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Quantum first-passage problem*

N KUMAR
Department of Physics, Indian Institute of Science, Bangalore 560012

Abstract. Formulation of quantum first passage problem is attempted in terms of a
restricted Feynman path integral that simulates an absorbing barrier as in the corresponding
classical case. The positivity of the resulting probability density, however, remains to be
demonstrated.
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In a quantum first-passage problem (Quipp) one is interested in the probability of the
occurrence of a certain event of interest in a time interval [t, t + At] for the first time,
given that the system was prepared at t = 0 in a prescribed initial state ¢;. The first
passage problem is a well-known, well-posed and solvable problem in classical
probability theory and theory of Markovian stochastic processes (Chandrasekhar 1943;
. Weiss 1967). Its study is well motivated in that the first passage may be the rate-limiting
step inan activated chemical reaction involving escape over barrier followed by efficient
removal (scavenging) of the escaping species by a reactant idealized as an absorbing
barrier. Thus the mean-first-passage-time should be of considerable significance in
calculating the reaction rates (Weiss 1967). However, to the best of the author’s
knowledge, there is no corresponding treatment of Quipp in the literature. Indeed, in the
course of several informal discussions the author has had in recent years with other
workers, it turned out that the Quipp is generally believed to be an ill-posed problem
because of the nature of quantum probability which is linked intimately to the
measurement theory. Thus for the case of a two-state system one argues, and rightly so,
that Quipp would necessitate, in principle, a continuous observation on the system. This
would imply infinitely often repeated observations resulting in the blocking of
evolution of the state of the system by the repeated collapse of the wave function
(Simonius 1978). A possible, if indirect, approach to Quipp seems to be the one based on
stochastic quantization (Weaver 1978; Nelson 1966). Since the equivalence of stochastic
quantization to standard quantum mechanics is still in question, it is desirable to have a
solution of Quipp directly in terms of standard quantum mechanics. Thus motivated, we
present the following formulation and solution of Quipp in terms of a constrained
Feynman path integral that seems most naturally suited to this problem. Such a
constrained (restricted) path integral has been introduced recently by Auerbach et al
(1984) in a different context for their path decomposition expansion scheme.
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To fix ideas and for the sake of clarity, let us begin by considering the simplest
classical stochastic process, namely the Wiener process described in one dimension by -
dX = f(r)d, (1)

where f () is assumed gaussian and delta-correlated, ie., { f(t) f (') = 2D (t —t'). It
is known that X is then a Markovian process with the probability density p(X, t)
satisfying the diffusion equation

(3p/3t) = D(0p*/0X?) | )

and the associated transition probability (Greens function) K (X2, t; X4, t,) s

1
Kcl(Xl’ t2: X1, tl) = [47ID(12 . ):]1/2 CXp[—(Xz _X1)2/4D(t2 '—tl)]
1
| ty 2 1. ©)
This transition probability has the Feynman-Kac path integral representation

' X3(t2)
Kcl(Xzytz;X15t1)=JD[X(t)] eXPl:——l*J‘ (dX/de)*dr] “4)

4D X, ()
This is an unrestricted sum over all paths, each path weighted by a certain factor. Now
we can introduce the constrained (restricted) path integral as the one obtained by
summing over a subset of all possible paths. For the classical first-passage problem,
thus, one defines the restricted propagator K§ (X, t,; X, t|X) by summing over

only those paths X, t; = X, t, that do not cross the point X > X 15X ;. That is

1 X3(t2) dx 2
K(C'i)(XZJtz;XlitllX)= J\ D[X(t)] expli-z_ﬁj‘ dt(_d?) ], (5)

X(")(') X, ()
where X (-) denotes a path restricted such that x(t) < x for t; <t <t,. The point to
note is that K obeys the same diffusion equation as K, the latter being a local
property. Thus the constraint (restriction) on the set of paths to be counted in
evaluating the path integral (5) is equivalent to imposing a certain boundary condition
for the associated differential equation (2). The first passage probability PU(x, t/X,, t,)
is now given by

o (X
POX,t1X,,t) = —EJ KJ (X', 6 Xy, 4] X)dX’ (6)

Here P{) (X, t/X,, t,)At gives the probability that the particle starting at X ,, t, will
cross X in the time interval [, t + At] for the first time. The key object to calculate is
then K{(X;,t,; X,,t,|X). For this one has to solve the Greens function associated
with the diffusion equation (2) subject to the absorbing boundary condition at X. This

is done readily by the method images (Chandrasekhar 1943). In the present case, one
could write

K® (X, t5; X4, t1lX) =K (X2, t2; X1, 1)) - K{(X 5, t5; Xlat1|X) (7)

where (¥) denotes complementary constraint, i.e., it counts only paths for which the
particle crosses the point X at least once. Now one can readily see that

KQ(X,t,; Xt |X) =KyQ2X -X,,t; X, 1)),
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for there is one-to-one correspondence between paths counted in these two path
integrals. This together with (3), (6) and (7) gives the well-known expression for the first-
passage probability (Weiss 1967). It also gives the boundary condition

Kgi)(Xz,tz; X1t1|X)——>0aSX2-—->X. ) (8)

