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Résumé. 2014 Nous explorons l’analogie entre une nouvelle formulation du problème de la sus-
ceptibilité locale dans les alliages concentrés et la théorie de la localisation des états électroniques
dans les systèmes désordonnés. La discussion ouvre la voie à une meilleure description et une meilleure
compréhension de l’effet des propriétés magnétiques locales dans les systèmes désordonnés. En
particulier, on considère l’effet des interactions entre amas et la nature de la transition de phase
magnétique-non magnétique dans les alliages. Finalement, on discute la possibilité dans les alliages
concentrés d’une généralisation de la notion de verre de spin.

Abstract. 2014 We explore the analogy between a new formulation of the problem of local suscepti-
bility in concentrated alloys and the theory of localization of electronic states in disordered systems.
This discussion opens the way to a better description and understanding of the effect of local magnetic
properties in disordered systems. In particular, the effect of cluster-cluster interactions and the nature
of the magnetic-non magnetic phase transition in alloys is considered. Finally, we discuss the possi-
bility in concentrated alloys of a cluster generalization of the spin glass phase.
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1. Introduction. - It is now accepted that the
local magnetic properties in transition metal binary
substitutional alloys depend strongly on the neigh-
bourhood of each atom. These local environment
effects determine the nature of the magnetic-non
magnetic phase transition in the critical concentration
region and when averaged, determine the macroscopic
magnetic properties of the alloy [1-7].
A recent investigation [5-6] of this problem using

the methods and results of the theory of disordered
alloys has shown that the local magnetic instabilities
depend not only on the explicit number of neighbours
of both kinds of atoms but also on the variation with
environment of the partial densities of states and
the local atomic potentials. Fluctuations of environ-
ment give rise to fluctuations of these three factors
and, therefore, to fluctuations of local magnetic
properties, e.g. local susceptibilities and possible
local moments. However, the theory of reference [5-6]
is not yet able to provide a good description of local
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environment effects close to the ferromagnetic transi-
tion. When nearly magnetic clusters are present in
the system, they give rise to non-negligible cluster-
cluster interactions and when magnetic clusters are
formed, they polarize the non-magnetic clusters.
Until now, these effects have been considered in
a semi-phenomenological manner [4-6]. In refe-
rence [5-6], cluster-cluster interactions were consi-
dered indirectly in an approximate way by averaging
the medium outside the cluster. This method, however,
does not contain an important aspect of cluster-cluster
interactions, i.e. the statistical nature of local envi-
ronment fluctuations in the alloy. In a recent paper [7],
one of us has derived an expression for the local

susceptibility which allows a statistical approach
of local magnetic properties of substitutional alloys.
This expression has a formal structure very similar
to an expression of the diagonal Green’s function
used in the discussion of the localization of electrons
in disordered systems.
The purpose of this paper is to explore this analogy

and to see how the ideas, concepts and conclusions
which have been used in the theory of disorder induced
localized states could be used to describe magnetic
properties of random systems.
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2. Local spin susceptibility. - The molecular field
theory yields the following simple expression for local
susceptibility : the magnetization of the a-th cell

resulting from an external unit field in the fl-th cell is
obtained from the corresponding non-interacting
quantity xaB by the relation

This equation is the direct consequence of the
molecular field approximation : the local magnetic
field hy acting on conduction electrons is equal to

where h’ is the value of the external field in the y-th
cell (h°y = 03B4yB) and the molecular field in the y-th cell
E uy xyp is proportional to the local magnetization
B

xyp and to an effective intra-atomic Coulomb interac-
tion (uy = U;ff/2/li, /lB being the Bohr magneton).
We have shown in reference [7] that a simple and
compact form of Xa.p can be derived from (1).

