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Electric dipolarizability of 7Li
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Abstract. We calculate the electric dipolarizability of 7Li nucleus within the cluster
model and estimate a value of about 0.0188 fm3. We also discuss the possibility of ob-
serving this in the scattering of 7Li from a 208Pb target at energies about 30 MeV.
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There has been a long tradition of cluster models [1] of light nuclei – primarily in-
troduced to simplify the studies of these strongly interacting few-body systems. In
a series of papers [2–4], through variational calculations of energy levels of lithium
isotopes, cluster models of these nuclei were established. Using the cluster model,
the reaction 7Li(p, pt)4He was successfully analysed [5,6]. The isotopes 6Li and 7Li
are best described respectively as (α-d) and (α-t) clusters. In this paper, based on
cluster models, we calculate electric polarizabilities employing the Green function
approach and obtain a value of 0.0188 fm3. Calculations based on sum rules give
0.05 fm3 for the cluster contribution and 0.082 fm3 for the single-particle contri-
bution to the dipolarizability of 7Li [7]. Measurements of dipolarizability of 7Li
have been carried out and comparison between theory and experiment has been
made [7] but there are large experimental errors. Thus, it is useful to present an
estimate based on a different method to have a greater confidence on theoretical
values obtained in [7].

The particles that constitute these isotopes may or may not have the same charge
to mass ratio; in case the ratio is not the same, the nucleus will re-orient and stretch
under an external electric field. This change results in a polarization potential. For
the case of deuteron, ground-state polarizability was calculated by Ramsey et al
[8], and the value he found was about 0.56 fm3 for deuteron in S-state with much
smaller corrections from the D-state. Clearly, the result crucially depends on the
correctness of the ground state description. Almost thirty years later, measurement
of polarizability [9] gave 0.70 fm3. There is no theoretical model that obtains this
value, several calculations lead to a value of about 0.64 fm3.
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For the 6Li isotope modelled as an α-d cluster, because the centre of charge
coincides with the centre of mass, the dipole polarizability is zero. The polarizability
may arise if 6Li is described as a cluster of 3H and 3He. However, the results in that
case will depend on polarizabilities of 3H and 3He besides that of their intercluster
polarizability. It may be argued however that strong binding of 3H and 3He will
lead to a very small polarizability. Besides, the separation energies of 3H and 3He
in 6Li will be comparatively large. This will again lead to very small contribution
to the polarizability of 6Li.

For the 7Li isotope, the polarizability α will be non-zero, as seen by the calculation
of polarization potential. Let ZT be the atomic number of the target nucleus, which
we assume to be the origin of the coordinate system. With this, the position vectors
of t and α in the isotope are rt and rα. Let the centre of mass be denoted by R
and the vector from α to t in the cluster be denoted by r. The total Hamiltonian
is

H = T + Vtα(r) +
ZTe2

|rt| +
2ZTe2

|rα|
= H0(R) + H1(r,R), (1)

where T corresponds to kinetic energy. In (1),

H0(R) = TR +
3ZTe2

R
(centre of mass)

H1(r,R) = Tr + Vtα(r) +
ZTe2

rt
+

2ZTe2

rα
− 3ZTe2

R

= Tr + Vtα(r) + V1(r,R). (2)

Writing rt = R + 4
7r and rα = R− 3

7r,

V1(r,R) =
ZTe2

|R + 4
7r|

+
2ZTe2

|R− 3
7r|

− 3ZTe2

R

=
ZTe2

√
R2 + 16

49r2 + 8
7r ·R

+
2ZTe2

√
R2 + 9

49r2 − 6
7r ·R

− 3ZTe2

R

=
2
7

ZTe2

R3
r ·R + O

(
r2

R2

)
(3)

after Taylor expansion and retaining terms up to O(r/R). With r ·R = rR cos θ =
zR, we have the polarization energy given by the second-order Stark effect in the
presence of electric field E :

Wp = − 4
49

e2E2
∑

n6=0

〈0|z|n〉〈n|z|0〉
En − E0

, (4)

where the sum is over all the states except the ground state, including continuum.
Employing the definition of polarizability, we have
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α = −2Wp

