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Viscosity of suspensions and glass:
Turning power-law divergence into
essential singularity

N. Kumar
Raman Research Institute, Bangalore 560 080, India

Starting with an expression, due originally to Einstein,
for the shear viscosity m(®¢) of a liquid lving a small
fraction 8¢ by volume of solid particulate matter sus-
pended in it at random, an effective-medium viscosity
N(®) for arbitrary ¢ is derived, which is precisely of the
Vogel-Fulcher form. An essential point of the derivation
is the incorporation of the excluded-volume effect at each
turn of the iteration ¢,+1= ¢, +80. The model is frankly
mechanical, but applicable directly to soft matter like
a dense suspension of microspheres in a liquid as a func-
tion of the number density. Extension to a gass-forming
supercooled liquid is plausible inasmuch as the latter
may be modelled statistically as a mixture of rigid, solid-
like regions (¢) and floppy, liquidlike regions (1-¢), for
¢ increasing monotonically with supercooling.

GLASS has become a paradigm of complexity, much as
turbulence is. The very thought of it gives a sense of measi-
ness, without our being able to put the finger on anything in
particular. One might say that glass is what glass does.
But, whatever it does, it does so slowly. This atreme slow
dynamics defines an approach to the glassy state. At the
macroscopic scale, it manifests as a rise of shear viscosity,
typically by 15 orders of magnitude, as that state is reached
through supercooling of the glass-forming liquid. The
Vogel-Fulcher (VF) law describes that growth of Viscosityl.
The present work derives the VF law 2

A striking feature of the VF law is the essential singularity,
rather than a power-law divergence, of the shear viscosity
at a temperature 7, The relaxation times, however, exceed
the experimental timescale at what is identified as the glass
transition temperature T, > T, thus making the glass tran-
sition a kinetic crossover. This inverse exponentiall VF law
is well known to hold for the fragile structural-glass-forming
]iquidsl. But, significantly, it is also obeyed by a broad
class of soft-matter systems that exhibit the extreme slow
dynamics ' This includes purely mechanical systems, e.g.
of weakly perturbed granular aggregates, where the degree
of compaction and the perturbation strength, rather than
mass density and temperature, are the relevant variable
and the control parameter, and the underlying physics is
that of jamming or blocking, by rigid granular contacts” .
And, similarly for the case of a dense wspension of mnicro-
spheresl. Motivated by its ubiquity and universality, we
have attempted a derivation of the VF law for a fluid-mecha-
nical model of a liquid containing a volume fraction ¢ of
solid particulate matter suspended in it at random. It is an
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effective medium theory (EMT) along the line of Brugge-
mann’s asymmetric EMT, but it goes beyond the mean
field by incorporating the solid-solid exclusion explicitly
in real space, which indeed is the essential point of our
derivation. This, frankly mechanical model can, however,
be reinterpreted as a model for the glass forming super-
cooled liquid inasmuch as the latter may be re-approximated
as a statistical mixture of shortranged rigidity (solid-like
fraction ¢) and the floppy liquid-like fraction (1-¢). In our
view, the present work complements other derivations of
the VF law which are based on the idea of marginal sca]jng6
and some simple exclusion models s

We start with the expression, due originally to Einstein'?,
for the shear viscosity Mm(©¢) of a liquid containing a smal
volume fraction & of solid particulate matter suspended
in it at random:

n(89) = nO)(1+0ad9), M

where o, of order unity, is a fluid-dynamic dimensionless
parameter specifying the particle shape and the flow boundary
condition, and &:(4ﬂ3)a3fn assuming spherical particles
of radius g, with dn being the number density. The physical
basis of eq. (1) is that in the steady state the rigid parts of
the liquid move practically as complete wholes, and hence
the effect of their existence is to dminish the thickness of
the layer through which momentum has to be transported
by the mobile molecules, and thus to increase the ViscosityB.
We can iterate eq. (1) to higher volume fraction ¢, in the
spirit of an EMT, by the recursion relation

