HEILBRONN’S CLASS-NUMBER THEOREM.

BY S. CHOWLA,
Andhra University, Waltair.

Received June 30, 1934.

1. Let \(h(d) \) denote the number of non-equivalent forms of the type

\[
Q(X, Y) = aX^2 + bXY + cY^2, \quad (a, b, c) = 1, \quad a > 0
\]
of the discriminant

\[
d = b^2 - 4ac.
\]

Heilbronn\(^1\) has recently proved the beautiful result (which includes a classical conjecture of Gauss):

Theorem. If \(d \) runs over all negative fundamental discriminants, then

\[
h(d) \to \infty
\]

for \(d \to -\infty \).

2. I shall now introduce the problem discussed in this paper.

There are examples of negative discriminants (e.g., \(d = -232 \) and \(d = -1848 \)) with the following property: all non-equivalent reduced primitive forms of negative discriminant \(-d \) have their middle coefficients equal to zero.

In such cases, we shall say, briefly, that \("d \) (or \(-d\)) has the property \(P \). It seems natural to inquire whether the number of negative discriminants \(d \) with the property \(P \) is finite or not. It will be proved here by the methods developed by Heilbronn in \(K \) that:

Theorem 1. There is only a finite number of negative discriminants \(d \), with \(\frac{d}{d} \) quadratfrei, having the property \(P \).

It is clear that if \(d \) has the property \(P \), then

\[
h(d) = H = 2^{t-1}
\]

where \(t \) is the number of different prime factors contained in \(\frac{d}{d} \).

In what follows we shall assume that \(d \) has the property \(P \), and then prove that this assumption leads to a contradiction for all large \(-d\).

\(^1\)“On the class-number in imaginary quadratic fields”, hereafter referred to as \(K \). The success of Heilbronn’s argument rests essentially on—

(i) a theorem of Hecke (see Landau, *Gött. Nachr.*, 1918);

I am indebted to Dr. Heilbronn for a copy of his manuscript.

\(^2\)The numbers 232 and 1848 are “idoneal”. See Dickson’s *History of the Theory of Numbers*, I, 361–65.
Notation.

The following notation is almost identical with that used in K.

All roman letters except o, O, s, L, Q (P and K) denote rational integers. $\chi(n)$ denotes a real character mod m ($m > 0$) such that

$$L_{\chi}(s) = L(s, \chi) = \sum_{n=1}^{\infty} \chi(n) n^{-s}$$

vanishes\(^3\) for at least one ρ in the halfplane $\sigma > \frac{1}{2}$; m, χ and ρ are fixed throughout the paper;

(4) $\rho = \theta + i \phi$ ($\theta > \frac{1}{2}$, $\phi \equiv 0$).

We introduce the following Dirichlet series:

(5) $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$,

(6) $L_{\mu}(s) = \sum_{n=1}^{\infty} \chi(n) n^{-s}$,

(7) $L_{1}(s) = \sum_{n=1}^{\infty} \left(\frac{d}{n} \right) n^{-s}$,

(8) $L_{2}(s) = \sum_{n=1}^{\infty} \chi(n) \left(\frac{d}{n} \right) n^{-s}$,

where $\left(\frac{d}{n} \right)$ is the Kronecker symbol.

The constants implied in the signs O and o depend only on m, s, ρ, but they are independent of d, Q and (here we differ from K) H.

Proof of Theorem 1.

Lemma 1: If $1 \leq l_{2} \leq m$ and if for $\sigma > 1$

$$\psi(s) = \psi(s, m, l_{1}, l_{2}, Q) = \sum_{Y=1}^{\infty} \sum_{X=-\infty}^{\infty} Q^{-s} (X, Y),$$

then

$$\psi(s)$$

is regular, and

(9) $\psi(s) = O (\left| d \right|^{\frac{1}{2} - \frac{1}{2}\sigma} + \left| d \right|^{-\frac{1}{2}\sigma})$

for $d \to -\infty$ if $\sigma > \frac{1}{2}$, $s \neq 1$.

Proof: This result is contained in the proof of lemma 9 of K.

\(^3\) If this assumption were not true for any $m > 0$ it would follow, from a theorem of Hecke (in a paper by Landau previously cited), that

$$h(d) = \frac{c \sqrt{-d}}{\log(-d)},$$

so that (3) would be false for sufficiently large $-d$.

Lemma 2: For $\sigma > \frac{3}{10}$, $s = \frac{1}{2}$,

\[L_0(s) L_2(s) = \zeta(2s) \prod_{p/m} (1 - p^{-2s}) \sum \chi(a) a^{-s} + O(H/d^{\frac{1}{2}-\frac{1}{2}\sigma}) + O(H/d^{-\frac{1}{2}\sigma}). \]

Proof: This follows from (9) above and the proof of lemma 10 in K.

Lemma 3: If $\sigma \geq \frac{1}{2}$,

\[|\sum \chi(a) a^{-s}| \geq \frac{1}{2} H^{-2} + O(H/d^{-\frac{1}{2}\sigma}). \]

Proof: Since d has the property P,

\[d = -4ac, \quad a \in \frac{d}{k}, \quad 0 < a \leq \frac{1}{2} \left\lfloor \sqrt{d} \right\rfloor. \]

Hence

\[\sum \chi(a) a^{-s} = \prod_{p/kd} (1 + \chi(p) p^{-s}) - \sum_{r > \frac{1}{2} \left\lfloor \sqrt{d} \right\rfloor} \chi(r) r^{-s}. \]

As in K it is easy to see that

\[|\prod_{p/kd} (1 + \chi(p) p^{-s})| \geq \frac{1}{2} H^{-2} \]

Further, from (12),

\[\sum_{r > \frac{1}{2} \left\lfloor \sqrt{d} \right\rfloor} \chi(r) r^{-s} = O \left(2^d \cdot d^{-\frac{1}{2}\sigma}\right). \]

(11) follows from (13), (14), (15) and (3).

Proof of Theorem 1: We put $s = \rho = \theta + i\phi$ in lemma 2 and we let d tend to $-\infty$. Then we get

\[O = \lim_{d \to -\infty} \zeta(2\rho) \prod_{p/m} (1 - p^{-2\rho}) \sum \chi(a) a^{-\rho} + O(H/d^{\frac{1}{2}-\frac{1}{2}\theta}) + O(H/d^{-\frac{1}{2}\theta}), \]

and from lemma 3,

\[|\sum \chi(a) a^{-\rho}| \geq \frac{1}{2} H^{-2} + O(H/d^{-\frac{1}{2}\theta}). \]

since $\theta > \frac{1}{2}$ we see that, if

\[\rho < |d| \epsilon \]

for every $\epsilon = \epsilon(\theta) > 0$, then (16) and (17) contradict each other for $-d > d_0(\theta)$. Hence there is an $\epsilon = \epsilon(\theta) > 0$ such that

\[H \geq |d| \epsilon \quad \text{for} -d > d_0(\epsilon). \]

Now (19) contradicts (3) since $2^{\epsilon} < |d|^{\frac{1}{2}\epsilon}$ for all $-d > d_0(\epsilon)$. Hence (3) is false for large $-d$ and our theorem is proved.