E2

=
8
49

e2

(
2mtαc2

~2c2

) ∑

n6=0

〈0|z|n〉〈n|z|0〉
k2

n + γ2
, (5)

where mtα is the reduced mass of the cluster, k2
n = 2mtαEn/~2, γ2 = 2mtαε/~2,

and ε = −Etα = 2.47 MeV denotes the binding energy. The ground state of 7Li
has a definite parity, hence 〈0|z|0〉 = 0. We can extend the summation over all
the complete set of wave functions if we consider ε to be slightly different from the
binding energy. Writing the wave functions explicitly,

α =
8
49

e2

(
2mtαc2

~2c2

) ∫
dr

∫
dr′ψ∗0(r)zGtα(r, r′)z′ψ0(r′), (6)

where

Gtα(r, r′) =
∑

n

ψn(r)ψ∗n(r′)
k2

n + γ2
. (7)

This Green function satisfies the Schrödinger equation for 7Li, viz.,
[
−∇2 + γ2 +

2mtα

~2
Vtα(r)

]
Gtα(r, r′) = δ(r− r′), (8)

where Vtα(r) is the relative potential between t and α that binds them together.
The Green function Gtα(r, r′) is related to the free Green function G(r, r′) by

Gtα(r, r′) = G(r, r′)− 2mtα

~2

∫
dr′′G(r, r′′)Vtα(r′′)Gtα(r′′, r′). (9)

In the following, we ignore the second term for it is quite small for the following
reasons. Firstly, note that the excited state of 7Li is 2P1/2 which can only be
excited by a spin-orbit interaction between t and α. As seen in figure 5 of [4], the
spin-orbit interaction energy in the permissible range of separation parameter is
below 0.3 MeV. Therefore, the second term of (9) will contribute marginally due
to the excited states because their separation is ∼0.5 MeV. Secondly, Vtα is peaked
at r = 0 at short t-α separation while the intercluster wave function is peaked at
∼2.5 fm (figure 5 of [5]). Thus the contribution of the second term must be small,
particularly because the z-matrices vanish for the states of even parity.

Thus, we have the polarizability given by

α =
8
49

e2

(
2mtαc2

~2c2

) ∫
dr

∫
dr′ψ∗0(r)zG(r, r′)z′ψ0(r′), (10)

with the free Green function

G(r, r′) =
1

(2π)3

∫
dk

exp[ik · (r− r′)]
k2 + γ2

. (11)

The ground state eigenfunction [5] is given by (β = 0.288 fm−2)
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ψ0(r) = r3e−
6
7 βr2

, r < 3.53 fm (we call this part as ψ1)

= 9.84336
[

1
γr

+
1

(γr)2

]
e−γr, r > 3.53 fm

(we call this part as ψ2). (12)

This wave function corresponds to the intercluster t-α wave function obtained by
detailed, fully antisymmetrized, microscopic variational calculations using a Serber
force which fits two-nucleon data upto about 40 MeV. The logarithmic derivative
of the intercluster wave function is then matched at 3.53 fm with the logarithmic
derivative of an exponentially decaying (l = 1) wave function corresponding to
the t-α separation energy in 7Li ground state. This combination of functions thus
satisfies the binding energy of 7Li by its ψ1-part, and, fits the cluster knock out
data due to its exponential tail.

The total wave function will be written as a sum over different spin-angular
harmonics weighted with the above wave function. With A as a constant to be
determined from normalization, we write

ψtα(r) = A
∑

m=0,±1

ψ1(r)Y1m(θ, φ), r < 3.53 fm

= A
∑

m=0,±1

ψ2(r)Y1m(θ, φ), r > 3.53 fm, (13)

where the sum corresponds to an unpolarized nucleus. Normalization condition on
ψtα(r) implies that A is given by

1
3A2

=
∫ 3.53

0

drr2ψ2
1(r) +

∫ ∞

3.53

drr2ψ2
2(r). (14)

The polarizability is then given by α = 8
49

e2

~c
2mtαc2

~c J where

J =
1

(2π)3

∫
dk

∫
drdr′ψtα(r)ψtα(r′)r cos θ

eik·r · e−ik·r′

k2 + γ2
r′ cos θ′

=
1

(2π)3

∫
dk|R|2. (15)

R is the integral over r wherein we can now insert the explicit form for the eigen-
functions and the polar representation of plane wave in terms of the unit vectors r̂

and k̂:

R =
∫

drψtα(r)r cos θ
eik·r

√
k2 + γ2

=
A√

k2 + γ2

∫
drr3dΩ

√
4π

3
Y10(θ, φ)

×
∑

m′
ψ1,2(r)Y1m′(θ, φ)

