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Abstract 

Ensuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the 
electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation 
hard crystals and their certification over a period of several years represented a difficult challenge both for CMS 
and for the crystal suppliers. The present article reviews the related scientific and technological problems 
encountered. 
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1 Introduction 

 The Compact Muon Solenoid (CMS) [1] is a general purpose detector installed at the Large Hadron Collider 
(LHC) at CERN, Geneva.  Detection and precise energy measurement of photons and electrons is a key to new 
physics that is expected at the 100 GeV - TeV scale. The discovery of the postulated Higgs boson is a primary goal 
at LHC and H → γγ is the most promising discovery channel if the mass is between 114 and 130 GeV. In this mass 
range the Higgs decay width is very narrow, but the signal will lie above an irreducible background and so good 
energy resolution is crucial. A photon energy resolution of 0.5% above 100 GeV has therefore been set as a 
requirement for the CMS performance. 

 The CMS experiment has opted [2] for a hermetic homogeneous electromagnetic calorimeter (ECAL), made 
of lead tungstate (PbWO4) crystals.  The choice of lead tungstate has been driven by operating conditions which 
require that the ECAL be fast and highly granular and be able to withstand radiation doses of up to 4 kGy and 
4·1013 n/cm2 in the Barrel and 25 times more in the Endcaps. These doses correspond to an integrated luminosity of 
500 fb-1 expected to be accumulated over 10 years. 

 

 
Fig. 1.1 ECAL layout. 

 

 The ECAL layout is shown in Fig.1.1. The high density of lead tungstate allows the design of a very compact 
detector. The region in space covered by a particle detector is usually described by pseudorapidity η, which is a 
spatial coordinate related to the angle of a particle relative to the beam axis. It is defined as: 
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where θ is the angle between the particle momentum and the beam axis. The ECAL consists of a Barrel, covering 
the pseudorapidity range |η|< 1.479, and two Endcaps which extend the coverage up to |η| = 3. There are 61200 
crystals in the Barrel and 7324 crystals in each of two Endcaps, amounting to more than 91 metric tons of PbWO4 
crystals, with a total volume of approximately 11 m3. The Barrel crystals are slightly tapered with dimensions 
about 24x24x230 mm3. The exact shape varies with the pseudorapidity, requiring 17 different geometrical types 
each one having two symmetries (left and right). Following dedicated studies aimed at optimizing the uniformity 
of the light yield, one of the lateral faces of the Barrel crystals is semi-polished (roughness Ra ~ 0.25 µm) while all 
other faces are optically polished (roughness Ra < 0.02 µm). The Endcap crystals are less tapered, all identical in 
shape and have dimensions of about 30x30x220 mm3. All faces of Endcap crystals are optically polished 
(roughness Ra < 0.02 µm). 

 The design energy resolution of CMS requires important properties of the PbWO4 crystals, in particular: 

 a large enough light yield (LY) to keep the stochastic contribution to the energy resolution small, 

 a uniform longitudinal response to avoid a large constant term in the energy resolution at high energy, 
induced by the longitudinal fluctuations of electromagnetic showers. 
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 These properties must be maintained in the high radiation field mentioned above. Furthermore, one should be 
able to track and correct for any radiation-induced changes in the light yield at the level of a few tenths of a percent. 
The aim of this paper is to present how these issues have been studied and solved by the CMS ECAL group in a 
way compatible with an unprecedentedly large industrial production. The paper is organized as follows: Section 2 
describes the radiation environment of ECAL. Section 3 presents the general properties of the lead tungstate 
scintillator with particular emphasis on its radiation hardness related properties. The experimental methods and 
tools used to characterize PbWO4 crystals for CMS and related experimental results are presented in sections 4 and 
5 respectively. Section 6 is dedicated to the monitoring of the light yield variation under irradiation conditions. 
Finally, section 7 describes the practical implementation of the quality assurance for the mass production for the 
two producers, Bogoroditsk Technochemical Plant (BTCP) in Russia and Shanghai Institute of Ceramics, Chinese 
Academy of Sciences (SICCAS) in China. 

2 ECAL radiation environment 
 Operating at a peak luminosity of 1034 cm-2s-1, the LHC will produce a very harsh radiation environment for 
the detectors. The ECAL will be exposed to fast hadrons, mostly pions, which, in interactions with the ECAL itself, 
produce secondary hadrons, and build up a flux of low energy neutrons, with energies typically below 10 MeV. In 
addition, electromagnetic showers inside the crystals produce a significant dose.  

 
Fig. 2.1 Absorbed dose as a function of radial distance from the beam axis in the center and at the ends of the Barrel 
ECAL [2]. Averaging has been performed over 60 cm in z, which causes the end of the crystal envelope to span the 

range indicated in the plot by the vertical dotted lines. Values are for 500 fb-1 integrated luminosity.  

 No single quantity is sufficient to fully characterize this complex environment. A fairly complete picture can 
be obtained by looking at the absorbed gamma-irradiation dose, the neutron fluence and the charged hadron 
fluence. With respect to radiation damage, threshold behavior is often observed, i.e. only particles above a certain 
energy cause damage. These aspects will be discussed in detail in the sections 5.2 and 5.3 of this article, but it 
appears that low-energy (< 20MeV) neutrons do not cause significant damage in the crystals. As for damage due to 
fast hadrons, it has been suggested [3] that it is better parametrized in terms of the density of their inelastic 
interactions than by the hadron fluence directly. 

 Therefore we introduce three quantities to characterize the environment: 

 The absorbed dose 

 The density of inelastic hadronic interactions (star density) 

 The neutron fluence below 20 MeV 
 For consistency, the values are presented for an integrated luminosity of 500 fb-1, expected to be reached after 
10 years, or 5 ·107 s operation at peak luminosity. Thus the average dose per hour at 1034 cm-2s-1 will be 7.2·10-5 of 
the 10-year integral. However, while the LHC is being filled and the beams accelerated there is no associated 
radiation, while during the subsequent collision period of typically 20 h duration, the luminosity will decrease by a 
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factor of about 5 from its initial value. Thus there will be substantial short-term variations in the instantaneous dose 
rate. 

 Fig. 2.1 shows the absorbed dose in the Barrel ECAL as a function of radial distance from the beam axis. It can 
be seen that the value varies by roughly an order of magnitude over the crystal length. Note that the data are plotted 
as a function of radius, not along the (tilted) crystal axis. 