If we define ’X(oc) as the susceptibility of a medium
with an intra-atomic electron-electron interaction
on each site except on site a, one can write

and, therefore,

The interacting susceptibilities can be expressed in
terms of the non-interacting susceptibilities using the
13-matrix :

The matrix element of -6(’) can be expanded in
terms of the atomic i-matrix

with

The summations in (6) exclude the site a.
From (5) and (6), one can write

with

Substituting (8) into (4), we obtain the compact form

The condition for the onset of local instability, i.e. the
divergence of the susceptibility, is given by

The expansion for E (") has the same structure as for
the self-energy of the site-diagonal Green’s function
of the one-electron tight binding Hamiltonian

in the site representation

with

This has been used in the discussion of the localization
of electrons in disordered systems [8-13]. To reduce
the statistical dependence of factors in the series (14),
one renormalizes it using Watson’s [13] multiple
scattering theory so as to obtain in the series only
terms corresponding to non-repeating paths. The
renormalized series can be written in the form

where

and E(O,n,,...,ni-,) is the self-energy for a site 0 if in the
self-avoiding paths from ni to ni the sites

have been removed (or equivalently, the potentials
Eo, E,,, ..., E,, _, have been put = 00). 

-

A similar renormalization can be used for the path-
expansion of -Y("). If we put
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we have

and the renormalized series reads

where

and

is the self-correction of the susceptibility for site v if in
the self-avoiding closed paths from v to v the sites
a, P, y, ..., (v - 1) have been removed (or, equiva-
lently, the susceptibilities X, (the electron-electron
interactions My) have been put = oo (= 0)).

In the alloy the quantities ev and X’ are random
quantities; they depend on the kind of atoms occu-
pying sites p and v and, as was recalled in the intro-
duction, on the neighbourhood of each atom. For a
given concentration one can, therefore, define a

probability distribution for ev and x°v. As most theore-
tical treatments of localization investigate only the
effect of diagonal disorder, we shall assume in the
following that ev is the random variable and that the
non-diagonal X’ are constant or averaged quantities.

3. Formulation of the problem. - The effect of
local environment on Erm. and thus on xa has been
studied using various assumptions. If one considers
an isolated cluster formed by a given A or B atom
surrounded by a given number of A and B atoms first
neighbours, the simplest approximation consists in
decoupling this cluster magnetically from the outside
i.e. in neglecting in the summation in (19) contribu-
tions due to sites outside the cluster. In the framework
of this isolated cluster model various approximations
have been considered :

a) E(l) has been calculated up to fourth-order paths
assuming that the non-interacting susceptibilities
0 and xf are environment independent [4]. This
formulation has been generalized in order to take
account of higher order paths and a closed expression
for L(II) within this approximation has been obtained
using the multiple scattering theory [7].

b) A more realistic theory has been considered by
Brouers et al. [5, 6]. The effect of local environment on
the diagonal and non-diagonal non-interacting sus-
ceptibilities has been incorporated into the theory
as well as the dependence of local potentials and
charge transfers on local environment.
One can go beyond the isolated cluster approxima-

tion by regarding the external medium as an average
medium and neglecting the effect of local environment
fluctuations outside .the cluster. Although the consi-

deration of the medium outside the cluster improves
the theory, the molecular field approximation on
which the theory is based leads to a fundamental

difficulty, namely that the susceptibility of any cluster
diverges when the outside medium contains even
an infinetisimal concentration of such magnetic
clusters.

The purpose of the present paper is to explore how
it would be possible to use formula (10) and (19-21)
together with some results of the theory of localization
to improve the description of local susceptibility in
disordered systems by taking account of the statistical
nature of cluster-cluster interactions.

4. Probability of local instability. - In the theories
developed in reference [1-6], one can calculate the
condition for the divergence of the susceptibility.
Here we shall be concerned with the calculation of the

probability for the local susceptibility to diverge and
therefore the probability of having a localized moment.
If the probability distribution of the X’ is known, one
should be able to calculate the probability distribution
of E (") in the medium outside the cluster and then the
probability for the susceptibility to diverge.
The probability distribution of local non-interact-

ing susceptibilities x° can be determined starting from
the theory of Brouers et al. [5]. One calculates the

. 
variation of X’ with concentration and local environ-
ment ; starting from these results one can build, for
any concentration, the probability distribution of

x° . Once this probability distribution is known, one
can use for instance the method of Abou-Chacra
et al. [14] as discussed in Brouers and Kumar [12] to
determine the probability distribution of Evv.
The series in (19) is truncated to the first term of the

expansion i.e.

