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Nonlinear Dynamics of Magnetic Islands Imbedded in Small Scale Turbulence
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The nonlinear dynamics of magnetic tearing islands imbedded in a pressure gradient driven tur-
bulence is investigated numerically in a reduced magnetohydrodynamic model. The study reveals
regimes where the linear and nonlinear phases of the tearing instability are controlled by the proper-
ties of the pressure gradient. In these regimes, the interplay between the pressure and the magnetic
flux determines the dynamics of the saturated state. A secondary instability can occur and strongly
modify the magnetic island dynamics by triggering a poloidal rotation. It is shown that the complex
nonlinear interaction between the islands and turbulence is nonlocal and involves small scales.

Magnetic reconnection is a complex phenomenon in-
volving plasma flows and a rearrangement of the mag-
netic field lines inside a narrow region (the reconnection
layer) where topologically different magnetic flux tubes
can get interconnected and reconfigure themselves. It
plays an important role in fusion experiments and in
many astrophysical events [1]. In a complex fusion de-
vice, such as a tokamak, the plasma is susceptible to
many kinds of instabilities which can occur concurrently
at various space and time scales. Such a coexistence of
microturbulence and magnetohydrodynamic (MHD) ac-
tivities has been observed in many experiments [2] with
some evidence of correlated effects arising from their si-
multaneous existence. An important question to address
is therefore the nature and amount of mutual interaction
between microturbulence and large-scale MHD instabil-
ities - an issue that is at the heart of multi-scale phe-
nomena of complex systems in astrophysics, geophysics,
nonlinear dynamics and fluid turbulence. Early ana-
lytic attempts at investigation of this important ques-
tion have relied on ad-hoc modeling of turbulence effects
through anomalous transport coefficients [3]. More re-
cently a minimal self-consistent model based on wave ki-
netics and adiabatic theory has been used in [4] to study
the interaction of a tearing mode with drift wave tur-
bulence. Numerical simulation studies in [5] have di-
rectly addressed the problem of multiscale interactions
and have taken into account the nonlinear modifications
of the equilibrium profiles due to turbulence. Such stud-
ies have been extended in [6] to investigate the interac-
tion between double tearing modes and micro-turbulence
through the excitation of zonal flows. Finally in [7] a
numerical investigation of the interaction of a 2D elec-
trostatic turbulence with an island whose dynamics is
not fully self-consistent but is governed by a generalized
Rutherford equation has been carried out. In this paper
we report on self-consistent simulations of the multiscale
interaction between microturbulence driven by pressure
gradients and magnetic islands with a focus on regimes
where the growth of the latter is essentially due to pres-
sure effects and where small-scale dynamics appear to
be important. The background microturbulence is found

to induce a nonlinear rotation of the island as well as
to significantly alter its final quasi-equilibrium state by
the excitation of a secondary instability. We discuss the
characteristics of the various stages of the nonlinear evo-
lution and also delineate the role of small scales in the
overall dynamics of the system.

We consider a minimalist two-dimensional plasma
model based on the two fluid Braginskii equations in the
drift approximation [8, 9] with cold ions and isothermal
electrons. The model includes magnetic curvature effects
and electron diamagnetic effects but neglects electron in-
ertia and Hall effect contributions. The evolution equa-
tions are
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where the dynamical field quantities are the electrostatic
potential φ, the electron pressure p and the magnetic flux
ψ. The equilibrium quantities are a constant pressure
gradient and a magnetic field corresponding to a Harris
current sheet model [1]. Further, κ1 = 2ΩiτA

L⊥

R0

and

κ2 = 10
3
Lp

R0

are the curvature terms with R0 representing
the major radius of a toroidal plasma configuration. Lp
is the gradient scale length, τA is the Alfvén time based
on a reference perpendicular length scale L⊥ and Ωi is
the ion cyclotron frequency. Equations (1-3) are nor-
malized using the characteristic Alfvén speed vA and the
length scale L⊥. µ is the viscosity, χ⊥ the perpendicular
diffusivity, η is the plasma resistivity, v⋆ = βe/ΩiτA is
the normalized electron diamagnetic drift velocity with
βe being the ratio between the electronic kinetic pressure
and the magnetic pressure. ρ̂ = ρS