 Fig. 2.2 shows, as a function of pseudorapidity, the three radiation quantities we use to characterize the 
environment: absorbed dose, star density and neutron fluence. The solid symbols in Fig. 2.2 correspond to their 
average values along the crystal axis and the open symbols correspond to the maximum values. In the Barrel all 
three quantities are almost independent of η. Here the dose rate at shower maximum corresponds to 0.17–0.25 
Gy/h at nominal LHC peak luminosity. However, in the Endcaps, the radiation levels increase rapidly with 
increasing η. The performance requirements are most stringent for the region below | η | = 2.5, which is the limit of 
coverage of the central tracking detector. This limit is indicated by the dotted vertical line in figure 2.2, where it can 
be seen that, at this value of η, the dose rate at shower maximum is 5 Gy/hr. An overall uncertainty of about a factor 
of 2 should be assigned to the dose estimates, which are obtained from Monte Carlo simulations [2]. 

 
Fig. 2.2 Radiation exposure of the ECAL as a function of η. The star densities are for interactions above 20 MeV 
hadron energy and neutron fluences comprise neutrons with energies between thermal and 20 MeV. The dotted 

vertical line indicates the limit of coverage of the CMS central tracker (see text). All values are for 500 fb-1 
integrated luminosity. 

 3 General properties of PbWO4 scintillator 
 In order to meet the granularity and energy resolution requirements, CMS selected lead tungstate (PbWO4) as 
the most suitable affordable scintillator for its electromagnetic calorimeter. This crystal combines a number of 
attractive properties, such as high density, fast luminescence, good radiation tolerance when properly optimized 
[4-10] and adequate light yield. Table 3.1 summarizes the main physical and optical properties of PbWO4. The 
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scintillation emission may be described as the sum of three exponential terms with the time constants (relative 
intensities) shown in column six of the table.  Lead tungstate is bi-refringent; column eight gives values for the two 
refractive indices (ordinary, no and extraordinary, ne) at two wavelengths (420 nm and 600 nm). 

Table 3.1: Lead tungstate crystal properties 

, 
g/cm3 

X0, 
cm 

Molière 
radius, 

cm 

LY, 
ph/MeV 

Temperature 
dependence of 

LY [11] 
%/°K 

sc, 
ns (%) 

em, 
nm 

Refractive indices 
[12] 
no/ne 

8.28 0.89 2.19 200 -1.98 
5 (73%) 

14 (23%) 
110 (4%) 

420 420nm : 2.360/2.240 
600nm : 2.242/2.169 

 Considerable efforts over many years were made to understand the properties and to optimize the performance 
of PbWO4 for the demanding CMS specifications. The methods needed to grow large and colorless crystals, to 
suppress slow scintillation components and to reach good radiation tolerance levels were investigated. In addition 
the development of mass production technologies (crystal growth and mechanical processing) allowing this 
unprecedented production to be made with a high production yield was addressed with high priority. A review of 
this work and of PbWO4 properties is given in [10]. A detailed description of the PbWO4 growth method applied at 
SICCAS is given in [13]. 

3.1 Requirements of radiation resistance 
 
 All known crystal scintillators suffer from radiation damage. The most common damage is radiation-induced 
light absorption caused by the formation of color centers. The absorption coefficient is proportional to the density 
of color centers which in most cases is proportional to the concentration of defects and impurities pre-existent in 
the crystal. Radiation may also cause phosphorescence (afterglow), which leads to increased readout noise. 
Additional effects may include reduced scintillation light yield (damage to the scintillation mechanism) and a 
change in the light response uniformity (since the radiation dose profile is usually not uniform). Light output 
variation caused by radiation-induced absorption can be corrected by external light monitoring [1]. On the other 
hand, a variation of the scintillation mechanism or a strong non-uniformity of the light response cannot be 
monitored in situ. This sets therefore two major requirements for the CMS application: the scintillation mechanism 
must not be affected by radiation and the density of radiation-induced color centers must be kept below a maximum 
level. 

3.2 Nature of point defects and luminescence centers 
 The crystallographic structure of synthetic lead tungstate crystal has been determined by X-ray diffraction and 
identified as sheelite-type with tetragonal symmetry and space group I41/a. The parameters of the unit cell are 
a = b = 5.456, c = 12.020 Ångström. However a significant loss of lead during the crystal growth process is 
expected to induce a reorganization of the lattice with the majority of lead and oxygen related vacancies distributed 
in a sheelite-like superstructure with a slightly reduced symmetry (space group P4¯) and lattice constant values: 
a = b = 7.719, c = 12.018 Ångström [14]. In this structure the ordering of the vacancies is compensated by a 
distortion of the tungstate anionic polyhedra. However the existence of this superstructure has not been confirmed 
by neutron diffraction studies [15] nor by other dedicated X-ray diffraction studies [16-18]. Although the presence 
of an optimum of radiation resistance for crystals grown slightly off-stoechiometry seems to play in its favor, the 
cation vacancy ordering in a superstructure in PbWO4 still remains a matter of discussion. 

 PbWO4 crystals grown from purified raw materials (5N or 6N with Molybdenum contamination limited to a 
few ppm) have their scintillation and radiation damage properties completely dominated by cation and anion 
vacancies and not by impurities. The position of these vacancies, either as part of the scheelite-like structure or 
randomly distributed, may influence these properties. 

 It has been established in several studies (see [19] for detailed analysis and extended references) that the 
luminescence of PbWO4 crystals is related to charge transfer transitions in the regular anionic molecular complex 
WO4

2- and in similar tetrahedra but distorted by an oxygen vacancy WO3. The charge state of these centers not 
being modified by gamma and charged particle irradiation (at least in the range of doses and dose rates expected at 
LHC) the scintillation properties of PbWO4 (radio- and photo-luminescence spectra, decay time, intrinsic light 
yield) should remain unchanged in the LHC radiation environment. 
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3.3 Radiation damage mechanism and point-defect compensation by specific doping 
 When PbWO4 crystals are exposed to ionizing radiation pre-existing point-structure defects may act as traps 
for electrons or holes. The resulting charged defects have discrete energy levels and optical transitions can be 
induced, absorbing part of the scintillation light during its transport to the photodetector. This is the well known 
mechanism of radiation-induced color centers, which is the main source of optical damage in lead tungstate at LHC. 
Ionizing radiation damage can be considered as a three step process consisting of: 

 creation of hot electrons and holes from the interaction of high energy particles with the lattice 

 free carrier separation during the thermalization (through strong coupling with lattice phonons) and 
diffusion process 

 localisation of electrons and holes near lattice defects, to balance local charge 
 Up to five types of color centers have been identified in PbWO4 with corresponding absorption bands at 
350-400, 470, 520, 620 and 715 nm. Through detailed studies of EPR (electron paramagnetic resonance), TSL 
(thermo-stimulated luminescence), PSC (photo-stimulated conductivity) and TSC (thermo-stimulated 
conductivity) it was possible to identify the corresponding color centers as follows: 

 350-400 nm: WO3
2- di-electron center on a Frenkel defect resulting from an out-of-position oxygen atom 

 470 and 520 nm: several types of di-O- centers 

 620 nm: electron transfer from the valence band to the lead vacancy (Vc) related defect O-VcO- ground 
state 

 715nm: photo-ionization of the dimer center (WO3 + WO3)2- 

 However, the induced absorption spectrum and relative intensity of these five bands strongly depend on the 
nature and density of pre-existing structural defects, which depend themselves on the crystal growth conditions. 
Undoped crystal grown from stoechiometric raw-material have an absorption spectrum with two dominating broad 
bands peaked near 380 and 620 nm. 

