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In this set of papers we formulate a stand alone method to derive maximal number of linearizing
transformations for nonlinear ordinary differential equations (ODEs) of any order including coupled
ones from a knowledge of fewer number of integrals of motion. The proposed algorithm is simple,
straightforward and efficient and helps to unearth several new types of linearizing transformations
besides the known ones in the literature. To make our studies systematic we divide our analysis into
two parts. In the first part we confine our investigations to the scalar ODEs and in the second part
we focuss our attention on a system of two coupled second order ODEs. In the case of scalar ODEs,
we consider second and third order nonlinear ODEs in detail and discuss the method of deriving
maximal number of linearizing transformations irrespective of whether it is local or nonlocal type
and illustrate the underlying theory with suitable examples. As a by-product of this investigation
we unearth a new type of linearizing transformation in third order nonlinear ODEs. Finally the
study is extended to the case of general scalar ODEs. We then move on to the study of two coupled
second order nonlinear ODEs in the next part and show that the algorithm brings out a wide variety
of linearization transformations. The extraction of maximal number of linearizing transformations
in every case is illustrated with suitable examples.

1. Introduction

The study of linearization of nonlinear ODEs is one of the classic topics but is yet to be
brought to a concise structure. A systematic study on this subject had been initiated by
Sophus Lie long ago [IH3]. In his seminal work he presented the necessary and sufficient
conditions for a second order nonlinear ODE to be linearizable under point transformations.
Nevertheless, there has been a revival of interest during the past two decades on linearizing
procedures. In particular, progress has been made in the following directions. Durate et al
had studied the linearization of a second order nonlinear ODE by Sundman transforma-
tion in which the new independent variable can be in a nonlocal form [4H6]. Recently, the
present authors have proposed certain generalized linearizing transformations in which the
new independent variable is allowed to have derivative terms also besides being nonlocal [7].
Apart from these, attempts have also been made to linearize certain second order nonlinear
ODEs by specific nonlocal transformations [§]. As far as the third order nonlinear ODEs
are concerned the study on linearization was started by Lie himself. He investigated the
linearization of third order nonlinear ODEs by contact transformations [2]. The necessary
and sufficient conditions for a third order nonlinear ODE to be linearizable by point trans-
formations were derived by Bocharov et al [9], and were later on investigated in detail by
Ibragimov and Meleshko [10]. The Sundman transformation for third order nonlinear ODE
was analysed by Euler et al [I1,[12]. Recently the present authors have demonstrated the
existence of generalized nonlocal transformations in the case of third order nonlinear ODEs
as well [13].

The above developments have been essentially concerned with identifying linearizable
forms of nonlinear ODEs under various kinds of transformations. Throughout this period
only very few investigations have been devoted to develop systematic methods to derive
linearizing transformations. As far as our knowledge goes at present Lie symmetry analysis
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and some ad-hoc methods are being used to derive linearizing transformations. In fact both
of them have very limited applicability in the case of nonlocal transformations. Recently, we
have proposed a straightforward procedure to derive linearizing transformations of any type
(point transformation, contact transformation, Sundman transformation and generalized
linearizing transformation) for nonlinear ODEs of any order including coupled ones [713H15]
starting from an integral of motion associated with the given system.

The main goal of this present set of papers is to penetrate further into the above men-
tioned algorithm and bring out multifacted applications of it. In particular, we report here
for the first time the existence of a new kind of contact transformation for second order
nonlinear ODEs which preserves the order of the equation and in the case of third order
nonlinear ODEs a new form of linearizing transformation. Both these results have emerged
when we started investigating the role of the other integrals in constructing linearizing
transformations for an ODE. Of course in the case of second order nonlinear ODEs once
the integral of motion is given one can look for the solution through quadrature. Our aim
here is that without quadrature how to deduce the solution from the given integral just
by performing algebraic operations on it which is obviously a difficult problem in the case
of higher order ODEs. More interestingly through this “rewriting” procedure one can get
new types of linearizing transformations besides the known ones. We also stress here that
the various linearizing transformations, the remaining integrals and the general solution are
derived from a known integral.

The algorithm essentially requires one to rewrite the given first integral as a product of
perfect derivatives of two functions and to redefine one of them as a new dependent variable
and the other as a new independent variable. Interestingly, here we demonstrate that one
can rewrite the integral as two perfect derivatives only in a finite number of nontrivial ways
(precisely three in the case of second order nonlinear ODEs and two in the case of third
order nonlinear ODEs) which in turn gives point transformations and in an infinite number
of ways by relaxing the condition that just one of them be a perfect derivative and the
others need not be. The latter turn out to be Sundman transformations and generalized
linearizing transformations which are infinite in number for a given ODE. In the case of
coupled ODEs, we start with two integrals and rewrite each one of them as products of two
functions and investigate the possibility of getting new types of linearizing transformations
(in the follow up paper). Through this attempt we have come up with certain concrete
results in the theory of linearization of nonlinear ODEs.