L⊥

is the normalized ion
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Figure 1: Numerical and theoretical results of the linear
growth rate γ versus η at ν = χ⊥ = 0, ∆′ = 6 and ρ̂ = 10−1.

sound Larmor radius. In the limit R0 → ∞, we recover
the drift tearing model [9], and when magnetic fluctua-
tions are weak, ψ ∼ 0 (κ1 6= 0), the system describes
the electrostatic interchange instability. Conversely, the
large island limit, ρ̂ = v⋆ = 0 with ΩiτA ∼ 1, gives the
high β model which was originally introduced by H. R.
Strauss [10]. The minimalist model used here is, in fact,
a reduced version of the four fields model of [11] where
we have ignored the parallel ion dynamics and thereby
neglected its effect on the transversal pressure balance
[11].

As a preliminary to the numerical study of eqs.(1-3),
we first look at some linear results of a simplified set of
equations with µ = χ⊥ = κi = 0 where it is possible to
obtain analytic relations for the linear growth rate of the
tearing mode under the constant ψ approximation [1, 12],
namely,

∆′ = γ2

k2y
α−3

∫ +∞

−∞

χ′′(z)
z dz,

z = −z2χ (z) + (1 + ρ̂2α−2z2)χ
′′

(z)
(4)

where φ (x) = −α−1ψ (0)χ (z), z = αx, α =
(

ηγ/k2y
)1/4

and ∆′ is the standard stability parameter. The per-
turbed pressure is given by p (x) = ρ̂2φ′′ (x) (with ρ̂ = 0
corresponding to the classical tearing situation). Fig. 1
shows the dependence of the linear growth rate γ(η) of
the instability on the resistivity with ρ̂ = 10−1. The
numerical results (circles) are seen to agree quite well
with the values (diamonds) of the solution to the an-
alytic relation Eq.(4). We observe that γ(η) exhibits
a change of slope after a certain value of η. The two
regimes correspond to the two limiting cases Te = 0 or
p = 0 (solid line) and φ = 0 (dashdot line). The in-
tersection of the two lines gives the critical value of the
resistivity ηc = 0.58 ∆′−1/2ρ̂5/2 ∼ 8 × 10−4 for ∆′ = 6.
When η > ηc, the linear growth rate given by the classical
tearing case is higher than the other limiting case. The
system chooses the more unstable case and the classical
tearing mode is recovered with the scaling laws γ ∼ η3/5

and δ ∼ η2/5. When η < ηc, the coupling between p
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Figure 2: Time evolution of the magnetic, pressure and kinetic
energies.

and ψ is strong and the island formation is driven by the
pressure perturbation. The resistive layer becomes thin-
ner or more singular than in the case Te = 0 where only
a (φ, ψ)−coupling exists. Further the disagreement ob-
served between the numerical and the theoretical results
for η > 5 × 10−2 is a consequence of the breaking down
of the constant ψ approximation in this regime.

We now discuss the full nonlinear numerical simulation
of Eqs.(1-3) that explores the mutual interaction between
small scale interchange modes and a small magnetic is-
land. A semi-spectral code with a 2/3-dealiasing rule in
the poloidal direction, a resolution of 128 grid points in
the radial direction, 96 poloidal modes and that main-
tains conservation properties of the nonlinear terms to
a high degree, has been used. The computational box
size is Lx = Ly = 2π. In order to isolate the nonlinear
mechanisms responsible for the island rotation, the lin-
ear diamagnetic effect has been turned off in Eq.(3). The
effect of the latter on the evolution of the tearing mode is
well known, namely that it leads to a real frequency and
consequently a rotation of the island in the diamagnetic
drift direction. Note that we have checked à posteriori

