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Abstract

Recent experiments on ultra slow light in strongly dispersive media by several
research groups reporting slowing down of the optical pulses down to speeds of
a few metres per second encourage us to examine the intriguing possibility of
detecting a deflection or fall of the ultra slow light under Earth’s gravity, i.e., on
the laboratory length scale. In the absence of a usable general relativistic theory
of light waves propagating in such a strongly dispersive optical medium in the
presence of a gravitational field, we present a geometrical optics based
derivation that combines ‘the effective gravitational refractive index’ additively
with the usual optical dispersion. It gives a deflection, or the vertical fall A for a
horizontal traversal L as
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where Rog/Rgis the ratio of the gravitational Earth radiusRog to its

geometrical radius R, and ng is the group refractive index of the strongly

dispersive optical medium. The expression is essentailly that for the Newtonian
fall of an object projected horizontally with the group speed vg=c/ng, and is
tunable refractively thorugh the index ng. For L~1 m and ng = clvg ~ 10°
(corresponding to the ultra-slow pulse speed ~few x 1 ms™), we obtain a fall
A~1um, that should be measurable — in particular through its sensitive

dependence on the frequency that tunes ng.

In a recent flurry of research publications [1-5] several research groups have
reported spectacular slowing down of light pulses propagating in strongly
dispersive media. Group velocities down to seven orders of magnitude smaller
than the speed of light in vacuum have been observed. Such a slowing down is,
of course, a direct consequence of the Kramers-Kronig (KK) dispersion relation
between the real (reactive) and the imaginary (absorptive) parts of the frequency
(w) dependent dielectric constant £(w) = n(w)® It gives a large group index

Ng :n+wE§—n for a steeply rising refractive index (n) in the vicinity of a sharp
)

absorption dip produced coherent optically through the interference of atomic
transition amplitude as, e.g., in the Electromagnetically Induced Transparency
(EIT) [2]. Essential to using ultra slow light is the high group index



Ng (&) >>n(&), but one with a low loss. This the EIT can provide, admittedly

though in a rather narrow spectral window just a few Hz wide. While details of
the physics informing the ultra slow light experiment are not without some
controversy [6,7], its realizability in principle follows robustly from the KK
relations. This has encouraged us to look into the intriguing possibility of there
being a detectable fall of the ultra slow light pulse under Earth’s gravity on a
laboratory length-scale — indeed, in a “table-top” experiment. The phenomenon of
fall of light under gravitation, commonly referred to as the bending or deflection of
light (after the celebrated observation of the ray deflection during the 1919 total
solar eclipse testing affirmatively Einstein’'s general relativity) necessarily
involves astronomical length scales because of the enormity of the speed of light
(c = 3x10* cms™) in vacuum and the weakness of the stellar gravity

2GM /c?R << 1. The ultra slow light at group speeds vy << ¢ may thus provide the
possibility for observing a sensible fall of light pulses in the strongly dispersive
medium (with ng~108 or more, giving the group speed ~few metres per second or
less) on the laboratory length scales under Earth’s relatively much weaker
gravity.

In this preliminary treatment of the ultra slow light propagating in a strongly
dispersive optical medium in the presence of weak gravitational field, we make
use of the idea of an “effective refractivity” (ng) [8, 9] for the weak gravitational

field, and add it to the group refractive index (ng) for the dispersive medium. For a
laboratory scale experiment with all reference length scales << the geometrical

radius (R) as well as the gravitational radius (Rg) of the Earth, we can write
down the effective group refractive index n(x,z) as
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where the gravitational refractivity varies along the z axis in the vertical (x,z)
plane. Here the replacement of ¢ by (c/ng) on the right-hand side of Eq. (1) is
justified by the following physically robust argument: In vacuum, the essentially
exact GR deflection of light (zero rest mass photon) by a gravitating centre (e.g.,
the Sun of mass M) is 4GM/bc?, while the corresponding expression for the
Newtonian gravitational deflection of a mass point coming in at speed v and with
the same impact parameter b is 2GM/bv? , which is smaller by just a factor of 2 if
we set v = ¢. While this celebrated asymptotic factor of 2 was crucial to the test
of general relativity, it is not quite as important for an order of magnitude estimate
of the fall of the ultra slow light on the laboratory scale under Earth’s gravity. In
fact, the optical pulse in the strongly dispersive medium moving at the ultra slow
group speed << c does suggest adopting the Newtonian view point, with the
proviso that the light pulse too must fall under gravity following the equivalence
principle of general relativity.

n(x,z) =ng +ng(X,2)=ng +
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Thusly motivated, consider the trajectory of the ultra slow light pulse (wave
packet) launched horizontally at x=0, z=h, along the x-axis in the dispersive
optical medium described by the group refractive index in Eq. (1) . The trajectory
is then described in ray optics by [10]
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inasmuch as the index is constant along the x-axis. Here s is the arc length along
the ray trajectory.