 The doping of PbWO4 crystals by specified impurities such as La, Y, Nb at different stages of the growth 
process has been used for the production of CMS crystals to improve their radiation hardness. Indeed, pentavalent 
doping with niobium prevents the trapping of holes on oxygen near a lead vacancy by forcing oxygen leakage. 
Cation vacancies can be compensated by substituting stable trivalent ions for lead ions in the nearest co-ordination 
sphere around the defect. Different ions have been tried like Y3+, La3+, Lu3+, Gd3+, Al3+. A very significant 
suppression of the electron/hole trapping processes is already observed for a doping concentration of the order of 
100 ppm if the crystal stoechiometry is well controlled [5, 6, 10]. 

 3.4 Kinetics of damage production and recovery 
 A parameter which characterises the change in optical properties induced by radiation exposure is the 
radiation-induced absorption coefficient (µ), defined as: 

irr

init

T
T

L
ln1
            (3.1) 

where Tinit and Tirr are respectively the values of the crystal transmission measured before and after irradiation and 
L is the length of the crystal along the measurement direction. For a given wavelength, the induced absorption 
coefficient is directly proportional to the total concentration of all color centers absorbing at this wavelength: 


i

iNN            (3.2) 

 At a given time, t, under continuous irradiation at a fixed dose rate S the radiation-induced absorption 
coefficient  in the crystal results from the balance between the creation of color centers with damage constant di 
(related to the cross section of free carrier capture by defects of type i) and their destruction due to annealing at the 
detector operating temperature with a recovery rate ωi. The process may be described by the following equation 
[20]: 
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where sat
i is the induced absorption coefficient at saturation due to defects of type i. After some time a dynamic 

equilibrium is reached, which is dose rate dependent as expressed by the first term of the equation (3.3). In general, 
it is less than the saturation level,  

i
i

i
i

sat
i

sat N             (3.4) 

where Ni is the concentration of color centers of type i and i is their photon absorption cross section.  

 In ECAL working conditions, each collision run will be followed by a refill period. Supposing a constant 
irradiation rate S for a time interval t0 (during collision run), the recovery of the induced absorption during refill 
time will be described by the equation: 
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 Under normal LHC operation conditions the dose rate will be such that the full defect saturation will never be 
reached, and the optical transmission of the crystals will oscillate around a point corresponding to a loss as 
compared to its initial value, which is less than a few percent except at large values of η in the Endcaps. In order for 
these oscillations to remain as small as possible and to be able to monitor them at a reasonable frequency during the 
periods of beam and machine refill, crystals have been optimized so that fast recovery constants at room 
temperature (in the range of minutes) are kept as small as possible. In some cases this has led to an increase of slow 
recovery centers (SICCAS crystals), in other cases to an increase of ultrafast recovering (microseconds) shallow 
traps (BTCP crystals), which are not harmful for the CMS detector operation. This optimization has been made for 
the centers absorbing in the domain of the scintillation emission spectrum, i.e. for the 350-400, 470, 520 nm centers 
and is not necessarily valid for red absorbing centers, which generally have a faster recovery constant. The 420 nm 
induced absorption recovery is well fitted with a double exponential with time constants of about 1 hour and 40 to 
75 hours respectively. The infrared band however has a much faster recovery of about 8 minutes; this characteristic 
allows monitoring at long wavelengths to be used as a cross-check of the performance of the laser monitoring 
system. 

4 Experimental methods, measurement equipment and parameters 
 The investigation of radiation damage mechanisms in PbWO4 involved a large number of experts in different 
scientific domains and complex testing equipment in many locations. In order to build a complete picture of 
radiation effects in PbWO4 it was necessary to study all possible sources of damage, namely electromagnetic 
(gammas and electrons), charged hadrons and neutrons. It was therefore mandatory to organize irradiation 
facilities able to cover a large range of doses and dose rates for a detailed study of the crystal behavior in all 
possible conditions, even those with low probability, such as very high dose rates arising from accidental beam loss. 
Special care was taken to cross-check the dosimetry of irradiation facilities used for the certification of the mass 
production. The uniformity of dose through the volume of a crystal was of particular relevance. The irradiation 
facilities used by ECAL group are summarized in the Appendix. 

 The crystal radiation damage behavior in ECAL CMS was assessed through a number of optical 
measurements, as described below. 

 4.1 Optical transmission and LY measurements 
 To compute the induced absorption parameter,  one has to measure the optical transmission at different 
times during or after irradiation exposure. Standard optical transmission measurement of PbWO4 crystals used in 
CMS comprised measurements made along the crystal length (longitudinal transmission, LT) and transversely 
(transverse transmission, TT) in the direction having both lateral faces optically polished. A number of purpose 
built or commercial spectrophotometers were used in different laboratories. In most of the cases these were double 
beam spectrophotometers with 2 nm wavelength resolution or better. Scans were usually performed with a step of 
5 to 10 nm and the transmission measurement precision was typically about 1%. During the ECAL production, 
transmission and LY measurements were performed with automatic systems ACCOS [21] at CERN and ACCOR 
[22] at the Italian National Institute for Nuclear Physics (INFN). A second, simplified version of an ACCOR 
machine (only transmission measurements) was also used for the irradiation tests made at INFN. In addition, a 
dedicated spectrophotometer [23] was built at INFN for high precision measurements of the optical properties of 
PbWO4 crystals (reflection, absorption, refractive index, surface quality and geometrical effects). The instrument 
was also used for high precision measurements of radiation-induced absorption coefficient in PbWO4 crystals. 
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 The LY is defined as the number of photoelectrons produced in a photomultiplier placed at the rear face of the 
crystal for 1 MeV of energy deposited (pe/MeV). A standard CMS measurement for crystals consisted of 
measuring the LY for 22 positions of the radioactive source along the crystal, starting 0.5 cm from the front face, in 
1 cm steps. Measured LY values are the result of a fit procedures described in [21] and [24] for the two automatic 
machines ACCOS and ACCOR respectively. The LY value given in this work corresponds to the value calculated 
at 8 X0 (7.5 cm from the front face) using the formula: 

baLY X  5.7
08            (4.1) 

where a and b are respectively the intercept and slope of the linear fit of 11 LY values starting from the front face of 
the crystal. 