We organize the rest of the paper as follows. In Sec. 2l we consider second order nonlin-
ear ODEs and discuss the method of identifying linearizing transformations, namely point
transformation, contact transformation, Sundman transformation and generalized lineariz-
ing transformation one by one in detail, starting from an integral. We also derive the general
solution for the original equation from the linearized equation for each one of the cases sep-
arately. We explain the underlying ideas with suitable examples. In Sec. Bl we consider third
order nonlinear ODEs and discuss the method of identifying linearizing transformations
and general solution in detail. The case of N-th order scalar equations is taken up in Sec.
M. Finally, we present our conclusion in Sec. B Appendix A contains some details about
the nonavailability of point/contact transformations from a second integral for third order
nonlinear ODEs.
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2. Second order ODEs

Let us consider a second order nonlinear ODE

i =@t x, @), (=d/dt), (2.1)

where ¢ is a smooth function. Let it admit an integral of motion I = f(¢,z, &) which can
be recast in the form [14[15]

1 d
I=f <MEF(@$)> ; (2:2)
where F' and G are functions of their arguments. Such an integral, if it exists, can be
found systematically by any one of the recently developed methods like the modified Prelle-
Singer procedure [15], symmetry based analysis [TH3,[5,/6116L[17] or Jacobi’s last multiplier
method [I8,[19], etc. Further, if the function G(t,z,%) in (2] is an exact derivative of
another function, that is G = dz(t,x)/dt, then (2Z2]) can be further simplified to the form

d d
=7 (395) - (). 23

Now identifying the function w as the new dependent variable and z as the new independent
variable, that is

t
w=F(t,x), z= / Gt x,&)dt (2.4)

one can rewrite equation (23) in the form I = f(dw/dz). Rewriting this equation as
dw/dz = I, where I is a constant (which can also be treated as the integral of motion)
and by simple differentiation one can obtain the free particle equation, d?w/dz? = 0. The
new variables w and z constitute nothing but the linearizing transformation for the given
second order nonlinear ODE since they transform the given second order nonlinear ODE
into the free particle equation.

With the appropriate selection of the functions w and z one can deduce all the known
linearizing transformations reported in the literature, including point transformation, Sund-
man transformation and generalized linearizing transformation. In the following we discuss
each one of them separately.

2.1. Point transformations
2.1.1. First pair:

When the function G in ([2.4) is an exact derivative of ¢, that is G(¢,7,4) = Gy + 2Gy,
then the linearizing transformation can be simplified to the form w = F(t,z) and z =
f; G(t',z,2)dt' = G(t,x). As a result one gets the invertible point transforma‘?ions reported
in the literature. In this case we have the first integral I; = dw/dz = F/G = (F; +
iF,)/(Gy + G,). Integrating this equation we get w = I1z + I5. In terms of F and G the
latter reads as F(z,t) = I1G(x,t) + I, where Iy is an arbitrary constant which can be
treated as the second integral of motion. Expressing = in terms of ¢ one gets the general
solution for the given nonlinear ODE.
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A question which now naturally arises is that since the second order nonlinear ODE
possesses two integrals, namely I1 and I, whether one can derive a second set of linearizing
transformation by utilizing the second integral. This can indeed be deduced from the form
of the above linearizing transformation itself, as we shall show below.

2.1.2. Second pair:
We have, from w = Iz + I, and I; = (Zi_t;’

dw
Iy :w—Ilz:w—Ez. (2.5)

Now replacing the variables w, z and dw/dz in terms of F, G and G (vide equation (Z4)
and discussion above), we get

Iy=F— (g) (%) = é(FG - Fc‘:) (2.6)

which can be rewritten as
d {1\ '[d [(F
Lh=—|—|= —(=1/1. 2.
=-[7z)] [2(8)] @)

(In the above we have used the relation G = G). Equation (2.7)) can be brought to the form
Iy = dwy /dz by identifying w; = F/G and 2z; = 1/G, which in turn yields d?w; /dz? = 0.
Thus one gets a second set of linearizing transformation from the integral I, without
actually evaluating its specific form.

2.1.3. Third pair:
From the identities Io = (FG - F@)/G and I} = F//G, we can deduce a relation

L 1 oA
h=%= F(FG FG). (2.8)

Rewriting (Z8) as I, = —(d(1/F)/dt)~[d(G/F)/dt], we can choose wy = G/F and z, =

—1/F, so that fz = dwy/dze. Thus we arrive at the free particle equation through a third
set of point transformations as well.