∑

l,m

4πilY ∗
lm(r̂)Ylm(k̂)jl(kr). (16)
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We know that the product of spherical harmonics appearing above is

Y10(r̂)Y1m′(r̂) =

√
9
4π

[
1 1 0
0 m′ 0

] [
1 1 0
0 0 0

]
Y00(r̂)

+

√
45
4π

[
1 1 2
0 m′ m′

] [
1 1 2
0 0 0

]
Y2m′(r̂). (17)

The values of the symbols are

[
1 1 0
0 m′ 0

]
= −

√
1
3
δm′0,

[
1 1 0
0 0 0

]
= −

√
1
3
,

[
1 1 2
0 m′ m′

]
=

(−1)−m′

√
5

√
(2−m′)(2 + m′)

6
,

[
1 1 2
0 0 0

]
=

√
2
15

. (18)

The product in (17) becomes

Y10(r̂)Y1m′(r̂) =

√
1
4π

Y00δm′0 +
(−1)−m′

√
20π

√
4−m′2Y2m′ . (19)

After some simple manipulations, R can be written as follows:

R = − A√3√
k2 + γ2

∫
drr3ψ1,2(r)j0(kr)

+i
3A√2√
k2 + γ2

sin θk cos θk sin φk

∫
drr3ψ1,2(r)j2(kr)

+
A√

k2 + γ2
(3 cos2 θk − 1)

∫
drr3ψ1,2(r)j2(kr). (20)

The dipolarizability of 7Li in the ground state, within the cluster model, is found
to be 0.0188 fm3. This result is reliable because the cluster model wave function of
7Li not only reproduces the binding energy of 7Li from microscopic cluster model
calculations but also reproduces the cluster knock-out data which is highly sensitive
to the surface region of the nucleus.

We now evaluate the observability of the polarizability in scattering experiment
with 7Li as projectile (P) and a heavy nucleus (e.g. 208Pb or 238U) as target (T).
It is well-known that the effect shows up in the deviation of the cross-section, σ(θ)
with the Rutherford cross-section, σR(θ):

∆(θ) =
σ(θ)− σR(θ)

σR(θ)
. (21)
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Classical first-order calculation gives [10]

∆(θ) = −g(θ)
(

ν

Rint

)3 (
ZT

ZP
αP +

ZP

ZT
αT

)
. (22)

Here, g(θ) is a universal function, EP is the projectile energy, ECB is the energy at
the Coulomb barrier, ν = EP/ECB, Rint = r0(A

1/3
P + A

1/3
T ) (we take r0 = 1.44).

To obtain the projectile energy at which there could be observable deviation in
cross-section, we employ (22) for the two systems: 2H–208Pb and 7Li–208Pb. To
have the same ∆ at a backward angle, a simple calculation gives us

ELi ∼ 10Ed, (23)

where Ed is the energy of the deuteron beam used in the experiment to observe
the deviation [9]. We have used the values of the Coulomb barriers in d–Pb and
Li–Pb systems as 13.67 MeV and 37.6 MeV respectively. The polarizability of Pb is
calculated using the relation based on the sum rule, valid for mass numbers greater
than 40, α ≈ 3.5× 10−3A5/3 fm3 (for 208Pb, it is 25.5 fm3) [11].

Thus, we may observe the effect of the polarizability of 7Li at an energy of about
30 MeV. Since this is close to the Coulomb barrier, due to possible presence of
nuclear effects, the experiment will have to be rather sensitive. The observation
could be relatively easier if the target is 238U. The value of energy estimated here
is consistent with those given in [7]. Moreover, there is a recent measurement
from which the extracted value of α is about 0.02–0.03 fm3 [12]. The reasonable
agreement with experimental value makes the theoretical estimation interesting as
it shows that the model and assumptions are consistent with the physical picture.

The polarizability of 7Li turns out to be about 20 times smaller than that of
deuteron. Accordingly, the energy at which one can observe significant effect of
7Li-stretching will be higher. In addition to this, the energy will be pushed up
further due to somewhat larger α-t separation energy. Therefore, as estimated
above, the deviation in cross-section could be seen only at relatively higher energy,
giving rise to further complication due to nuclear effects by being closer to the
energy of the Coulomb barrier. The contribution from triton polarizability (which
is expected to enhance the value of α) is assumed to be small due to its tight binding
as well as its averaging over t-α intercluster distribution.
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