 Studies of a number of PbWO4 crystals have shown that LY and longitudinal transmission are strongly 
correlated [25]. As will be discussed in the next section, the scintillation mechanism is not affected by radiation. 
This characteristic implies a strong correlation between LY loss and the induced absorption coefficient at 
wavelengths close to the scintillation emission peak (400-450 nm), an essential condition for a reliable monitoring 
of the crystal yield with injected light pulses. 

 4.2 Scintillation spectrum analysis 
 Scintillation spectrum analysis allows investigation of the nature of light emission center(s) and the possible 
influence of radiation exposure [26-29]. In particular the photo-luminescence and radio-luminescence spectra were 
recorded over the whole temperature range from liquid helium temperature to 200°C, before and after irradiation 
with dedicated (purpose built) or commercial spectrofluorimeters such as the Perkin-ELMER LS 55 at CERN. In 
the case of radio-luminescence the crystal was excited by a pulsed X-ray source (Hitachi) or in a synchrotron 
radiation facility (Hasylab in Hamburg or LURE in Orsay). 

 4.3 Decay time measurement 
 Another technique used in the study of radiation-induced traps was investigation of the decay time of the 
different emission centers as a function of temperature before and at different times after irradiation. Usually these 
tests were performed in parallel with those mentioned in paragraph 4.1 above. The setup was based on the single 
delayed photon counting method originated by Bollinger and Thomas [30]. 

 4.4 Other analytical methods 
 In addition to the optical characterization of crystal defects, which was done systematically in the early stage 
of the R&D, and also on a sampling basis during all the production period, a number of other analytical methods 
were  used such as X-ray diffraction, GDMS (Glow Discharge Mass Spectroscopy), ENDOR (Electron-Nuclear 
Double Resonance) spectroscopy, SEM (Scanning Electron Microscopy), ESR (Electron Spin Resonance), EPR 
(Electron Paramagnetic Resonance), TSL (Thermo-Stimulated Luminescence), TSC (Thermo-stimulated 
Conductivity) and PSC (Photo-stimulated Conductivity). 

5 Radiation damage effects in PbWO4 crystals 

 5.1. Radiation damage effects under gamma irradiation 
 A key point in the studies of PbWO4 radiation damage mechanisms is to verify that the scintillation 
mechanism is not modified by the radiation (see section 3.1). This was shown in early work on PbWO4 [11, 26, 27] 
and further studied by detailed analysis of the light emission centers. Figure 5.1.1 shows a comparison of the 
radio-luminescence (X-ray excited) spectra measured before and after 1 kGy (350Gy/h) gamma irradiation for a 
PbWO4 crystal of the standard ECAL production. The shape of the luminescence spectrum is not changed by the 
gamma irradiation, indicating no damage to the scintillation mechanism. 

 In order to study the nature and relative concentration of gamma radiation-induced color centers, three types of 
transmission spectra were found to be useful as a means of classification [27]. In addition research was carried out 
aimed at establishing the microscopic origin of radiation damage in PbWO4 (nature and properties of related color 
centers) and finding ways to improve the crystals radiation hardness [31-41]. Reliable certification procedures for 
crystals produced on an industrial scale for ECAL were defined on the basis of this R&D activity. 
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Fig. 5.1.1 Above: radio-luminescence (X-ray excited) spectrum of PbWO4 crystal before and after gamma 
radiation exposure (1 kGy at 350 Gy/h). Below: the difference between the two measurements. 

 A large number of radiation hardness tests were performed on different production crystals. Unless otherwise 
stated, the results reported here employed lateral irradiation (simultaneous irradiation of the full length of the 
crystal from the side) with a 60Co source. These tests showed that radiation-induced color centers are always the 
same. Only their relative concentration and their distribution along the crystal growth axis may differ depending on 
the raw material characteristics (stoechiometry and possible doping), crystal growth conditions and post-growth 
thermal treatments. All these production parameters were different for the two crystal suppliers, BTCP and 
SICCAS. Nevertheless dedicated production protocols and certification procedures were defined at both producers 
in order to have similar radiation hardness characteristics of the crystals. Fig. 5.1.2 shows typical absorption 
coefficient (µLT) induced by gamma radiation, measured along the length of the crystal, in randomly selected 
production crystals. 

 
Fig. 5.1.2 Radiation-induced absorption coefficient as a function of wavelength measured over the length of a 

crystal on randomly selected production crystals. Results were obtained after a total dose of 350 Gy, at a dose rate 
of 350 Gy/h. Open and solid symbols refer to BTCP and SICCAS crystals respectively.  

 Fig. 5.1.3 shows the value of the induced absorption coefficient µTT at 420 nm measured transversely at 
different points along the growth axis of the crystals. The different variation of color centers along the crystal 
growth axis due to different growth technique (Czochralski at BTCP, Bridgman at SICCAS) may be noted. The 
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increase in color centers in Bridgman-grown crystals along the axis is compensated by appropriate cutting of the 
ingot such that the front region of the crystal (most exposed to irradiation in LHC conditions) has the lowest 
concentration of color centers (highest radiation hardness). 

 
Fig. 5.1.3 Radiation induced absorption coefficient at 420 nm measured transversely at different points along the 
growth axis of randomly selected production crystals. Results were obtained after a total dose of 350 Gy, at a dose 

rate of 350 Gy/h. Open and solid symbols refer to BTCP and SICCAS crystals respectively. 

Studying the distribution of the damage along the growth axis may give valuable information to the crystal grower 
such as the distribution of defects responsible for color center production with respect to the seed position, stability 
of growth conditions and quality of the raw material. 
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Fig. 5.1.4 Light yield uniformity measured under equilibrium conditions for different gamma radiation doses for a 

randomly selected production crystal. The lines are linear fits to the data. 
 Fig. 5.1.4 shows the LY uniformity under gamma irradiation of a production crystal. The measurement was 
made using a collimated source positioned at different points along crystal. Measurement was made after reaching 
the equilibrium of induced absorption, with dose rates of 11 Gy/h, 35 Gy/h, 335 Gy/h and 350 Gy/h. Linear fits 
show that, within measurement errors, the slope of the LY uniformity, 0.03 pe/MeV/cm is not changed under 
gamma ray dose rates up to 350 Gy/h and integrated doses of several tens of kGy. 

