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ABSTRACT

It is shovn that the gravitationally self-induced electric polar-

ization of an otherwise neutral massive body, taken in conjunction with the

latter's rotation, generates a magnetic field of the right type and order

of magnitude for certain astrophysical objects.
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Gravity-induced electric field and the concomitant electric polar-

ization of an earth-based laboratory sample, arrested from free fall, has

been studied theoretically (Schiff and Barnhill, 1966; Dessler et al., 1968;

Rieger, 1970; and Leung, 1972) and experimentally {Witteborn and Fairbank,

1967) "by several workers in the recent past. It has, however, not "been
realized, to the authors1 knowledge, that such an electric polarization, when

applied self-consistently to an entire massive body in rotation can give rise

to a poloidal magnetic field of the right type and order of magnitude for

certain astrophysical objects. In this preliminary communication we report

the results of a simple-minded calculation of this effect for the rather un-

physical case of an infinitely long, uniform cylindrical conductor spinning

about its axis. The electric polarization is calculated in the ion-

continuum Thomas-Fermi approximation while the electrodynamics of the con-

tinuous medium is treated in the non-relativistic approximation. The

essential points of the physics and the calculation involved are sketched

below.

The physical idea behind the gravity-induced electric polarization

can be fixed most readily by considering the equilibrium of an isolated atom

in a gravitational field (g) when the point-massive ion core (nucleus plus

the core electrons) must "fall" a certain distance relative to the extended

(and hence externally supportable) essentially massless electron cloud such

that the resulting electrostatic restoring force exerted on the ion by the

negative electronic charge (-]e|) "uncovered" balances the ionic weight.

Thus, for the semiclassical atom of ionic mass M , electron cloud radius

a and valency £ (number of outer electrons forming the extended charge

cloud) elementary electrostatics gives,for the gravity-induced atomic electric

dipole moment: y . . = g M a~/sie| > and for the bulk polarization:
_ atomic — u

p = g n M an/c|e| , where n is the number of atoms per unit volume.

While the above simple argument is fairly accurate for an insulator, it needs

to be modified in the case of a conductor. Here the gravitational com-

pression of the massive ionic lattice through the relatively massless and

incompressible neutralizing electron gas is sensed by the latter via the

electron-phonon coupling. In the ion-continuum Thomas-Fermi approximation,

the situation is well described by the Hamiltonian
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with the screened electron-phonon coupling matrix element given by

Here b , t> are the phonon creation, annihilation operators for the

longitudinal (acoustic) phonon mode of wave-vector q ; e is the sound
—~ s

speed; l/x is the Thomas-Fermi screening length; p is the q-Fourier
s 3r ~

component of the electron density fluctuation and V(=L L L ) is the volume

of the sample, supported at the bottom plane z = 0 while the top plane

z = L is free. The acceleration due to gravity g is along the negative
z —

z-axis and the zero of the gravitational potential is chosen so as to co-

incide with the equilibrium configuration of the lattice in the absence of

any gravity. The boundary condition that the end z = L is free can now
z

be taken into account mathematically by setting cosq. L = 0 for all q
Z Z Z

The lattice part of the Hamiltonian can now be diagonalized by a

simple canonical transformation that physically amounts to the displacement

of the normal modes (i.e. compression of the lattice). This displacement

produces an extra static term (H ) in the electron-phonon part o.f the
e-p

Hamiltonian given by

Thus one can identify a gravity-induced electrostatic potential V of the

form

(k)
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The first term is readily seen to correspond to a uniform gravity-induced
g

electrostatic field E given by

(5)
>

while the second term in Eq.(k) corresponds to a fluctuating short-range

effect and is of no consequence in the present context. It may be noted

in passing that the continuum treatment, together with the boundary condition

cosq L = 0 , avoids^ having to evaluate complicated sums arising in the.
z z .

discrete treatment because of the problem of proper counting of the degrees

of freedom (modes), and there is no loss of physics (cf. Rieger, 1970).