2.1.4. Nonexistence of other pairs

Now we show the nonexistence of any other linearizing transformation for a second order
nonlinear ODE. For this purpose we consider a more general form of the integral given by

T1 T2 Fn )

FeFE o EntlanT
gs gntt /)

where 71 and 7y are some real numbers. We find that equation (2.9) can be recast in the
form (2.2)) only for the following three cases: (i) 7o = 0, r; = arbitrary (first pair) (ii) r; = 0,

(2.9)
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ro = arbitrary (second pair) and (iii) 71 /r2 = —1 (third pair). For all other cases the right
side of (2.9]) becomes nonlinear in & and hence it excludes all other possible choices.

As a result one can basically have three different sets of linearizing point transforma-
tions for the given second order nonlinear ODE. This is due to the fact that we can derive
the linearizing transformations from the integrals, namely I; and I3, and rewriting them as
products of perfect derivative functions. Now each integral gives a linearizing transforma-
tion, through the relation, Iy = dw/dz and Iy = dw;/dz; and the third pair comes from
I/ I (= (dwy /dw)(dz/dz) = —F2/F(d(G/F)/dt)) which is also nothing but a product of
perfect derivatives in the new variables.

The above analysis also reveals the fact that in the case of invertible point transfor-
mations one can have the privilege to rewrite the first integral, Iy = dw/dz, also in the
form I} = dz/dw. In other words one can also treat the new independent variable as a
dependent variable and vice-versa. In this sense one can enumerate six sets of linearizing
point transformations for a second order nonlinear ODE, though only three are nontrivial.

2.1.5. Example:

Let us consider the modified Emden type equation (MEE),
k2
&+ kxd + 5353 =0, (2.10)

where k is an arbitrary parameter. A vast amount of literature is available on the lineariza-
tion and integrability properties of this equation, see for example Ref. [I520] and references
therein.

Equation (2.I0) admits the following integrals [I5,20], namely

L=—t+ 585, L=t + 52— (2.11)

Rewriting the first integral I; in the form
1

. m [% (é - ’%’52” , (2.12)

one can get the first pair of linearizing transformation in the form

t kt? - ko1

which is nothing but the ones derived by Mahomed and Leach [20].
Let us now consider the second integral given in (2.II)) and rewrite it in the form

(3—ktx)® [d [t t
I — aft___t ). 2.14
7 ka?+3% |dt \6 2(ktz—3) (2.14)
Identifying (2.14]) with (2.7) one can get the second pair of linearizing transformation of the

form

x

t 3 F 1
o 6( m—3> G T3 ktz G (2.15)
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One can easily check that in the new variables (wi,z1), equation (ZI0) becomes a free
particle equation. The third pair of linearizing transformation can also be deduced straight-
forwardly in the form

2(3 — ktx) 6x
29 = —————
6t — kt2az’

6t — kt2z’ (2.16)

w2
from the integral I3 = I3/I;. As pointed out earlier one may treat the new independent
variable as the dependent variable and vice-versa and enumerate three more linearizing
transformations.

2.2. Sundman transformation

It has been shown that the second order nonlinear ODEs can also be linearized by nonlocal
transformations. The simplest example is the Sundman transformation [4],

w=F(z,t), dz=G(z,t)dt, (2.17)

where F' and G are arbitrary smooth functions such that the Jacobian J =
(0(z,w)/0(t,x)) # 0. In the case of Sundman transformation the first integral in terms
of F and G reads as I} = (F; + #F,)/G(t,x). In other words, we have F; + #F, = LG(t, )
which upon integration yields

F(z,t) zll/G(t,x)dt+C:>w:hz—|—C, (2.18)

where C' is a constant. Since w is an explicit function of x and ¢, one can rewrite the latter

and obtain x = F(t,]l,z, (). Substituting this in the expression dz = G(t,z)dt one gets
dz = @(t, I, z,C)dt. We observe that in the case of linearizable equations one can always
separate the variables z and ¢ and integrate the resultant equation which in turn gives z
in terms of £. Substituting this back in the expression = = F(t, I, z,C), where z is now a
function of ¢, one gets the general solution for the given second order nonlinear ODE.

A similar procedure can be adopted for the second integral also to identify the second

pair of Sundman transformation and to obtain the general solution for the given equation.

2.2.1. Ezxample:

To illustrate the ideas in the case of Sundman transformation let us consider an example
given in Ref. [4],

2.5, 2z
v — —d — =0. 2.19
T xﬂc + 2 ( )
Equation (2.I9) admits two integrals of the form
it — it? + 2ut
Il - W, IQ - T (220)

2.2.2. Transformation and solution from first pair:

Rewriting I; as the perfect derivative of two functions of the form [, =
(d( [ z%dt)/dt)~(d(z/t)/dt) one can identify the Sundman transformation, w = z/t, 2z =
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[ 22dt which in turn transforms equation (ZI9) to the free particle equation d?w/dz? =0
as noted in Ref. [4].

