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The idea of a quantum capacitance is introduced
explicitly via the generally valid operational definition
based on the quadratic charging energy. The direct
quantum capacitance C, per unit area for a strictly
two-dimensional metallic bilayer is shown to be
1/mag;, where az; = the Bohr radius. This calculable
quantum capacitance acts in series with the usual
classical capacitance C, = €/4rd, and is independent
of the bilayer spacing d, i.e. it has a universal value.
Thus, in most cases C, >C, and is, therefore, inef-
fective. However, for the ultrathin bi/multilayers now
grown routinely epitaxially, as also for the bi/multi-
layers inherent to the layered high-T. superconduc-
tors, we can have C, < C,, making C, dominant,
Some possible observable effects are pointed out.

Tue direct capacitance C between two bulk conductors
such as metallic electrodes is defined operationally
through the charging (Q) energy W as given by the
relation W = Q*/2C = CV?/2. The charging energy W
is usually calculated as the electrostatic field energy
stored 1n the dielectric space surrounding the conducting
bodies, the electric field being zero inside the bulk
conductors. However, one must, in principle, also include
in W the energy associated with the changes in the
chemical potentials due to charging, i.e. filling up of
the empty electron (holes) states above (below) the
Fermi levels of the negatively (positively) biased
electrodes. Such a consideration is, of course, known
in the discussion of junction capacitance of an interface,
e.g. inversion layer, MOS device, p—n diode, Schottky
barrier, etc. Thus, V must be the electrochemical potential
difference rather than the purely electrostatic potential
difference. The densities of states must enter the cal-
culated capacitance. Quite generally, then,
W= 02C = Q*/C_ + QZ/Cq, giving 1/C =1/C_ +
1/C, where C is the classical geometrical (or Pois-
sonlan) capacitance associated with the electrostatic
stored energy, while C, 1s the quantum capacitance
associated with the finiteness of the available density
of states at the Fermi level. Thus, the two capacitances
combine 1in series, and for C, > C,, as is usually the
case (shown below), C = C, and C, becomes ineffective.
For an ultrathin bilayer, however, the reverse can be
true. In what follows, we will calculate Co for the case
of a metallic bilayer and a metallic bifilar system and
discuss their possible experimental relevance to some

uitratbin epitaxially grown muliilayers (e.g. S/N super-
lattices)' and submicron mesoscopic systems of
microelectronics®.
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Consider a plane parallel capacitor made from two
identical 2-dimensional metallic sheets, a bilayer
separated by a dielectric (€) spacer of thickness d. Let
the planes of the bilayer capacitor be charged * 0. The
electrostatic energy stored per unit area is then
% Q°/C_, where C, = €/4nd (in Gaussian units). The

ch?
charging energy per unit area for filling up the electron
(hole) states above (below) the Fermi levels of the 2

two-dimensional metallic sheets is
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where n, = m/r % is the density of states/area (count-

ing both spin projection) in two dimensions. Here we

regard each sheet of the bilayer to be a two-dimensional

degenerate electron gas (2DEG). Thus, the total charging

energy is given by W = Q%/2C = Q?/2C + Q*/é n..

This allows us to identify the quantum capacitance in
two dimensions:
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where a; 1s the Bobr radius. In SI units, C, is about
0.5 Fm™, It is large and universal — independent of the
spacing d. Similarly, for a bifilar system
C, = €/nhv, = (0U/T) (c/vg), where « is the fine-struc-
ture constant, ¢ the speed of light, and v; is the Fermi
speed. C, is dimensionless and independent of the
spacing.

Let us consider briefly some possible experimental
relevance of quantum capacitance. First, we notice that
Co/C’ = (2D/gag) > 1 in most macroscopic cases.
Inasmuch as it is in series with the classical capacitance,
Co is ineffective. However, for an epitaxially grown
ultrathin bilayer' with a high dielectric constant spacer,
we can readily have C3/C) ~ 1. This may be realized
naturally in the bi/multilayers inherent to the high-T,
layered cuprate superconductors, e.g. BSCCQO, with small
d~1nm and high €~ 10. These bilayers should act as
strip transmission lines with a relaxational characteristic
impedance defined by the sheet resistance per square
(which is typically ~ 1/G__(Mott)) and the distributed
quantum capacitance Cy. The bifilar quantum
capacitance Cp is realized naturally in the YBCO chains.
Mesoscopic systems, e.g. the guantum dots (small-
capacitance contacts), should correspond to a zero-dimen-
sional quantum capacitance that should determine the
Coulomb blockade for the single-electron tunnclling’.

Finally, it may be noted that the quantum capacitance
C}f involves the density of quasiparticle states at the
Fermi level and hence must be sensitine to a magnetic
field normal to the bilayer, giving magnetocapacitance
because of the bunching of states into degenerate Landau
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levels®. The classical capacitance really corresponds to
the flat-band limit. Also, it may be noted that quantum
capacitance involves a change of the chemical potential
with change in the electron density and is, therefore,
related to the compressibility of the electron gas. In a
real system with electron—electron and electron—ion in-
teractions, however, one would expect corrections 1o
(renormalization of) the free-electron gas value calculated
here. Finally, a technical remark. The present calculation
refers to the direct capacitance between two conductors
In isolation. In general, however, the charging encrgies
of a system of conductors, with or without a common
ground, is a bilinear expression in the charges residing
on the conductors, with a coefficients-of-capacitance
matrix that determines the self- and the mutual capacitan-
ces, known as the capacity coefficients (diagonal) and
the electrostatic induction coefficients (off-diagonal),
respectively’. Our quantum capacitance forms part of
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the self-capacitance. The calculation refers to the simplest
case of just two oppositely charged identical conductors
forming a planar or bifilar capacitor —an operationally
well-defined situation.
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