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Resistance without resistance:
An anomaly
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The elementary two-terminal network consisting of a
resistively (R) shunted inductance (L) in series with a
capacitatively (C) shunted resistance (R) with R=+/L/C,
is known for its non-dispersive dissipative response,
i.e. with the input impedance Z,(®) = R, independent
of the frequency (@). In this communication, we examine
the properties of a novel equivalent network derived
iteratively from this two-terminal network by replacing
everywhere the elemental resistive part R with the
whole two-terminal network. This replacement sug-
gests a recursion Z,,1(®) = f(Z,(®)), with the recursive
function f(z) = (iwlz/i®L +7) + (z/1 + i®Cz). This re-
cursive map has two fixed points — an unstable fixed
point Z§ = 0, and a stable fixed point Z% = R. Thus, re-
sistances at the boundary terminating the infinitely iter-
ated network can now be made arbitrarily small
without changing the input impedance Z.. (= R). This,
therefore, leads to realizing in the limit 7 — o, an
effectively dissipative network comprising essentially
the non-dissipative reactive elements (L and C) only.
Hence the oxymoron-resistance without resistance!
This is best viewed as a classical anomaly akin to the
one encountered in turbulence. Possible application as
a formal decoherence device — the fake channel - is
briefly discussed for its quantum analogue.
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CONSIDER an elementary two-terminal LCR network shown
in Figure 1. This series—parallel combination of the resis-
tively (R) shunted inductance (L) in series with the capa-
citatively (C) shunted resistance (R) with, R=+/L/C, has a
dispersionless dissipative input impedance Zy(®) = R, in-
dependent of the circular frequency (w). This readily
verifiable result is, of course, known, though not as com-
monly as one would have expected it to be. (The
equivalence is detailed in that, e.g. the Nyquist-Johnson
noise powers generated by the two shunt resistors (R) at
temperature 7, say, combine to give a noise output at the
(1-2)-terminal equal to that for a single resistance R at
temperature 7.) The structure of this two-terminal net-
work admits iteration generating an equivalent network as
indicated in Figure 2, which is much familiar as a ladder
network'. Consider such an iterated network, but now
terminated arbitrarily at the boundary. With this, we can
write the recursion relation
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This recursion has two fixed points, Z* = f(Z*), giving
Z* =0, R. Linear stability analysis of these fixed points is
readily done. A perturbation z; about the fixed point
Z* =0, iterates away giving lz,,| = 2lz,l, making Z* = 0
an unstable fixed point Z§ (= 0) Next, consider the fixed
point Z* = R. A perturbation zy about R, iterates as
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Figure 1. Dispersionless two-terminal LCR network with R= +/L/C.
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Figure 2. Iteration of the two-terminal network with R(=+/L/C)
replaced recursively by the whole two-terminal network. Shown here is
one stage of iteration.
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Figure 3. a, Iteration of the two-terminal network impedance (Re Z,(w)) initialized at Zy = 0.05 + i0. Note the fast convergence to the stable fixed

point Z¥ = 1. Here R=L = C=1, and @ = 10. b, Iteration of the two-terminal network impedance (Im Z,(w)) initialized at Zy = 0.05 + i0. Note the
fast convergence to the stable fixed point Zf = 1. Here R=L = C=1 and w = 10.

This makes the fixed point Z¥ (= R) stable. The implication
of this fixed-point analysis is now straightforward. Termi-
nating the network at the boundary with zy = ry+ ixg,
where ry can be made arbitrarily small (but non-zero
positive), the impedance will iterate away to the stable
fixed point Z¥ = R as n — oo. This is, however, so assuming
that there are no other attractors. We have, therefore, car-
ried out the recursion in eq. (1) numerically with different
initializations, and a typical evolution is shown in Figure
3aand b.

Again, note the fast recursive convergence to the fixed
point Z¥/R — 1. This is the all important point — an arbi-
trarily small resistive termination at the boundary generates
a finite resistance R =+/L/C in the limit # — oo. And this
result suffices for our purpose. (Inasmuch as the recursion
holds for all values of the frequency @, other attractors, if
any, e.g. a period-doubling (two-cycle) attractor, would
generate infinitely many isospectral networks. Such at-
tractors, or indeed a strange attractor, should be interesting
for network synthesis.) The physical picture, of course, is
just this'. The energy fed at the input terminal into the in-
finitely iterated network appears to be absorbed effec-
tively resistively at the input terminal. But, in fact, it is
really not dissipated there instantancously and locally — it
is cascaded away to the distant boundary where it is ulti-
mately dissipated. In a steady state a.c. response, for in-
stance, much energy remains stored in the reactive elements.
This is strongly reminiscent of what happens in fluid turbu-
lence. There too, energy fed at the large-scale eddy (inte-
gral regime) is cascaded away progressively to smaller-
scale eddies (inertial regime), and is ultimately dissipated
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at the distant smallest (Kolmogorov) scale — of viscosity.
Indeed, the dissipation rate becomes independent of the
viscosity in the limit of vanishingly small viscosity! This
is a classic example of the classical dissipative anomaly”
in the technical sense of the term — the time-reversible
symmetry remains broken even as the symmetry-breaking
parameter (the viscosity) tends to zero, giving dissipation
without dissipation!

The conceptual similarity to our network is obvious
(and not a little because of the inward-bound nature of our
iterated network that makes the drawing in Figure 2 in-
creasingly more difficult beyond even the second stage of
iteration). It will be apt at this stage to note that yet an-
other example of such an anomaly is encountered in the
context of infinite-ladder networks of inductors and capa-
citors™, where finite dissipation arises as a result of a subtle
limiting procedure well known in the context of phase
transitions. The networks are, however, essentially low-
pass filters and the input impedance is not dispersionless.
We may note in passing that the iterated network is hier-
archical in its geometry.

Our analysis of the iterated network has implications
for dissipative quantum mechanics. It is known that there
is no simple way of introducing dissipation phenome-
nologically into a Hamiltonian quantum system without
inconsistencies’. A way out in the context of quantum
transport has been to introduce fake channels®®, such as
transmission lines that outcouple part of the wave amplitude
causing the so-called stochastic attenuation. Our infi-
nitely iterated network is essentially a lumped-element
transmission line where the reactive elements can be con-
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sidered as part of the Hamiltonian system, and dissipation
enters only through the anomaly discussed above. A
quantum version of our iterated network is the Cayley tree
composed of one-dimensional scatterer as introduced by
Shapiro’ in the context of quantum conduction in parallel
resistors using splitters.

An interesting feature of our network is its invariance
with respect to a certain correlated disorder, namely that
the condition R =+/L/C (fixed) allows us to vary L and
C for a given R at random with the strong correlation,
without leading to Anderson wave-localization™ that would
have blocked energy cascading. This is a case of purely
gauge disorder.

In conclusion, we have analysed a two-terminal LCR
network which is dispersionless and admits hierarchical
iteration. When infinitely iterated, it gives an essentially
reactive (L and C) network and yet provides dissipation —
through an anomaly. Possible application to dissipative
quantum systems is pointed out. The network admits corre-
lated disorder without localization.
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