Now we follow the procedure given above and deduce the general solution for this prob-
lem. For the present case equation (ZI8)) reads as

x =Lzt + Ct (2.21)

Substituting (221)) in dz = t?(I;2+C)?dt and integrating it, one gets z+C/I; = m
1

Inserting this back in (2:2I]), we obtain the general solution of (2.19) in the form

Bt
L -

() (2.22)

2.2.3. Transformation and solution from second pair:

Now let us consider the second integral given in (Z20). Rewriting this as a product of two
perfect derivatives, namely Ir = (d( [ z%dt)/dt)~!)(d(xt?)/dt), one can identify the second
pair of nonlocal transformation of the form

wy = 2t?, 2 = /w2dt. (2.23)

Following the procedure given above one can again deduce the general solution which in
turn exactly matches with (2.22]).

2.2.4. Infinite sequence of Sundman transformations:

Next, we identify another interesting result that unlike the fixed number of linearizing
point transformations discussed earlier, one can generate an infinite number of Sundman
transformations for a given second order nonlinear ODE. To demonstrate this we rewrite
the any one of the integral (I; or I3) in the form

(k)

I = —pGis) (2.24)

With this choice one can generate a sequence of Sundman transformations of the form

w=F"(z,t), dz=(n+1)F"(z,t)G(t,x)dt, n#—1

w =log F(z,t), dz= dt, n=-1 (2.25)

where n is any integer.

Applying this procedure to the present example (2.19]) one can have an infinite number of
Sundman transformations from each integral of motion. For instance, for the above example
219), from I; we get w = (z/t)""! and z = (n + 1) [ 2?(z/t)"dt and from I we obtain
wy = (22)"! and z; = (n + 1) [22(t?z)"dt (n # —1). For n = —1, from I; we get
w = log(z/t) and z = [ ztdt and from I we obtain wy = log(t?z) and 2y = [ 1/(t*x)dt.
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2.3. Generalized linearizing transformation

Our recent studies show that one can also linearize second order nonlinear ODEs with more
generalized nonlocal transformations [7]. One such generalization is of the form

w=F(z,t), dz=G(t,x, z)dt, (2.26)

where we have included derivative terms also to define the new independent variable. In
fact, we have shown that a class of equations can be linearized only through this kind of
generalized transformation, see for example Ref. [7]. By proceeding as in the case of the
Sundman transformation, one can also deduce these transformations from the integrals of
motion.

To construct the general solution for the original equation one may replace the variables
x and & which appear in G by t so that the resultant equation can be integrated to provide
an expression for z in terms of ¢. Once w and z are known explicitly in terms of z and ¢,
just by inverting the free particle equation solution, w(z,t) = I;z + C, one can arrive at
the general solution for the given second order nonlinear ODE.

2.3.1. Ezample:

Let us consider the same example which we considered in the previous case, that is equation

[219) and consider the integral (I3/I1) of the form

it + 263
=" == 2.27
3 at—x (227)
which in turn yields the generalized linearizing transformation,
1 x —at

One may note that the new independent variable is in nonlocal form with derivative terms.
In the new variables equation (2.I9)) is nothing but the free particle equation.

2.3.2. Method of finding the solution:
To obtain z in terms of ¢t we replace © and x in terms of ¢ in the following way. Rewriting

2217) for &, we get

T 3
':-%%%%%. (2.29)

Now making use the general solution for the free particle equation, w = I3z + C, that is
1/(xt?) = I3z + C, we get

1

= . 2.30
T Lz rO)2 (2:30)
Substituting ([2:29]) and (230)) in the second equation in (2:28]), we obtain
I C
de = 218 g (2.31)

(I3 —t3)
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Integrating (2.31]) one gets z in terms of ¢ explicitly. Substituting the latter now in (2.30])
we arrive at the general solution which is given in (2.22)).

2.3.3. Infinite sequence of generalized linearizing transformations:

As in the case of the Sundman transformation one can have an infinite sequence of gener-
alized linearizing transformations for a second order nonlinear ODE. This fact comes again
from the observation that one can rewrite the integrals of motion in the form

_ F(F, + iF,)

= . 2.32
FrG(t,z, &) (2:32)
Consequently one can deduce a sequence of transformations from I in the form
w=F""(z,t), dz=(n+1)F"(z,t)G(t,z,2)dt, n#—1
G(t,xz, 1
w =log F(z,t), dz= %dt, n=-—1. (2.33)

For the example given in equation (2.19]), from the third integral ([2.27]), one can deduce a
family of generalized linearizing transformations as

w= ) a= ) [T (A ) (2.34)
w = —log(zt?), z= / xx_—tftdt. (n=-1) (2.35)