 Based upon such studies and on Monte Carlo simulations of the effect of optical absorption on energy 
resolution, the maximum acceptable value of the induced absorption coefficient µLT at saturation was set at 1.5 m-1 
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for BTCP crystals and 1.6 m-1  for SICCAS crystals at the peak emission wavelength (420nm), which corresponds 
to a light yield loss of approximately 6% (see also section 6 and refs. [42, 43]). 

 Radiation-induced color centers anneal at room temperature, leading to spontaneous recovery of radiation 
damage. Fig. 5.1.5 shows an example of spontaneous recovery at room temperature. 

 
Fig. 5.1.5 Induced absorption coefficient in a crystal measured at different time after gamma irradiation at a rate of 

350 Gy/h for 1 h. Recovery in the dark at room temperature (20°C). 

 In common with other scintillating crystals, thermal annealing and optical bleaching were found effective in 
removing radiation-induced absorption in PbWO4 crystals [28]. Thermal annealing at 200°C for two hours was 
found to be effective in removing all residual color centers, and was used as a standard procedure for restoring 
crystals to their initial condition following gamma irradiation. 

  5.1.1 Dose rate dependence and low dose rate irradiation effects 
 The kinetics of color center creation under ionizing radiation and spontaneous annealing at room temperature 
may be described by simple models [19, 39], valid in the case of a low concentration of crystal defects. Such simple 
models lead to a two exponential time dependence of the concentration of color centers (i.e. of the induced 
absorption coefficient). Different studies on the interplay between gamma radiation damage and its recovery 
confirmed that the radiation-induced color center density depends on the dose rate. For a given dose a constant 
level is reached corresponding to the equilibrium between damage and recovery processes. Beyond a given dose 
rate and accumulated dose the induced absorption saturates corresponding to the full saturation of defects. Fig. 
5.1.6 shows degradation of the longitudinal transmission of a production crystal for different gamma dose rates. 
Longitudinal transmission spectra were measured when the radiation damage reached equilibrium for a given dose 
rate. 
 Using longitudinal transmission data, e.g. Fig. 5.1.6, numerical values of radiation-induced absorption 
coefficients (related to the radiation-induced color center density) can be calculated. The shape of the induced 
absorption as a function of wavelength is the same for all crystals, indicating an identical nature of the radiation 
damage as shown by several studies [4-10, 29, 44]. 

 The radiation dose in CMS will not add significantly to the number of point defects acting as color centers [45]. 
The main source of deep traps in PbWO4 crystals are pre-existing oxygen related Frenkel defects and cation 
vacancies. However, synthetic lead tungstate crystals also contain shallow electron traps associated with oxygen 
vacancies. The long duration of the crystal irradiation creates conditions for the diffusion of the neutral shallow 
electronic traps significantly increasing the probability of their coupling in pairs and more complex defects. Pairs 
have deeper capture levels compared to single vacancies and can create metastable color centers increasing the 
optical absorption in the visible spectral region under ionizing radiation. The presence of such metastable color 
centers may explain the slow decrease of the crystal transmission (and consequently of measured light yield) and 
the existence of a dynamic saturation (equilibrium between damage and recovery) whose level depends on the 
radiation dose rate. 
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Fig. 5.1.6 Longitudinal transmission and corresponding equilibrium values for the induced absorption coefficient 
for a production crystal exposed to gamma irradiation. The measured transmission is not corrected for reflection at 

crystal faces.  The crystals were thermally annealed before each irradiation cycle. 

  

 The characteristics of point defects responsible for color centre creation are also discussed in [37]. The 
parameters of trap levels responsible for the thermal bleaching of color centers are measured and the kinetics of the 
bleaching process is explained in the frame of a model which takes into account the annihilation of electron and 
hole centers by tunneling. The model clarifies the existence of the very slow recovery component which cannot be 
explained by simple thermal annealing. 
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Fig. 5.1.7 Variation of light yield during gamma irradiation (solid symbols) and successive room temperature 
recovery (open symbols) of a production crystal (note different time scales of zoomed plots on the right side). Solid 

black squares are the values measured after the thermal annealing made before each irradiation cycle.  

 Fig. 5.1.7 shows the measured relative LY (normalized to the initial value, LYrel=LY/LYinit) as a function of 
time under lateral gamma irradiation for a production crystal subjected to increasing dose rates of 11 Gy/h, 35 Gy/h, 
335 Gy/h and 350 Gy/h. The radiation exposure continued at a given dose rate till the equilibrium condition of the 
induced absorption coefficient was reached, after which the recovery of damage at room temperature was observed 
for several hours. The saturation effect is better seen on the right side of the figure where different time scales are 



14 14

used for each irradiation step. Crystals were thermally annealed before each irradiation cycle. As seen in the figure, 
the LY degradation shows a clear dose rate dependence and, as for the induced absorption coefficient, different 
equilibrium values are reached for each radiation dose. Similar tests made on production crystals exposed at the 
dose rate expected for the CMS Barrel calorimeter in situ at LHC (0.15 Gy/h) showed a loss of the LY of less than 
6% (see also section 7). Series production crystals exposed to LHC-like radiation conditions (front irradiation) 
presented a light yield loss below the CMS specification limit of 6% [42, 43]. The light yield of crystals from both 
suppliers shows similar dose rate dependent damage. 

 Fig. 5.1.8 shows crystal light yield variation measured under front irradiation described in [46] at a dose rate of 
0.15 Gy/h. Crystals were irradiated for more than one month (5·104 min) and a correction of the data for the 
irradiation source decay has been applied. The continuing decrease in light yield at long irradiation times can be 
attributed to the formation of a second type of color center which reaches equilibrium more slowly, as mentioned 
above 

 
Fig. 5.1.8 Relative LY (LYrel) is shown as a function of time for a production crystal under front irradiation with a 
dose rate of 0.15 Gy/h. The spread of measured values indicates the reproducibility of the measurements, which is 

better than 1%. 

 5.2. Radiation damage effects under neutron irradiation 
 In view of the intense neutron flux expected in CMS (see section 2) the effects on lead tungstate of neutron 
exposure were studied in nuclear reactors [47, 48]. The neutron fluxes and energies in these exposures were 
comparable to those expected in CMS.  However, in reactors there is a strong associated gamma dose.  The effect 
arising from neutrons was estimated by comparing the reactor results with results obtained from pure gamma 
irradiations.  This indicated that there was no specific effect due to neutrons on the optical and scintillating 
properties of lead tungstate, at least up to fluences of 1014 cm-2. This was confirmed by later independent studies 
[49]. It is also to be mentioned that recent tests performed at a very high fluence, of the order of 1019 to 1020 n·cm-2 
and 330 MGy (i.e. well above the level that will be ever achieved in any physics experiment) revealed the 
robustness of lead tungstate crystals which were not destroyed nor locally vitrified, and remained scintillating after 
such heavy irradiation [50]. 

