ml’ e, ms) f— 1.
[The symbol (@, - -+, a;) denotes the greatest common divisor of a;, - - -, a,].
We observe that
(1) 1Itis not yet known whether

e(k) =4
for all positive integers £ > 5.

(2) It is trivial that
e(R) < 2k +2.
(3) The conjecture that
€ (B)—>o0 as B—>oo
is a natural generalisation of the Thue-Siegel theorem.!
(4) "We have?

(1) €8 =e(4) =4

(2) 4<e(B) <6, 4<c(8) <16
(3) 4< e(6) <12

() 4<e(MN<K13, 4K (91T,

In all these cases ¢ (2) < 2. We do not know whether this inequality
is true for 2 > 10.

In what follows we say that % is ¢ exceptional * when it belongs to any
of the following four forms:

1 See Landau, Vorlesungen iiber Zahlentheorie, Bd. 3.

2 That e(k) >>4 for 3< k<9 is a consequence of the impossibility of a% + y¢ = 2%
(xyz == 0) for these values of k. The right hand side inequalities in (2), (3), (4) are due
to Sastry, Subba Rao and S. Chowla respectively. See Journ, London Math. Soc.,
1934, 9, 172-73, 242-46, and Proc. Ind. Acad. Sci. (A), 1935, 1, 590-591,
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I. k=24 (%> 1)
I & =29.3(%> 1)
IIL k= a% ("—1) (§ > 0).
IV. %= 1a% (a—1) (§ > 0).
Here # denotes any odd prime.
Our main object is to prove

Theorem 1. If k is not ¢ exceptional’, then
e (k) < 28+ L
A special case is
Theovem 2. If k 4s odd and wot of the form IV above (the forms I, II,
III can only represent even numbers), then there is an s< 2k+ 1 such that
the diophantime equation
8
2 Xt =0
m=1
has infinitely many solutions with (%, ---, x) = 1.
It seems not impossible that our theorems should be capable of
elementary proof for all integers k, but our proof of Theorem 1 is based on the
following deep result of Hardy and Iittlewood3 :

Theorem A. If “ Hypothesis K° s Irue and k is not ewceptional them =
almost all positive integers ave expressible as the sum of (k+1) non-negative
kth powers of integers.

We writet

(5) (m)t = ()t .o,
when there exist infinitely many sets of positive integers x, (s << m),
¥: (¢ < m) such that

6) & =xf= 2 yp

s m < n
where

(7) (xl) "':xm:ylﬁ "':_yﬂ) = 1.
2. If
®) (R = (B i.o.
is true then ¢ (B) < 2%, and hence our theorem is proved. Hence we may
assume that (8) is false and hence thats
(B) 72z (n) = 0(1),

3P.N.(VI)in Math. Ztschr., 1925, 23, 1-37.
See also P. N. (VIII) in Proc, London Math. Soc., 1928, 27, 518-42.
% ¢4, 0.’ = ¢ infinitely often ’.
8 r k#(n) is the number of representations of n asa sum of & positive kth powers
of integers.
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so that < Hypothesis K’ is certainly true. But from (B),
(€ 2 l1>cx |

n K e
n = 911'5 e n/a'{’

where ¢ is a positive constant independent of x. In words (C) means that
the sequence of integers which are sums of 2 non-negative kth powers (of
integers) has ‘ positive density .
From theorem (A) if % is not ‘ exceptional ' then in virtue of (B),
(D) 21 ~ x.
n <L e

n =k 4ot nfpyy
Ny, ooy Mgy 22 U

From (C) and (D) it follows that if % is not ‘ exceptional’ then
()t = (R+1)* 1.o0.
1.e.
e (B) < 2k +1.
Hence our Theorem 1.