2.4. Contact Transformations

Besides the above three types, certain second order nonlinear ODEs can be linearized
through a contact transformation of the form w = F(t,z,%) and z = G(t,z, ). Interest-
ingly this transformation can also be deduced from our procedure. For illustrative purpose
let us consider the MEE and its first integral again (vide equation (2.I1])). The first integral
associated with the MEE (2.I0]) can also be rewritten in the form

d k, i

I = — (24 — 2 ),
=l +(§x2+i)2)

(2.36)

Identifying w = (k/6)t>+1/((k/3)x?>+2)? and z = t as the new dependent and independent
variables, respectively, equation (Z30) can be brought to the form I; = % which in turn
leads to the free particle equation d?w/dz? = 0. Integrating the latter, we get w = I + I1t,
and using the expression dw/dz = dw/dt = (k/3)t — kx/(kx® + 31), we get (w — %t2)2/(u} -
%t) = (94)/(k?z?) so that

(I, + it — £%)? 93¢
L—k k%

(2.37)

Performing a simple integration we arrive at the same solution reported in the literature

[7,15].
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2.5. Other possible transformations

Needless to say one can look for more generalized version of the linearizing transformations
dicussed in the above sub-sections. Two such obvious choices one may think of will be
(i) w = F(t,z,z) and z = [G(t,z,2)dt and (ii) w = [ F(t,x,&)dt and z = G(t,z, ).
To give support for this type of linearizing transformations, we note that the MEE (210)
can also be linearized to the free particle equation (d?w/dz? = 0) and third order linear
equation (d*w/dz* = 0) through the nonlocal transformations (i) w = ze/*@, z = ¢ and
(il)) w = el #dt 5 — ¢ respectively [8]. However, in this paper we restrict our attention only
to the case in which the new dependent variable is not a nonlocal one. We will present a
detailed account of these results elsewhere.

The discussions and demonstrations presented above clearly show that the method of
identifying linearizing transformations from the integral of motion is a versatile one and
can be used for multifaceted applications. In the following we extend the theory to third
order nonlinear ODEs.

3. Third order ODEs

The third order nonlinear ODEs of the form @ = ¢(&, &, x,t) can be linearized through (i)
point transformation [3,21,22], (ii) contact transformation [9,21], (iii) Sundman transfor-
mation [IT,[12123] and (iv) their generalizations [7,[I3]. In the following we identify all these
transformations from the integrals, linearize the nonlinear ODEs and find their general
solutions.

We recall here that in the case of second order nonlinear ODEs we rewrite the first
integral and obtain a relation dw/dz = I which in turn provides the free particle equation
by differentiation. In the case of third order nonlinear ODEs while rewriting the integral
one can have two choices: Either express it as dw/dz = I or d>w/dz? = I, as we see below.
In the first case one ends up with a second order linear ODE, while in the second case a
third order linear ODE results. Nevertheless, we discuss the consequences in both the cases.

3.1. From third order to linear second order ODEs

Let us assume that the third order nonlinear ODE admits an integral, I = F(t,z, %, %),
where F' is a function of ¢,z,% and Z only. As we did in the second order case let us split
the function F' as a product of two perfect derivatives and rewrite it as a first order ODE,

that is [13]
1 d . 1 dG,y dGH
I=fl— " Tyt — [ =) = (). 3.1
f(Gg(t,x,j:,i)dt 1 ’x’x)> f(% dt ) f( dz) (3:-1)
Now identifying the function Gi(t,z,#) = w as the new dependent variable and z =

[ Go(t,z,2,3)dt as the new independent variable, equation (B.I]) can be recast in the form
I = f(dw/dz). In other words, we have Iy = dw/dz, where I; is a constant, from which we
get d?w/dz? = 0. Expressing w and z in terms of the old variables, namely

t
w=G(t,z,x), =z :/ Go(t', x, &, &)dt, (3.2)
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one can identify an appropriate linearizing transformations to transform the third order
nonlinear ODE into the free particle equation. In the following we rewrite the first integral
as a second derivative and study the consequence.

3.2. From monlinear to linear third order ODEs

To transform third order nonlinear ODE into a third order linear ODE we rewrite the first
integral as a perfect second order derivative, that is Iy = d?w/dz? so that d*w/dz® = 0.
Since we also have I1 = dw/dz, one can get w = dw/dz = ¥ = [w(dz/dt)dt, so that

t
n :/ Gr(t, 2, 2)Go(t', x, &, &)dt = /@3(t,x,i,3‘é)dt = Gs(t, x, ), (3.3)

where G; and Gy are as defined above [I3]. In other words only in the case G1G3 is an
exact derivative one can rewrite the integral as a perfect second derivative. Then w(t, z, &)

and z are the required variables for the third order nonlinear ODE to be linearized to a
third order linear ODE.