 5.3. Radiation damage effects due to fast hadrons 
 In CMS the flux of fast hadrons is dominated by charged pions with energies of order 1 GeV. The effect of 
charged hadrons on crystals has been the subject of an extensive series of measurements, whose results are 
presented in Refs. [3, 51, 52]. Those studies show that hadrons cause a specific, cumulative loss of light 
transmission in the crystals [3]. The data for absorption induced by charged hadrons versus wavelength exhibit a 
λ-4 dependence, unlike those for damage from γ-irradiations. As explained in [3], this is an indication of Rayleigh 
scattering from small centers of severe damage, as might be caused by the high energy deposition, along their path, 
of heavily ionizing fragments, locally generating extended defects in the crystal. Since the crystal contains heavy 
elements, fast-hadron specific damage is in fact expected from the production, above a ~20 MeV threshold, of 
heavy fragments with up to 10 µm range and energies up to ~100 MeV, causing a displacement of lattice atoms and 
energy losses along their path, up to 50000 times that of minimum-ionizing particles. 
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 Apart from the effect on light transmission, no fast-hadron specific damage to the scintillation mechanism was 
observed within the accuracy of the measurements and for the explored flux and fluence ranges. This is evident 
from the correlations between LY loss and induced absorption, which show similar behavior for proton and gamma 
irradiated crystals [51]. 

 The studies published in [3] and [51] were all performed with 20 GeV/c protons, thus leaving open the 
question how they should be rescaled to the much softer spectrum of pions expected in CMS at the LHC. This issue 
was studied in [52], where the damage from protons and from 290 MeV/c pions is compared. There it is shown that 
the pion-to-proton ratio of induced absorption coefficients is in agreement with the corresponding ratio of the 
density of inelastic interactions (stars) obtained from simulations. Thus, the average star densities expected in 
CMS at various values of pseudorapidity η, as given in Table 2.1 of Section 2 and in [3] can be used, together with 
the observed damage as a function of proton fluence in [3], to extract an expectation for the damage as shown in 
Fig. 5.3. 
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 Fig. 5.3.1  Values for η where an induced absorption coefficient 2 m-1 due to charged hadrons is anticipated 
at the scintillation emission peak wavelength, as a function of integrated luminosity. The lines through the data 
points are to guide the eye. 

 However it should be pointed out that the induced absorption values used to obtain Fig. 5.3 were measured 150 
days after irradiating the crystals, allowing the recovery of a damage component observed to have a time constant 
of 17.2 days [3]. With the data available in [3], the remaining damage could be fitted as a combination of stable 
damage (which is cumulative with fluence) and a recovering component with a time constant of 650 days. Thus the 
expectation for charged-hadron induced damage of Fig. 5.3.1 could change slightly if the recovery of the slow 
component were taken into account. 

6 Monitoring of LY degradation and recovery under irradiation 
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Fig. 6.1 Time evolution of the induced absorption coefficient at 420 nm during gamma irradiation and successive 
room temperature recovery of a production crystal. Solid and open symbols correspond to irradiation and recovery 

respectively. Solid black squares are the values measured after thermal annealing. 

 To avoid a degradation in the energy resolution, changes in the LY due to radiation induced absorption must 
be monitored during LHC operation. Variation of LY during irradiation exposure and spontaneous recovery cycles 
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illustrated in fig. 5.1.7 are caused only by color center formation and annihilation and can therefore be monitored 
by tracking the corresponding modification of the optical transmission of the crystal. The induced absorption 
coefficient follows the same evolution as can be seen in Fig. 6.1 where the time evolution of the induced absorption 
coefficient at 420 nm measured longitudinally for the same crystal for which the LY time evolution is reported in 
fig. 5.1.7. 
 Fig. 6.2 shows the correlation between the light yield and the longitudinal transmission at 420 nm for the data 
presented in figures 5.1.7 and 6.1. The strong correlation demonstrates that variations in light yield can be 
corrected for by monitoring the changes in longitudinal transmission in the region of the emission peak. 
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Fig. 6.2 Correlation between normalised LY and normalized longitudinal transmission during several radiation 
exposure-recovery cycles, for a production crystal. The line is a linear fit. 

 To take advantage of this correlation, a light monitoring system was designed and implemented [53-57]. This 
system was extensively used during high intensity tests in electron beams, showing that the energy resolution can 
be maintained by applying laser monitoring corrections under LHC-like conditions.  

7 Crystal quality assurance during production 

 7.1. Crystal quality specification 
 It has been stressed throughout this paper that ensuring the radiation hardness of the crystals was of primary 
importance for CMS. Besides specifications related to dimension and optical properties needed for the required 
calorimeter performance, additional specifications for radiation hardness were defined for crystals produced at 
both crystal suppliers. These specifications fixed the acceptable limit of optical transmission damage and related 
LY deterioration as follows. 

1) induced absorption for full saturation of crystal: µ < 1.5 m-1 at 420 nm; irradiation conditions: lateral 60Co 
source exposure for a total dose > 500 Gy (> 100 Gy/h) 

2) light yield loss: LYloss < 6%; irradiation conditions: front 60Co source exposure for a total dose > 2 Gy (> 
0.15 Gy/h) 

 The first specification was set up in order to prevent the total damage exceeding a certain level when the 
radiation damage in the crystal is fully saturated throughout its volume. This level corresponds to a defect density 
estimated to be 3·1017 color centers per cm3, corresponding to an induced absorption of 1.5 m-1 at the peak emission 
wavelength (420 nm) at full saturation. The limits imposed for irradiation conditions are the results of statistical 
studies made on production crystals showing that in general, the damage saturation is reached after a lateral gamma 
radiation exposure with a dose of at least 500 Gy at a rate above 10 Gy/h. The maximum value of 1.5 m-1 placed on 
the induced absorption at the emission wavelength also limits an associated variation in the longitudinal uniformity 
of light collection which could degrade the energy resolution of the calorimeter. 

 The second specification is related to LY loss due to gamma radiation exposure close to the LHC irradiation 
conditions (0.15 Gy/h at high luminosity at the region of shower maximum in the crystal, about 3 cm from the 
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crystal front face). Statistical studies made on production crystals show that LY degradation is saturated after a 
front 60Co source exposure for a total dose > 2 Gy (> 0.15 Gy/h). 