by turning on the linear diamagnetic term in eq.(3) that
the amount of induced nonlinear rotation (obtained by
subtracting the linear diamagnetic frequency from the
total rotation) remains the same. In eq.(3) we also set
κ2 = 0, since we find from our simulations that the κ2
contribution is rather weak. ρ̂ and v⋆ are taken to be
equal to 1 and βe = 10−2. The parameter related to the
interchange instability is κ1 = 10−2. The shape of the
equilibrium magnetic field is chosen to allow a tearing in-
stability to develop with a poloidal mode number ky = 1
with ∆′ = 6[1]. Fig. 2 shows, for µ = χ⊥ = η = 10−4, the
time evolution of the magnetic (Eψ), pressure (Ep) and
kinetic (Eφ) energies of the fluctuations for η < ηc, corre-
sponding to a regime where the magnetic island genera-
tion is pressure driven. Four phases are observed. First, a
exponential growth of the magnetic island (t . 1300τA),
followed by a quasi-plateau phase with however an in-
crease of the energies of the three fields (t . 4500τA).
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Figure 3: Snapshots of the magnetic flux and the pressure at
t = 3000τA (Upper panel) and t = 6000τA (Lower panel).

Next, a phase characterized by an abrupt growth of the
kinetic and pressure energies in which the kinetic energy
level equals the energy of pressure perturbations and fi-
nally, the system reaches a new quasi-plateau phase for
(t & 5100τA). During the linear and first plateau phases,
the energy associated with the pressure perturbations is
higher than the kinetic energy, i.e the dynamics is con-
trolled by an interplay between the magnetic flux and the
pressure. In the second phase, t . 4500τA, the magnetic
island is maintained by adjacent pressure cells similar to
what is usually observed for flow cells in the nonlinear
regime of a tearing island [1]. This is illustrated in Fig. 3
(upper panel, t = 3000τA). During this phase, the kinetic
energy piles up in the flow cells which are located in the
vicinity of the island. After t ∼ 3600τA, the flow cells are
no longer located in the vicinity of the magnetic island.
At t & 4500τA, a sharp growth of the kinetic and pressure
energies occurs. Far from the island the current is not
significant, and for t/τA ∈ [4500, 5000], a dominant in-
terchange mode outside the sheet (φ11, p11) is enhanced.
The associated kinetic and pressure energies of the lat-
ter are equal. Here, φ11 means φ(kx = 1, ky = 1). The
competition between the interchange and tearing modes
lead to the generation of small scale pressure structures
in the vicinity of the island that suffer further desta-
bilization leading to a drastic modification of the dy-
namics. Indeed, in less than 200 Alfven times, around
t ∼ 5000τA, an abrupt growth of the energy contained
in the pressure perturbation is observed and the system
dynamics changes, i.e, a bifurcation occurs. At larger
times, t > 5100τA, the pressure dominates over the flow,
Ep ≫ Eφ, and the size of the magnetic island finally sat-
urates. Fig. 4 shows the energy spectra of the fields just
before and after the bifurcation . Before the bifurcation,
the interchange mode is observed at ky = 1, and as long
as ky ≥ 2, the pressure energy is much higher than the
kinetic energy. After this dynamical bifurcation, we ob-
serve a persistence of small scales as well as an enhance-
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Figure 4: Spectral energy densities as functions of the poloidal
mode number ky , just (a) before ( at t = 4800τA) and (b) after
(at t = 5200τA), the bifurcation.
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Figure 5: Plots of the poloidal diamagnetic velocity vdia at
t = 3000τA (a) and t = 6000τA (b).

ment of the energies (Fig. 4b). We also find that a mean
poloidal pressure and flow have been generated, and as
we will see below, it is linked to the rotation properties
of the island. For 8 ≤ ky ≤ 50, there is a trend towards
an equipartition of the magnetic and pressure spectra. It
is worth noting that even though the magnetic island is
still, at this point, in a quasilinear stage (the magnetic
energy being concentrated on the mode ky = 1), the pres-
sure perturbation has a fully nonlinear structure and is
made up mainly of the modes ky < 7. An interesting
feature clearly observed in the snapshot shown in Fig. 3
at t = 6000τA is the generation of an island structure in
the pressure field containing almost 90% of the pressure
energy Ep.