One can rewrite Eq. (5) in the form

(6)

which is seen to be similar to that obtained earlier semiclassically and

depends essentially on the rs

electronic charge density p

depends essentially on the ratio of the ionic mass density p to the

charge

In order to apply the above expressions to describe the macroscopic

polarization induced by the self-gravity of a massive body we must replace

the variables by their local values and, in particular, £ is replaced by

g(r) . Thus for the case of the uniform cylindrical body in question we

have

(7)

Here _r is the position vector, and (r,<(t,z) the cylindrical polar co-

ordinates. The z-axis is along the cylinder axis- The gravity-induced

electric charge density pg is given by combining Eqs.(6) and (7),

Electrical neutrality is of course maintained by the surface charges. Now,

let the cylinder rotate about the z-axis with aa angular velocity fJ(=O,O,fi)

The electrodynamics referred to the space-fixed inertial co-ordinate system

is described by Maxwell's equations:
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(9)

do)

with gJ c o n v = convection current density = -j- C r
 r ^ - (1:L)

and j = conduction current density = -r (£v*" e ~ - / (12)- cond c >

satisfying the continuity equation

^ C / ^ J v- ̂  ±^ zo (13)

Here the superscripts "g" and "ind" stand for the gravitationally-induced

and the rotationally-induced effects, respectively. a is the electrical

conductivity. These equations must be solved subject to the initial-

boundary value condition n ,

( , r^

Here c is the speed of light.

Operating with 7̂x on both sides of Eq.(9) and substituting from

Eq.(lO) and Laplace transforming the resulting equation from time (t)- to

frequency (s)-domain and combining with Eq.(l3), we get, on neglecting the
2 2displacement currents and for (fir) /c « 1 ,

>J*y J /

with u . \pd

r

where
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and • H.ind(r,<t>,Z;s) = {0,O,H^(r ;s)) .

The inhomogeneous Bessel Eq.(l5) has the well-known general integral

where J (x) , Y (x) and Su v(x) are, respectively, the Bessel, Neumann

and Lommel functions of respective orders. Imposing the appropriate bound-

ary conditions we get,after some reduction,

" *" (17)

Using the initial value theorem,one can at once verify that Eq.{l7) reduces

to (lU) for t -*• 0 . Eq,. (17) can readily be inverted to the time domain

and we quote the following significant result for the saturation value of

the field at the axis;

-= -#\

f ° r ' - '4-71 «• \»

The above result,at first sight, appears somewhat queer, for it predicts

H_ •*• «* for H •+ 0 . This is not BO,really, "because the condition

t » (Una/^uJl2) will require t ->«o . in fact, on inverting Eq.(l7)

to time domain and "by proper ordering of the limits ft -*• 0 and t ••• oo/

one finds indeed that HQ •* 0 for U •*• 0 .

2 3 - 3
To estimate the above effect we set n ̂  10 cm , ? ̂  1 ,

1/X ^ 5 X 10 cm~ , c ^10 cm sec" and p <v 5 gm cm ,
s _n s m ^ j

ft *v 10"*sec"" and get H ^ 1 Gauss. We assume that kT\o/pQzJL is small

compared with the age of the object. The field is, of course,antiparallel

to the rotation vector. The choice of parameters above is made to cor-

respond to the relatively dense and hot interior of the astrophysical objects.

Finally, we should like to point out certain important conceptual

points of interest implicit in the above treatment. The above effect has

been calculated in the space-fixed co-ordinate system. The relativistic

corrections in going over to the co-rotating body-fixed co-ordinate system

are small for (Styyc) « 1 . Further, we are basically talking about an

induced polarization of an otherwise neutral body and hence the effect is

intrinsically temperature-independent, unlike the case of orientational polar-
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ization of permanent dipoles. Also, we are looking for the cumulative effect

of large number (US f say) of small contributions coming from the different

parts of an extended body and one wonders if the effect would be washed away

by fluctuations. Indeed, on the contrary, in the sense of the central limit

theorem for large N the fluctuational spread goes as n""*" . Finally, we

have considered a special geometry. Work is in progress to consider the

same problem for a sphere with due cognizance of the observed obliquity and

reported reversals of the planetary magnetic fields, and will be reported

elsewhere.

In conclusion, we have shown that gravity-induced electric field

in conduction with rotation can provide a mechanism for magnetic fields of

astrophysical objects.
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