 
Figure 7.1.1 Correlation between irradiation tests results performed in CERN and Rome regional centers 

 However, in the case of large scale production at BTCP it was not practical to check the radiation hardness of 
each crystal individually. Therefore studies were made during the R&D period to find correlations between 
radiation hardness behavior and optical parameters that can be measured easily for each crystal [42]. It was found 
that the presence of an initial absorption in the band edge region (350-360 nm) is correlated with poor radiation 
hardness [27]. Based on this correlation certification limits were defined for transmission spectra [42] which were 
systematically measured for each crystal using the ACCOR and ACCOS machines. Transmission runs consisted in 
measuring the optical transmission along the crystal (beam direction from front face to rear face) and transversely 
at several points along the crystal length. Crystals having one of these optical certification parameters close to or 
above acceptance limits were subject to systematic irradiation tests. All other crystals were randomly irradiated in 
both regional centers either at high dose rate (350 Gy/h in Geneva hospital for the CERN regional centre or 30 
Gy/h at the Calliope reactor for the Rome regional centre) or under conditions comparable to those in the LHC 
(0.15 Gy/h front irradiation with the low dose rate 60Co source at the CERN regional centre). For high dose rates, 
the limiting value of 1.5 m-1 for the induced absorption at 420 nm was used as the qualification parameter. For low 
dose rates the light yield loss was measured directly and compared to the specification limit of 6% [42]. Crystals 
which did not fulfill these conditions were rejected.The reliability of these tests was checked on crystals subject to 
irradiation tests in both regional centers. Fig. 7.1.1 shows the good correlation between the results of irradiation 
tests performed in the CERN and Rome regional centers. 
 The radiation hardness over the entire crystal production period (8 years for BTCP and 2 years for SICCAS 
crystals) was monitored through quality control procedures established for each of two suppliers as follows: 
BTCP Protocol: agreed between BTCP, INP-Minsk and CERN at the beginning of crystal production in 1998, 
was a three step radiation hardness certification protocol:  

1.    A sampling test of the radiation induced absorption performed at INP-Minsk on the top and bottom parts 
of ingots, aimed at controlling different technological aspects which influence the nature of crystal defects, 
the longitudinal distribution of the defects along the ingots, the damage recovery and the afterglow. 

2.    A sampling test performed at BTCP irradiation facilities on machined crystals. Crystals at BTCP were 
grown by Czochraski method. Several successive growths (crystallizations) were performed in a same 
crucible by adding new raw material at the end of each crystallization. A maximum number of 13 
successive crystallizations was admitted for ECAL crystals. The selected crystals for radiation test were 
chosen among crystals coming from different crystallizations. Some crystals obtained from the first 
crystallization were selected to control the stoechiometry of the raw material, other crystals obtained from 
the 5th crystallization were chosen to control the doping concentration, and all crystals obtained from 9th to 
13th crystallization were tested. 

3.    A sampling irradiation test under high or low irradiation rate performed at CERN. From each batch 
received, in addition to the crystals with optical certification parameters close or above acceptance limits 
mentioned above, a randomly chosen set of crystals was tested. Approximately 3% of the crystals 
produced at BTCP were subjected to this kind of test. 
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SICCAS Protocol: agreed between SICCAS and CERN was a two step radiation hardness certification protocol: 
1.    All crystals delivered by SICCAS were subject to an irradiation test at the producer consisting of 700 Gy 

irradiation exposure at a dose rate of 30 Gy/h. Crystals with a radiation induced absorption coefficient 
above 1.6 m-1 were rejected by the producer. 

2.    Crystals delivered to CERN were further subject to a sampling test performed in both regional centres 
(CERN and Rome) in order to check the coherence between induced absorption measured using CMS 
facilities and SICCAS facilities. In addition all crystals having an induced absorption value measured at 
SICCAS close to the specification limit were systematically irradiated at the Calliope irradiation plant in 
Rome. 

 The higher value of the limit of radiation induced absorption coefficient (1.6 m-1) in the case of crystals 
produced at SICCAS is mainly due to their higher LY which makes the corresponding higher LY loss still 
acceptable for ECAL energy resolution constraints. 

 7.2. Certification of crystal mass production 
 Crystal production was completed in March 2007 for the Barrel and in March 2008 for the Endcaps. A total of 
61335 Barrel crystals were produced in BTCP from September 1998 to March 2007 and 1825 at SICCAS from 
June 2005 to April 2007. Starting in March 2007, 12015 and 2668 Endcap crystals respectively were produced by 
the two suppliers.  

 7.2.1 Testing radiation damage at full saturation 
 Typical induced absorption spectra obtained for BTCP crystals and SICCAS crystals after high dose rate 
irradiation have already been shown in Fig. 5.1.1. Fig. 7.2.1 shows the distribution of induced absorption measured 
at 420 nm after irradiation in a Geneva Cantonal Hospital (at a high dose rate of 350 Gy/h for an integrated dose of 
350Gy) for a random sampling of BTCP Barrel and Endcap crystals having optical characteristics within ECAL 
specifications. 

 
Fig 7.2.1 Distribution of induced absorption at 420 nm after 350 Gy at a dose rate of 350 Gy/h for: (a) BTCP Barrel 

crystals b) BTCP Endcaps crystals, randomly selected among those having optical parameters within ECAL 
certification limits 

 

 Fig. 7.2.2 shows the correlation between the induced absorption obtained in the ECAL regional centers and at 
SICCAS for the Barrel and the Endcap crystals. For both producers, for all the crystals tested, an average value of 
about 1m-1 for the induced absorption at full saturation of the damage was obtained. 
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Fig 7.2.2 Correlation between induced absorption measured at SICCAS (700 Gy, 30 Gy/h) and in ECAL regional 

centres. (a) Barrel crystals, (b) Endcaps crystals. 

 7.2.2 Testing radiation damage in LHC-like conditions 
 Fig. 7.2.3 shows the distribution of LY loss under front irradiation at LHC radiation levels (0.15Gy/h), for a 
random sampling of BTCP Barrel crystals. The average light yield loss is 2.4%. Fig. 7.2.4 shows the same for a 
random sampling of SICCAS Barrel crystals. The average light yield loss is 1.6%. 