3.3. The nature of transformations

The identified variables w and z are rather general and depending upon the explicit forms
of the variables one can get point transformation, contact transformation, Sundman trans-
formation and generalized linearizing transformations. To demonstrate this let us consider
the transformation, w = G3, z = f(f Gadt’ (vide equations ([B.3)) and ([3.2])), which trans-
forms the given third order nonlinear ODE into a linear equation. Depending upon the
forms of the dependent and independent variables one can have any one of the following
transformations, that is

(1) point transformation: @ = Gy(x,t) and z = Go(z,t) = f; Go(t',x,z)dt’,

(2) contact transformation: @ = Gs(t, z,4) and z = Go(t, z, %) = f; Go(t',x,z,2)dt’,

(3) Sundman transformation: w = G3(t,z) and z = f; Go(t', x)dt’,

(4) generalized linearizing transformation: w = Gs(t,z,%) and z = f; Go(t',x,z,2)dt/
and

(5) new type of nonlocal transformation: w = f(f Gs(t',x, &, &)dt" and z = Gao(t, z, )dt.

In the following, we group both the point transformation and the contact transforma-
tion together and treat Sundman transformation and generalized linearizing transformation
separately (since in the latter two cases the new independent variable is in integral form)
and present our discussion.

3.4. Point and contact transformations
3.4.1. Transformation from Iy:

Using the first choice (w,z) (Sec. Bl one can arrive at the free particle equation from
the first integral and consequently obtain w = Iz 4+ Is, where I; and Iy are integration
constants (integrals of motion). Rewriting this expression, w(t,z,&) = Lz(t,z, &) + I,
for £ and integrating the resultant equation one gets the general solution for the given
third order nonlinear ODE. In the other case (Sec. B.2)), one ends up with d3w/dz3 = 0
and obtain w = (I1/2)2% + Irz + I3 with I;’s, i = 1,2,3, being integration constants. If
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the transformation is of point type, one can straightforwardly replace w and z by t and
x, and express x in terms of ¢ and obtain the general solution for the original equation.
In the case of contact transformations, in which @ is an explicit function of &, one can
rewrite the expression w for # and substituting the latter into the w expression, that is
w(t,x,z) = Lz(t,x,&) + I, and rewriting it for = one can obtain the general solution,
Tr = f(t, Il, IQ, 13)

Now the question arises, as we observed in the case of second order nonlinear ODEs,
whether one can derive any additional linearizing point/contact transformations from the
other integrals Iy and I3 also for the given third order nonlinear ODE. Our analysis shows
that one can deduce a second set of linearizing transformations only from the third inte-
gral (I3) which we present in the following and demonstrate that one cannot extract the
linearizing point/contact transformation from I in the Appendix.

3.4.2. Transformation from I5:

Let us now consider the integral I3, and analyse the consequences. From the expression
W= (I1/2)2% + Iz + I3, we find

I
Iy = — 5122 . (3.4)

Rewriting equation (3.4]) in terms of G; and G2 using equations (3.2]) and (3.3]), we obtain

2 . .
I = [ GiGadt — U2, LGt <0102 ~GyJ Gth>
= fGlGth + %Gl -Gy fGth. (3.5)

As in the previous case one can rewrite the above expression on the right hand side of (3.0))
as a product of two perfect derivatives to obtain a free particle equation or as a second
derivative to deduce a third order linear ODE.

Let us identify the dependent variable by rewriting (3.5 as

-1 d 2[G1G2dt>
Iy=——c— (G - 22, 3.6
’ i( 2 >dt< LT [ Gadt (3.6)
dt fG'gdt

Then the new dependent and independent variables can be chosen as

2 [ G1Gadt _ - 9 i
=G —-————— =G = ~ [ Gadt 3.7
T T Gt LA TGt / 245 (3.7)

so that (3.5]) can be transformed to I3 = dwy/dz; = d?w;/dz? = 0. Integrating the latter
we obtain w1 = I3z1 + Is. We have chosen the integration constant as I, rather than I
which can be proved from equations ([3.4]), (B.5) and (B.7]).

Now we investigate the other possibility, that is to rewrite the integral I3 as a second
derivative of some function. As mentioned earlier this can be implemented only when the
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product G1 G is a perfect derivative (vide equation ([33)). Now we can easily check that

t 2 [ G1Gadt 2G4
0 = Gi — dt’ 3.8
o / < LT [ Gadt > ([ Gadt)? (3:8)
is an exact integral, and ([B.8)) can be brought to the form
. J G1Gadt
=25 3.9
LT (T Gadt)? (8.9)

Consequently we have dwi/dz; = wi. Now differentiating this with respect to z; and using
the identity dw, /dz; = I3 we arrive at I3 = d*i /dz?, which in turn leads us to dw; /dz} =
0. Thus the variables w; and z; (vide equations ([B.7) and (3.9)) become a second set of
linearizing point/contact transformation for the given third order nonlinear ODE.