S
N0 +50) =n(¢)(1 +oc%} ©

where the factor (1-¢) in the denominator on the right-hand
side ensures that the elemental increment & is reckoned
relative to the liquid-lke volume fraction (1-¢) remaining
at the curmrent stage of iteration. Now, proceeding to the
limit & — 0, we obtain the differential equation

an (o 3
() 0

with the solution

n(e) = nO)1-9 -, @

that gives a power-law divergence for the effective shear
viscosity N(¢). Here M(0) is the ‘bare’ viscosity of the pure
liquid with ¢=0. Such a powerlaw temperature dependence
is well known to follow from the viscosity feedback
mechanism giving the Batchinski-Hildebrand law “ (with
o=1), or from the Mode Coupling Theory15 giving the
critical behaviour (with o =2). Both these exponent values lie
in the range for the parameter o as described below.
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Equation (4) giving this critical behaviour is, however,
in error in that it mathematically fails to incorporate fully
the physically important excluded-volume effect. The point
is that the liquid fraction (1-¢) in the denominator of eq.
(3) must be replaced by the liquid fraction (1-¢) as weigh-
ted by the probability that the incremental solid fraction
&80, added at random, lands in it'e, This, therefore, effecti-
vely replaces (1-¢) by (1—(1))2. Equation (4) then gets modi-
fied accor dingly to

a _ «

no (1-0)> ®
giving

MN(0) =M(0)e e -9, (©)

Equation (6) is already of the VF form as an inverse expo-
nential function of ¢ diverging essentially at ¢=1. This,
however, needs a refinement dictated by the physics of
the problem, namely that the solid volume fraction ¢ need
approach only the rigidity percolation threshold & (<1) in
order to reach the three-dimensional rigidity. Therefore,
(1-¢) above must be displaced to (v—¢). Thus, we finally
have

n(0) =(moe 00 ) (@0, 0]

which tends to M(0) for 6 — 0 (pure liquid), and diverges
as 0— (o from below (the glassy state).

Equation (7) is our main result. For the simplest case
of spherical, non-spinning particles, we have™” o=25,
while for particles free to spin, ot=1. Also, we can estimate
the rigidity percolation threshold'” (02P) in three dimen-
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Figure 1. Plot of normalized shear viscosity M(¢YM(0) against the
solid-like volume fraction ¢ from eq. (7) derived in the text for o =2.5.
Here ¢, is the rigidity percolation threshold and ¢, marks the point
(q)g)/n(O):lOlS. The regime 0< ¢ < ¢, is nominally the supercooled
liquid; ¢y <¢ < ¢o the glassy liquid and ¢ > ¢v the rigid glassy solid.
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sions from its 2D value, 03P = 0.80 by use of the simple
relation 30 = 4/3w12(02P)/2. We get ¢ = 054 In
Figure 1, we have plotted m(¢) against ¢ for the values of
the parameters &=2.5 andoi” =054. This is essentially
a universal curve.

While eq. (7) is expected to be directly applicable to,
for example a suspension of microspheres in a viscous
liquid, its extension to the glass forming supercooled liquids
is plausible as discussed earlier. Then ¢ must be regarded
as a function of temperature, increasing monotonically as
the temperature decreases. This will turn eq. (6) explicitly
into the VF form, or its variant, the Vogel-Tammann—Fulcher
law, N(T) = Noexp[DTo(T-To)] as T — To, from the above.

I would like to conclude with the following remarks.
The above fluidmechanical model implies physically that
the derivation may apply more readily to fragile rather
than to strong (network forming) liquids. As noted above,
the numerical value of o occurring in eq. (7) depends on
the particle shape (taken to be spherical here), and on
whether the particles are free to spin (o0=1) or not
(o0=2.5) in the presence of a shear rate. This can make the
parameter 0O temperature-dependent, with the higher
value o=2.5 appropriate to the lower temperatures. With
the solid-like volume fraction ¢ now becoming a function
of temperature, and, therefore, a thermodynamic parame-
ter, eq. (7) shows how shear viscosity (a transport property)
is actually controlled by thermodynamics: The thermody-
namically controlled 1liquid-like fraction (Go—¢) acts as an
idler taking up the shear rate. This is the simplest reali-
zation of a viscosity amplification that underlies the macro-
scopic slow dynamics described by the VF law, where the
idling liquid-like fraction essentially retains its bare low
value ¢(0). Extension to 2D systems is straightforward.
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