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The anisotropy of the scattering rates, 1/, « I’ and
/Ty « T3, implied effectively by the anomalous tem-
perature dependence of the normal-state in-plane Hall
angle, cot@, « T observed in the high-T, layered
cuprates is reasoned out to be a natural consequence
of the semiclassical Boltzmann transport equation
with crossed electric (E) and magnetic (H) fields. It
is argued that while the scattering rate 1/t describes
the longitudinal relaxation of the dipolar E-pertur-
bations to the circular zero-field reference distribution
function which is known to correspond to a non-Fermi
liquid with 1/, « T, the scattering rate 1/ry describes
the transverse relaxation of the H-perturbations to
the E-induced shifted reference distribution which is
Fermi-liquid-like giving 1/ry; @ T? Incorporation of
impurity scattering gives cot @, =aT? + b in agreement
with the observed temperature dependence.

Twe temperature dependence of the normal-state in-plane
Hall angle 0(T) observed in the layered cuprate super-
conductors is known'’ to be anomalous in that
cot@ (T) =a+bT* while the in-plane resistivity p (T)
is T-linear and the Hall coefficient R o< 1/T. This is
in clear violation of the Kohler scaling rule®™’, known
to be valid generally for conventional metals, that as-
sumes isotropic scattering rates, 1.e. 7,= 7, defined
with respect to the Hall geometry. Here 7 is the usual
longitudinal relaxation time for transport parallel to the
applied in-plane electric field (E) while 7, 1s the trans-
verse relaxation time for transport perpendicular to E
and the out-of-plane magnetic field (H). Further, 1t has
been found that (i) the anomaly is generic to high-T
layered cuprates, (ii) it is pronounced for optimally
doped cuprates with T-linear p_(7), and (ii1) it gets
weaker for over-doped samples. Also, no such anomaly
is seen in the case of an out-of-plane Hall current’,
Semi-phenomenological approaches to resolving the
Hall-angle puzzle have invoked anisotropic scattering
rate, 7, #7,, following the proposal due originally to
Anderson® that these two distinct scattering rates arise
naturally from the spin-charge separation of carriers in
the normal state of the layered cuprates. In this note
we have argued out, in generality, the observed anisot-
ropy, T, #7T,, basing on a re-interpretation of the structure
of the Boltzmann transport equation for crossed E- and
H-fields without any microscopic particularity. The basic
idea is that while the longitudinal response to an electric
field E involves relaxation of a dipolar deformation to
the circular reference phase-space distribution, given to
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be a non-Fermi liquid with T-linear p (T) implying
77! e« T, the incremental transverse (Hall) response to
the add-on cross field (H) involves relaxation to a
reference state which 1S now a rotated dipolar sub-
distribution. The latter may be viewed as a dilute
Fermi-system per se, but one with an excluded circular
phase-space, that makes it a normal-Fermi liquid with
the usual relaxation rate 7y oc T2,

Our argument can be appreciated best by reference
to the structure of the Boltzmann equation for the
velocity distribution function under the perturbing crossed
E- and H-fields. As is well known, the Hall effect is
a multiplicative response where the E-field produces a
dipolar deformation of the unperturbed circular distri-
bution function f, (v), and the H-field response consists
in the rotation of this dipolar deformation by an angle,
the Hall angle 0.

Let f,,(v) be the distribution function for E=0=H
and Of; ,(v) be the dipolar deformation generated by the
in-plane electric field E. Then (in obvious notation®)

of. (V) =—T,eE-v—" . (1)

Here 7' denotes the relaxation rate of deformed distri-
bution f (v) towards the reference circular distribution
Jﬁ]_u(")* Now, consider the effect of the crossed out-
of-plane-field H. This field acts on the dipolar defor-
mation Of; ,(v) and generates a rotationally re-deformed
distribution Of; ,(v). (The action of H on the original
circular reference distribution foolV) generates (quantum-
mechanically) only a diamagnetic response which is not
relevant here.) The question now is how of, 4(v) 1s to
relax. The first point to note is that Of; (v) has to relax
to the dipolar reference distribution Of; (v). This refer-
ence state characterized by the dipolar deformation
Of. (v) may now be treated as a fermionic sub-system.
The latter is certainly dilute (for low-enough E-field).
Also, the rotational relaxation Of; (V) — 0f; (V) is not
affected by the background df; ,(v) which merely provides
an excluded phase-space. Thus, the relaxation
Of; 4(V) o Of; (V) is essentially characteristic of a normal

Fermi liquid. We must, therefore, have (up to orders
linear in E & H)

A Jdv o
de,H(Y) =0f; (V) + Ht, —i—v X H K 3

Of; o(¥) (2)

with ;{ a unit vector along H, and 1/ «T% as for a
normal Fermi liquid without impurity scattering.

From eqs (1) and (2), we at once have for the Hall
angle @

cot 0, o — (3)

T
Now, for an impure normal Fermi-liquid r;{‘=aT2+ﬁ.
where 8 denotes the effect of impurity scattering. Hence,
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cotO,=aT*+b 4)

as indeed observed by Chien er al.' in Zn-doped YBCO
single crystals, and subsequently reported more widely®~’.

The above argument is consistent with the absence
of anomaly when the Hall current is out-of-plane (i.e.
along the c-axis) with the crossed-fields in-plane. This
1s because the c-axis transport has been shown to be
controlled intrinsically by the in-plane transport in the
normal state, and hence there is a single relaxation time
T, o< T~ consistent with the T-linear in-plane resisti-
vity”’ ™,

We would like to conclude with the following com-
ments. The main point of our argument is that while
the system may be a strongly correlated one with
non-Fermi liquid-characteristics, e.g. the T-linear in-plane
resistivity, a small deformation (in the sense of distri-
bution function) of the system when probed appropriately
may behave differently, and in particular as a normal
Fermi-liquid. This notion is, of course, somewhat familiar
in terms of the idea of the electron- or the hole-pockets
of a complex Fermi-surface representing sub-sets of
carriers with different characteristics, e.g. effective
masses, etc. In our case of the Hall angle, the electric
field prepares the small deformation (sub-set of carriers)
and the magnetic-field probes it. It should be possible
to extend this argument to other, possible multipolar,
deformations.

Note added in proof: In response to the clarification
sought by the referee in his report, received at the proof
stage, 1 clarify once again that in this work we do not
introduce explicitly any specific modification of the
collision term subsumed in the treatment of B. G.
Kothar, A. Sengupta and C. M. Varma (Phys. Rev.,
1996, B33, 3573-3577) as a dissipative force proportional
to magnetic field and acting sideways, arising from a
singular skew-scattering mechanism. Instead, we have
decomposed the Hall response as a two-step process,
and have distinguished the two relaxation rates in terms
of the natures of the respective deformations of the
distribution functions involved and the reference distri-
butions to which these deformations relax. This crucial
point is totally missed in the usual Boltzmann transport
equation that balances the effect of the force
[E+V X II] against the collision integral.
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