We mention here that one may split equation ([B.5]) as a product of two perfect derivatives
in certain other decompositions as well. However, one may not be able to rewrite the integral
as a second derivative eventhough it can be written as a first derivative in the new variables..
To illustrate this point let us rewrite equation (3.5]) in a different form, that is

([Gadt)® d [ Gy [ G1Godt
I3 = — — , (3.10)
2Gy  dt\ [ Godt ([ Gadt)?
and identify the new dependent and independent variables from this as
G G1Gaodt -1
wy N ECIC (3.11)

T [Gadt  ([Gadt)2 T ([ Gadt)?

Consequently equation ([3.35]) can be brought to the form I3 = dwsy/dze which upon integra-
tion yields wg = I329 + I;. Here we note that the integration constant turns out to be I.
Thus one gets a second order free particle equation.

Now let us try to rewrite I3 as a second order derivative. In this case, the following
integral

o[ GGy [GiGadt\
. _2/0 <(f Godt)* ([ G2dt)5>dt (3.12)

should be evaluated explicitly. However, the integration on the right hand side cannot
be performed explicitly. This implies that one cannot obtain the linearizing point/contact
transformation by rewriting the integral in the form (3.10).

Our analysis shows that one can deduce only two sets of point/contact transformations
for the given third order nonlinear ODE, see Appendix for further details. For the sake
of illustrative purpose we present an example for each of the cases (point and contact
transformations) separately (Examples 1 and 2) in Table I along with the explicit forms of
linearizing transformations from /7 and I3 and the general solution.

3.5. Sundman transformation and generalized linearizing transformation

Since the method of identifying the generalized linearizing transformation and Sundman
transformation has been pointed out earlier in the case of second order nonlinear ODEs
let us move straight away to the method of finding the general solution when the new
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independent variable is in nonlocal form. In the following, we present a method which is
applicable both to generalized linearizing transformation and Sundman transformation.

3.5.1. Transformation from I:

From (B.I) considering the integral I; in the form [; = Cfi—w we obtain

t
Gi(ta,i) = Ih / Got', 8, 8)dt + C = w = Iz + C. (3.13)

From equation ([B.I3]) and (3:3]) we get
1
W = Gyt 2, 3) = I /zdz =224 Ca s (3.14)

Since w is a function of ¢, z and & one can invert equation (B.13]) for & and obtain

&= F(x,t,z,CI). (3.15)

Substituting this into equation (3.14]) and rewriting the latter in terms of , one can express

x in terms of ¢ and z, that is x = H(t, 2,1, C, I3). From the first integral we can express

&= K(t,z,2,C 1) = K(t,z,I,C,I3). Now substituting the expressions z, & and # in
dz = Gy(t,x, 2, %)dt we get an ODE in z and ¢t. One can separate the variables z and ¢ and
integrate the resultant equation which in turn provides the general solution for the given
equation.

3.5.2. Transformation from I5:

Rewriting equation (3.14) in the form I3 = w — (I;/2)2% — Cz and using equation (3.13) in
it we get

. 1
Iy =L — §w2, (3.16)
where fg = I I5. Rewriting equation (3.I6]) in terms of the variables G; and G5 we obtain
Iy = &-(G1 [ G1Gadt — $G3Gy). (3.17)

First let us see the possibility of transforming the equation ([3.I7)) into a free particle
equation. With this aim we split equation ([B.I7) in the form

- ([G1Gadt)? d Gi
b=""c a <(f G1Gadt)? ) (3.18)

The new dependent and independent variables from (3I8]) can be chosen as

wy = Ll, 21 = / Lg)dt, (3.19)
(f GlGth)5 (f GlGth)5

so that equation (BI8) can be brought to the form Iy = dwi/dz = d*w;/dz? = 0. Inte-
grating the latter we get w; = I3z; + Is.
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From equation ([B.3]) we get

t
) G1Gs , 1
= s | A = . 3.90
o / <<101G2dt>2> TG Gadt (3-20)

In other words, we have duw/dz; = wj. Differentiating the latter with respect to z and
using the identity dw; /dz; = I3 one gets I3 = d?i /dz?, which in turn gives d®w; /dz} = 0.
Thus the variables w; and z; become a second set of Sundman transformation/generalized
linearizing transformation for the given third order nonlinear ODE.

In Table I we present one example for each category (Sundman transformation and gen-
eralized linearizing transformation) separately (Examples 3 and 4) along with the explicit
forms of linearizing transformations from I; and I3 and the general solution.