We are now ready to adapt this classical calculation to the case of Quipp. But first we
must note the all important difference between the classical transition probability (3)
and the quantum transition amplitude given by the Feynman path integral K, as

i [Xa2(2) .
K, (X, ty; X, ty) = jD[X(t)] exp[%j L(X, X)dt,
X, ()
1, >t ‘ &)

with L = 1mX? — V(X). The path-integral decomposition (4) of the classical transition
probability is real in the sense that each path is a possible realization of the stochastic
process with prescribed additive probability and one could actually track these
Brownian paths traversed by the particle. In contradistinction with this the path-
integral decomposition of the quantum transition amplitude (9) is purely a mathema-
tical construction (virtual) in that such a space-time trajectory is not admitted in
quantum mechanics. We believe, however, that the following remains true even in the
quantum case: Namely, that the restricted (r) Feynman path integral K¢ will lead to a
correspondingly restricted transition probability. (This is because the inclusion of the
complementary (7) paths should at the very least make the calculated probability
depend on any test (scalar) potential ¥ (X') that may be there for X' > X. To sense this
potential the particle must have really been there. This test of reality is akin to that used
for traversal time in quantum mechanics where an internal spin-moment senses the test
magnetic field and thus clocks the time). Here again the restriction (r) denotes that only
paths that stay to the left of X are to be summed over. Thus, if the particle was prepared
initially in state ¢;, the evolved wave function ¢* subject to the restriction (r) will be

X
¢ (X3, 1;) = j 0:(X)KD (X3, 1z X', 1| X)dX, (10)
-
Here one assumes naturally that ¢;(X")is non-zero only for X' < X. Then the QuIpP is
X
solved by PY(X, 1) = —%J o0, [ dx” iy

As before, K§ and hence ¢ obey the original Schrodinger equation. The only
remaining question is how to evaluate the restricted propagator K§ (X3, t2; X1, 4 |X).
In terms of the boundary condition the question is how to impose the equivalent of
absorbing boundary condition at X. Since the quantum-mechanical probability current

is bilinear in the wave function and its gradient, we may not impose, as in the classical .

case, that K% (X, t,, X,t|X) should vanish as X, — X. This would lead to total
confinement as if we had an infinite potential barrier. The allowed boundary condition
can be found by the following procedure where K§ (X2, t2; X1, t1 | X) is imbedded in
Ky(X2,t25 Xy, ty) with X, > X > X, leading to an integral equation for K. To this
end one counts the paths contributing to K (X 5, t; X 1, 1) and re-order the paths X (.)
according to increasing time of first-passage through X. Thus the paths that cross X in
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the time-interval ¢t —¢/2 to t +¢/2 for the first time contribute

g &
KQ(XZ: tz;X,t—-i)Kg)(X,t‘*—z"; X], tlIX)

4

&
—KQ(Xz, tz;X,t+'2')Kg)(X’t+2;Xla tl IX)
X,>X; X, <X. (12)

Summing over all such time-intervals, letting ¢ — 0 and taking the Fourier transform
with respect to t, —t;, we get
~ & . in 6 - (r)
Ko (X5, X, E) = Ky(X2, X; E) 5 3% K¢ (X, X,; E|X)

0

5 KoX2 X; B) (13)

-I%@(x,xl;zzl)r)(%)

in obvious notation. This gives the condition that the right side must vanish for
Xz"‘).XS_ < X, i.e.

. 0 -~
K(Xi, X, E) = K§' (X, X,; E/X)

~ J -~
—Kg’(X,Xl;EIX)b-)—(-KQ( LX;E)=0 (14)

Equation (14) provides the boundary condition for the restricted propagator
K@ (X,,X,; E|X)defined for X, < X: X 1 € X. Letting X, approach arbitrarily close
to X and recalling that the unrestricted propagator for small spatial separation
becomes essentially the free propagator, we get (Auerbach et al 1984)

-mé-%mi&gw LXGE/X)=2mE-V(X)]'*lim X, > X. (15
1

One can easily interpret (15) as the quantum analogue of the absorbing boundary
condition as it admits only the right-moving wave at the boundary X. This completes
the derivation.

Several comments are now in order. First, we note that the boundary condition (15) is
not self-adjoint. This seems to corroborate with the impossibility of finding a self-
adjoint operator corresponding to the first-passage time regarded as an observable
Allcock (1969). Secondly, as mentioned before, for the discrete case of two-state
problem, say, the first passage time will operationally require a state-sensitive ideal
detector which is ‘on’ all the time, i.e. continuous measurement of the first kind in the
von Neumann sense, leading to blocking of evolution, and hence no first-passage. I
think this is so, because, for the discrete (essentially finite dimensional) case, there is no
distinction between the hermitian and the self-adjoint operators unlike the continuum
case considered here. Also, the real space-time pathintegral treatment does not exist for
such discrete cases. Perhaps one would need a non-demolition type of detection.
Finally, there is the question of the positivity of the first-passage probability given by
(11). Incorporating the boundary condition (15) in the time domain via the identity

arz 1 d [ f@E
dtl/zf(t) “’\7—;“& -[) ﬁdt’
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we can re-write (11) as

K 1/2 'd(p(') dz
_ . r X, T
PO (X, t|@) = (47:51_) (1+)QE" L—J—l +c.c. (16)

dt /t—1

We have not been able to establish the positivity of this quantity. However, for the
simple case of a free particle confined to half-line (0 < X < oo)and prepared initially in
a spatially narrow wave-packet ¢; of width ¢ centred at X, < X, we get

' 2
wwis R o) o

for e <Xy, t>2me?/h.

This certainly stays positive. But in general we do not know yet. Further work is in
progress.
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