Such a truncation is only valid for a Bethe lattice.
However one assumes that the self-consistent deter-
mination of the probability distribution gives a good
representation of the true probability distribution.

In the present paper, we want to indicate how such
an idea can be used. We do not calculate the parame-
ters xo and A.. and their probability distribution from
first principle or from a model hamiltonian but we
start from the simplest possible model which can be
solved within this approximation. We consider the
substitutional alloy Ax B 1 _ x. We assume that u = UA,
and we use units such that u = 1 for A atoms and

u = 0 for B atoms. This situation could represent
for instance NiCu alloys. We consider only the ran-
dom character of the diagonal non-interacting sus-
ceptibility xo. The non-diagonal susceptibility XÕ
is independent of composition. We consider an equi-
concentration alloy and we assume that the proba-
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bility distribution of X’ is given by a Cauchy distribu-
tion

Once the probability distribution of I, PI(I), is

known by solving the self-consistent equation (21),
one can determine the probability for the determina-
tor of XaD. to be  0 i.e.

If one starts from (21) and assumes that in the medium
Iaa is not different from E (,0) one can determine the
probability distribution of the susceptibility self-
correction E, following the same arguments as in

Brouers and Kumar [12]. One has

The summation is done over the first neighbours. On
average this number is KA = xK where K is the

connectivity constant of the lattice.

Using the Fourier transform of the 6-function,
one can write

Assuming a Lorentzian form for P_,(2;)

and solving (25) self-consistently, one gets

which gives for Leo a fourth-order equation

which can be written as

if

The width of the distribution is then given by

a) One can now determine the probability for the local
susceptibility of an atom A to diverge. This proba-
bility is given by

This is the probability for any A-atom to have a local
moment. If there are no fluctuations of non-interact-

ing susceptibilities L1 x8 and 4z are equal to zero and
therefore P = 1 or 0 according to whether xo + Zo &#x3E;, 1
or  1. This analysis can be generalized to the case of
a cluster of given composition. We consider for
instance a cluster having NA atoms on the shell of
first neighbours. In that case, one knows the exact
value of XO(N) on the central atom of the cluster and
the local enhanced susceptibility can be written

with

The quantity Z characterizes the medium outside
the cluster and its probability distribution is deter-
mined by eq. (29-31). Once this probability distribu-
tion is known, one can determine the probability
distribution of E(N) :

which gives the two coupled self-consistent equations :

and

and the probability of having a divergence of the
cluster susceptibility is given by
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E(N) (38) and 4zN&#x3E; (39) depends on 4z and Zo which
are obtained by solving (28) and (31). We shall apply
formula (40) to show how it is possible to account
for the influence of magnetic clusters on the suscep-
tibility of a non-magnetic cluster in the alloy’s para-
magnetic phase.

5. Illustration of the effect of cluster-cluster inter-
actions. - Before examining a particular cluster,
it is necessary to investigate the relation between the
macroscopic condition for ferromagnetism and the
local instability condition discussed in the previous
sections.

If we consider the average homogeneous system
characterized by the susceptibility X8 corresponding
to the susceptibility of the cluster with the most

probable local environment, there are three ways of
defining the instability of the susceptibility. It can
be given by :

a) the divergence of the series (9) for this homo-
geneous system. This yields :

b) the condition for (29) to have a physical solution
in the limit of no x8 fluctuation i.e.

or, c) the condition expressing the divergence of the
cluster susceptibility in the same limit which reads

As one can show that (cf. eq. 34 of ref. [12])

this condition reads

These three conditions should coincide. The discre-

pancy comes from the truncation of the series (19)
which makes the condition (43) and (45) true only
on a Bethe lattice.
As an illustration we consider a cluster correspond-

ing to the most probable configuration 
.

of an equiconcentration simple cubic alloy. We assume
the distribution of x8 to be lorentzian of half-width
dxo. We choose for the average diagonal x8, the non-
diagonal Xo and KA the effective number of A atoms
the following values

They are such that none of the three conditions
a, b, c yields an instability i.e. the average medium is
paramagnetic and the considered cluster has no local
moment if one neglects the fluctuations of xo. However
due to the presence of local moments corresponding
to the presence in the alloy of clusters having a local
environment such that an instability of the suscepti-
bility occurs, the probability for the considered
cluster to have a moment is small but non-zero.
This probability can be calculated using equa-
tion (40) and depends on the width of the distribution
of xg and is shown on figure 1.