In the final stage where the energies reach a new quasi-
plateau, as observed in Fig. 2, the change of dynamics
is characterized by two important macroscopic features.
First, there is a change of symmetry - the poloidal dia-
magnetic velocity vdia = ∂

∂x < p >y having even par-
ity for t . 5100τA (brackets mean an average over the
poloidal direction), loses this property after the bifurca-
tion and has in fact an odd parity in the vicinity of the
current sheet. This change of parity is clearly shown in
Fig. 5) where vdia is plotted, before and after the transi-
tion, at t = 3000τA and t = 6000τA respectively. The sec-
ond macroscopic change is the inversion of the poloidal
rotation direction of the magnetic island together with
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Figure 6: Time evolution of the poloidal position of the center
of the magnetic island yisland(t) (solid blue line), and the
models ydia(t) (dashed red line), yp,φ(t) (dashdot green line).

an amplification of the velocity. The amplified velocity
arising from the nonlinear interactions is of the order of
the linear diamagnetic velocity as verified from á posteri-

ori runs made with the linear diamagnetic term retained
in the equations. The change of direction in the island
rotation can be observed in the zoomed frame of Fig. 6
which shows the time evolution of the poloidal position of
the island. We find that the increase of vdia at the transi-
tion is linked to the coincident growth of the interchange
mode (φ11,p11) which feeds the angular momentum. The
detailed mechanism of this nonlinear generation of an-
gular momentum is however not known at this time and
remains an open question.

Some insights into the origin of the island poloidal ro-
tation can be obtained from Eq.(3) where one notes that
both the self generated zonal and diamagnetic flow terms,
vzon = ∂

∂x < φ >y and vdia, can produce a poloidal rota-
tion of the island. To investigate the role of these flows,
we have plotted in Fig. 6 the poloidal position of the
center of the island yisland, and the poloidal positions
related to the contributions of the diamagnetic velocity
vdia and the zonal flow velocity vzon. More precisely, we

have plotted ydia(t) = (1/δ)
∫ t

0
dt

∫ δ/2

−δ/2
dx vdia(x, t) and

yp,φ = (1/δ)
∫ t

0 dt
∫ δ/2

−δ/2 dx (vdia − vzon). We observe

that the model ydia reproduces well the time evolution of
the rotation of the island, before and after the bifurca-
tion. At larger times, t & 6000τA , we observe that the
contribution of the zonal flow cannot be neglected, even
if the rotation of the island is mainly governed by the
nonlinear generation of poloidal diamagnetic velocity. In
[9], a similar approach was taken, without an averaging
over the sheet, and a value of the velocity at the center
of the sheath was used.

To summarize, we have shown that the dynamics of
magnetic islands can be strongly affected by the presence
of a background of interchange modes. In the low resis-

tivity and/or small ∆′ limit, the coupling between the
magnetic flux and the pressure is dominant compared to
that between the magnetic flux and the plasma poten-
tial. In the asymptotic nonlinear regime, a pressure is-
land structure builds up and the pressure pattern is not a
flux function except in the center of the magnetic island.
In fact this regime is a result of a novel nonlinear transi-
tion that is observed for a wide range of parameters when
the condition η < ηc is satisfied. It is initiated by elec-
trostatic interchange modes which compress the magnetic
structure and generate small scales inside the island. An-
other noteworthy finding is that the bifurcation leads to a
change of symmetry of the diamagnetic velocity that oc-
curs when the energy of the large scale interchange mode
is of the same order of magnitude as the thermal energy
contained in the cell maintaining the magnetic structure.
The destabilization leads to a poloidal rotation of the is-
land that is linked to the nonlinearly generated diamag-
netic velocity in the current sheet. The basic phenomena
highlighted by our results are reproducible over a large
region of parametric space and in that sense appear to
be generic albeit within the constraints of our minimal-
ist model. Effects ignored in our model including parallel
heat conduction, parallel ion dynamics and contributions
of the Hall and electron inertia terms may bring about
some modifications. Investigation of such effects in an en-
larged model are therefore necessary to provide a more
global perspective of this complex phenomenon and for
which our present studies provide a minimalist and basic
description.
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