Equation (3) is sufficient for our purpose. It says that n(x,z) cos 8 = constant
along the trajectory, 8 being the angle that the trajectory makes with the x-axis.
More explicitly, we have
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with n(z) = n(x,z) given by Eq. (1). Note that n(x,z) is independent of x in our
small length-scale limit.

Equation (4) is readily solved to give the fall A as function of the horizontal
traversal L as
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Here we have used the obvious approximations

A<< Ry, Rye.
Equation (5) is our main result. For a choice of parameters involved, ng = c/vg
~10°® (corresponding to the ultra slow light having speed ~1 ms™), and L = 1 m,

we obtain A~ 1 um. (Here we have used for the mass of the Earth
Mg ~6x10%" g, and for its radius R ~6x10% cm). The linear deflection A so

obtained is a sensibly sized quantity. It can, however, be magnified, e.g., by
multiple passes. An interferometric detection should indeed be considered. More
importantly, it can be discriminated against other factors by its tunability with
frequency over a rather narrow range of 100 Hz or so in EIT. The frequency can

be moreover modulated and the deflection /A detected phase-sensitively.

Some remarks seem to be in order now. First, an appropriate generalization of
the well known theorem, namely that light in vacuum follows a null geodesic, to
the case of a dispersive optical (material) medium is called for. For a non-
dispersive optical medium, there exists the optical metric of Gordon [10] whose



null geodesics describe the geometrical optical light rays. A physical argument
suggests that the refractive index n should then be replaced by the group inded
ng. In any case, an experimental test of the predicted fall of ultra slow light should
be the real arbiter. Ideally, an isotropic homogeneous continuum such as an
atomic gas/liquid should be used for this purpose as the nonlinear slow-wave
optical medium under conditions of EIT. In such an optical medium, one expects
no non-gravitational force to be exerted by the medium that would otherwise
cause deviation from the geodesic of the optical metric.

Finally, there is a rather intriguing possibility where the ultra slow light is replaced
by some other slow wave such as an ultra slow ultrasound. After all, even though
sound is intrinsically mechanical involving material particulate motion (and unlike
light, sound does not propagate in vacuum), the propagating sound wave is free
and not bound to the material medium — it too should be subject to the
equivalence principle and must fall under gravity. Again, in an isotropic medium
one expects no non-gravitational deviation from a geodesic. Thus, a well
collimated ultra slow ultrasound beam should be an interesting pesematological
object of study — conceptually as well as experimentally.

Acknowledgment

The author would like to thank Andal Narayanan, Hema Ramachandran and Reji
Philip for discussion on several points of EIT and the generation of ultra slow
light. Thanks are also due to Anders Kastberg for his active interest in this work.

References
1. A. Casapi, M. Jain, G.Y. Yin and S.E. Harris, Phys. Rev. Lett., 74, 2447
(1995)

2. L.V.Hau, S.E. Hatrris, Z. Dutton, and C.H. Behroozi, Nature 397, 594 (1999)

3.  M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Holberg, R.G. Welch, M.D.
Lukin, Y.Rostovtsev, E.S. Fry, and M.O. Scully, Phys. Rev. Lett., 82, 5229
(1999)

4. M.S. Bigelow, N.N. Lepeshkin, and R.W. Boyd, Phys. Rev. Lett., 90,
113903 (2003); also Science 301, 200 (2003)

5. P.Wuand D.V.G.L.N. Rao, Phys. Rev. Lett., 95, 253601 (2005)

6. V.S. Zapasskii and G.G. Kozlov, Optics and Spectroscopy, 100, 419 (2006)

7. G. Piredda, J. Eur. Opt. Soc. (R) 2, 07004 (2007)

8. See, C.M. Will, Theory and Experiment in Gravitational Physics, Rev. ed.

(CUP 1993, Cambridge).

9. J.B. Hartle, Gravity: An Introduction to Einstein’s General Relativity
(Pearson Education, Singapore, 2003)

10. W. Gordon, Ann. Phys. 72, 421 (1923); Also, see Jurgen Ehlers,
Perspectives in Geometry and Relativity, ed. B. Boffman (Bloomington,
Indiana University Press, 1966), p. 127.

11. M. Born and E. Wolf, Principles of Optics (Macmillan, Singapore, 1989),
pp.121-122.