FIG. 1. - Probability of local moment.

The behaviour of the probability which gives a

measure. of the effective magnetization in the parama-
gnetic phase of the alloy. Such a small magnetization
has been measured by B. Comut et al. [15] in para-
magnetic NiCu. In the example we have chosen, the
maximum of the probability function for AX8 = 0.25
reflects the competition between the number of magne-
tic and non-magnetic clusters as A.8 increases.

In our model where x8(N) has a sharp value, due to
the form of the lorentzian distribution, the probability
(40) tends to its non-disorder value (0 or 1) when the
width of the susceptibility distribution A x8 tends to
infinity. This gives rise to a maximum or a minimum
value of the function P.

6. Relation to the spin-glass problem. - A few
years ago, the spin-glass phase in dilute alloys was
discussed [16] from the point of view of the theory
’ of localization starting from the RKKY interaction
Hamiltonian. In this section we want to indicate
that the concepts of localization could be used also
in concentrated transitional alloys starting from the
molecular field expression (1). Ideas in the same
direction have been also expressed by Sherrington
and Mihill [17].

In this last section we restrict ourselves to general
speculations. We neglect the long range oscillatory
character of x8 by only considering the fluctuations
of the diagonal susceptibility Xo and averaging the
first neighbours susceptibilities Xo . Such a restriction
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can be tolerated only for concentrated alloys when
long range behaviour of susceptibilities is damped and
blurred by the disorder.

Starting from the equation which connects the

magnetic moment on any site with the moments on
neighbouring sites we can write in the molecular
field approximation

Since the external field h° is the same on every site,
one has

where the matrix elements of A are given by

and

A is a random-matrix. The nature of the spectrum
of eigenvalues determines the nature of the solution
of (47). From (47), we can write

or

Using the integral representation

one gets after an orthogonal transformation

and

and finally

where A are the eigenvalues and g(A) the density
function of the spectrum of the random matrix

This matrix has a structure similar to the Anderson
model of cellular disorder with diagonal and non-
diagonal (between nearest neighbours) terms. In the
NiCu type alloy considered in the first part of this
paper, the matrix D would be written for a one-
dimensional system as

where (; is equal to 1 or 0 according to whether site i is
occupied or not by a Ni atom.

One can, as a first approximation replace the non-
diagonal term by an average and represent the diagonal
term by a distribution of width A. In this example as
well as in more complicated situations where the
diagonal disorder can be represented by a random
distribution, the results of the theory of localiza-
tion [8-12] can be invoked to make some general
statements. According to the relative value of L1
which in alloys depends on concentration, the spec-
trum of D is composed of extended states, a mixture
of localized and extended states separated by a mobility
edge or a set of localized states.

From (55), one can see, that the alloy is parama-
gnetic when the eigenvalues of D are all positive while
the magnetic solutions occur for negative eigenvalues.
In this case two possible situations can occur.

i) The local environment fluctuations can be such
that the negative eigenvalues correspond to localized
solutions (cf. Fig. 2).

FIG. 2. - Density function of the eigenvalue spectrum of D.
Hachured regions correspond to localized states.
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Then one has local moment but no long-range
ordering and there exists the possibility of a cluster
generalization of the spin glass phase.

ii) If the concentration of atoms bearing local
moments increases, percolation paths corresponding
to magnetic clusters with sufficiently similar neigh-
bourhood will appear, some negative eigenvalues will
correspond to extended states and the alloy will

undergo a ferromagnetic transition.

7. Conclusions. - Any quantitative theory of the
magnetic-non magnetic transition in concentrated

alloys would require a more realistic description of
the local environment fluctuations and of the cluster-
cluster interaction. However we believe that the

consideration developped in the present paper could
be a useful starting point for further investigations
in this field.
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