 The radiation damage level observed after irradiation in the LHC like conditions for the ECAL at both 
producers is below the specification limit of 6% and will guarantee the ability to monitor precisely the crystals 
transparency. 
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Fig 7.2.3 Distribution of relative LY loss after 1.5 Gy at a rate 0.15 Gy/h for 1203 BTCP crystals randomly selected 
among those having optical parameters within ECAL certification limits (vertical line defines the 6% certification 

limit for light yield loss) 

 
Fig 7.2.4 Distribution of relative LY loss after 1.5 Gy at a rate 0.15 Gy/h for a random sample of 96 SICCAS 

crystals 

 

Conclusions 
 This article has described the investigations that have led to a detailed understanding of PbWO4 scintillation 
characteristics and radiation induced color centers. These activities were a fundamental contribution to enabling 
the production of PbWO4 crystals with characteristics satisfying the CMS requirements. The certification of such 
production extended over several years and quality assurance results have been presented which demonstrate the 
reliability of the PbWO4 used in CMS. 

 The excellent linear relationship between the variation of crystal light yield and longitudinal transmission in 
the wavelength region of 420 - 440 nm in repeated cycles of irradiation-recovery, allows a reliable monitoring of 
the light yield in LHC exploitation conditions. 
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Appendix 
(list of irradiation facilities used in this work) 

 
 A.1 Gamma irradiations 
Geneva Hospital 60Co source. Crystals are irradiated from the side with a dose rate of 350 Gy/h. Variations of the 
crystal transversal and longitudinal transmission, light yield and scintillation kinetics are measured 40 min after the 
irradiation by a set of spectrometers located at CERN after transport in a thermally isolated box  
CERN – TIS-B27 60Co source. This setup allows the front irradiation of 6 crystals (including one or 2 for 
reference) at a dose rate of 0.15Gy/h (CMS ECAL Barrel exposure under normal LHC conditions) and an 
integrated dose of up to 3Gy. The radiation induced light yield is recorded during the irradiation, allowing a direct 
monitoring of the light transmission loss. 
CERN GIF-X5 beam facilities including a 137Cs source (lateral irradiation at 0.15Gy/h up to 2 Gy integrated 
dose) and the possibility to probe the crystal in parallel to the irradiation with a muon or an electron beam. 
CERN H4 beam Crystals are used in the same configuration as in the CMS experiment, with the same 
photodetectors, readout electronics, thermal stabilization and monitoring systems. High energy electron beams are 
shot in the crystals with intensities allowing to mimic the LHC expected dose rate of about 0.15Gy/h. 
COCASE Facility, at CEA/IRFU, Saclay. It consists of a 60Co source (1.2 MeV, 14 Ci) with geometrical tuning 
of the dose rate in the region below 1 Gy/h. Relative change of the monitoring signals provided by a Xe pulse lamp 
and a fast tuning monochromator in the spectral region 380-800 nm is measured. Longitudinal transmission is also 
measured by a Perkin-Elmer spectrophotometer in the region 300-850 nm before and after the crystal irradiation. 
Institute for Nuclear Problems (INP) 60Co source facility, Minsk. It consists of a 60Co well shaped source with 
fixed dose rate 2300 Gy/h. Variations of the crystal transmission are measured 60 min after irradiation by a Varian 
"Cary1E" spectrophotometer in the range 300-900 nm. Control of other scintillation parameters is also carried out. 
Institute for Nuclear Research (INR) irradiation facility, Moscow. A microtron MK-25 and linear electron 
accelerator (both of 25 MeV electron energy) are used as electromagnetic radiation sources. Dose rates are tuned 
from 0.06 to 1800 Gy/h. Longitudinal transmission is measured in the region of 390 to 650 nm during the 
irradiation by a specially developed  spectrophotometer based on a transparent grating. 
ENEA-Casaccia, Rome Calliope 60Co plant. This is a 24000Ci (July 2002) source in a water pool. The irradiation 
plant allows irradiation up to dose rates of 20 kGy/h. Different dosimetric positions are available for PbWO4 
radiation hardness study in the range from 10 to 400 Gy/h. Standard PbWO4 tests are performed at irradiation 
points: 11.8Gy/h, 34.2Gy/h and 350Gy/h (values at October 2006) where PWO crystals are subject to irradiation 
cycles. For a given dose rate the typical irradiation cycle consists in gamma radiation exposures at increasing doses 
until the saturation of the induced absorption coefficient is reached. Irradiation is followed by room temperature 
recovery until acquired data allow for a reliable estimation of the time component(s) of the recovery process. 
Transmission and LY measurements are performed at typically 15 min after the irradiation exposure is stopped. 
During the irradiation cycle(s) crystal are kept at room temperature, in the dark in order to avoid recovery 
processes induced by light. 
CALTECH 60Co 50Ci source. Crystals in a light tight package are irradiated from the side with a dose rate ranged 
from 0.1 to 10 Gy/h by placing samples at different distances to the source. 
Imperial College/Brunel Univeristy 60Co source. 
Eichlabor, PSI-Villigen 60Co source. 
CALTECH 137Cs 2000Ci source. Crystals in a light tight package are irradiated from the side with a dose rate of 
90 Gy/h when placed at the center of the irradiation chamber with a uniformity of dose rate about 5%. Up to 360 
Gy/h may be achieved in the closest position to the source. Variations of the crystal's optical transmission, 
photo-luminescence, light output and decay kinetics are measured about 5 minutes after the irradiation respectively 
by a PerkinElmer Lambda-950 spectrometer, Hitachi-F4500 fluorescence spectrophotometer and a Hamamatsu 
R2059 PMT and LeCroy 3001 QVT charge integrator based pulse height spectrometer. All measurements are 
carried out in the dark, or under a red light, at 18°C. 
In all irradiation facilities mentioned above, a common recovery protocol was defined for PWO crystals of 
ECAL-CMS. Recovery of radiation damage was obtained by a thermal bleaching process consisting in: 

 ramp-up from room temperature to 200°C in  not less than 3 hours 
 plateau of 6 hours at 200°C 
 power stop and natural cooling 

 
 A.2  Neutron irradiations 
Saclay Ulysse reactor: is a Uranium metal reactor with a fast neutron (about 1MeV) flux ranging from 106 to 1011 
neutrons cm-2s-1. Irradiation tests with neutron fluences of 1012, 2·1013 and 2·1014 neutrons cm-2 have been made on 
several crystals. 
ENEA-Casaccia, Rome TAPIRO reactor: is a fast neutrons reactor particularly adapted for small size 
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experiments due to its relatively low power (5 kW or 4.3·1014 fission neutrons/s) and very small, highly enriched 
core (11cm height, 12cm diameter, 93.5% enriched Uranium). 
  
 A.3 Charged hadron irradiations 
In order to test the possible role of charged hadrons induced lattice defects (stars) some crystals have been exposed 
to intense pion or proton beams at PSI-Villigen and CERN-PS-IRRAD1 In this last case, crystals were exposed to 
20 GeV proton beams with a flux ranging from 1012 to 1013 p cm-2h-1. 
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