3.6. A new type of nonlocal transformation

Upon careful investigation, we also find that one can identify a linearizing transformation
in which the new dependent variable is in nonlocal form. This type of linearizing transfor-
mation comes out in the case that the function G in (8.2)) is an exact derivative of ¢, that
is Go(t,x,@,%) = Goy + 2Goz + #Ga;, and the right hand side of equation (B3] is not an
exact derivative of ¢, that is f; Gi(t',z,2)Go(t',x, &, &)dt' = [ G3(t,x,&,%)dt. Then the lin-
earizing transformation is modified to the form w = hy(t,z,z), W = fOt ho(t,x, 2, &)dt and
z = hs(t,z, ). This transformation is different from Sundman transformation/generalized
linearizing transformation, since in the present case the dependent variable () is in nonlocal
form whereas in the case of Sundman transformation/generalized linearizing transformation
the independent variable (z) is in nonlocal form. The method of finding the general solution
for this linearizing transformation is as follows:
From the free particle equation we have w = Iz + Is so that

h1 (t,x,gb) = Ilhg(t,.%',.%") + Is. (3.21)
From equation (3:2I]) and (B3] we get

1
W= /wdz = Elz2 + Iz + Is. (3.22)

Since w and z are functions of ¢, x and & one can invert equation (B.2I]) for & and obtain
T = F(t,x,]l,lg). From the first integral we can express & = K(t,z,&,1;) = f((t,x,]l,lg).
Substituting the expressions & and # in equation (3.22]) and rewriting the latter in terms of
x, one can express = in terms of ¢ and z, that is x = ﬁ(t,uﬁ, I, I5). Now substituting the
expressions x, @ and & in dw = ho(t,z,z,)dt = iLQ(t,ﬁ),Il,IQ)dt we can obtain an ODE
in @ and t. One can integrate the resultant equation which in turn provides the general
solution for the given equation. We also present an example for this category (Example 5)
in Table I along with the linearizing transformations and general solution.

Finally, we can extend the above analysis of linearizing transformations for second order
nonlinear ODEs and third order nonlinear ODEs to n order nonlinear ODEs as well. The

details are as follows.
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4. nt" order ODEs

In the case of third order ODEs we demonstrated that one can linearize the given equation
into a second or third order linear ODE. Extending this idea to fourth order ODE one
can demonstrate that given ODE can be linearized to either a second or third or fourth
order ODE by appropriately choosing the dependent variable. This result can be extended
directly to nth order ODE as discussed below.

Let us assume that the n*" order nonlinear ODE, Ccl;n = ¢(t, x, dt’ ..,%;_lf), admits
an integral I = F(t,x, dt e (jl:n 11 ). Now we split the first integral in the following form
1 d dx A2z dH, dwi
s e, S (Y
<G(t, , sz—fa o Cfltn_li”) dt dt dtn—2 dz dz
so that the new dependent and independent variables, namely
dx dn— "tz
w1, = Hl(t,x,d— dtn 2 / G dt/,.. dpn— 1)dt (42)
transforms the n*? = 0. On
the other hand defining the dependent variable in the form
d" 2z ,  dx vz,
Wy = / H1 dt/’“.’dt/n*Q)G(tw%.’@’.”’W)dt
dx d" 2z
=Ho(t,x,—,...,—— 4.3
2( y Ly dt’ dtn_Q) ( )

one can transform the n*” order nonlinear ODE into the third order linear equation d;$2 = 0.

Continuing further we can generate a sequence of variables of the form

t dx d" 2z dx d" g
:/O Hi_l(t/,m,%,...,W)G(t/,m,@,...,w)dt/
dx d" 2z
=Ht,z,—,...,——). 4.4
2 3 gz (44)

Now combining ([@4) with z (vide Eq. [@2))), one can transform the n** order nonlinear

ODE into the m*” order linear equation, that is < o =0, m = 3,4,.

Depending upon the nature of the underlying transformations they fall into any one of

the following categories, namely

(1) point transformation: wy, = Hy(z,t) and 2= G(x,t)
—3

(2) contact transformation: w,=H,(t,z, dt’ ..,Z:;L—_Qm) and 2=G(t,x, i—f,...,%) =
o, e d gy

(3) Sundman transformation: H, = H,(t,z) and z = ft G(t',x)dt’

(4) generalized linearizing transformation: w, = Hy(t,z, dt,...,%) and z =
[z, gz Ty gy,

In the above nonlocality is introduced only in the new independent variables. However
one may also consider the cases where the new dependent variable is in nonlocal form. This
provides the following new additional linearizing transformations, namely
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(5 wy, = ftHn v, ,gf,,...,dt,n 1)dt’ and z = G(t, x,ﬁf,...,fﬁf%)

t rt qn—2
(6) = le (to, ,dt2 "’dt" 1)dt2dt1 andz—G(t z, dt,... L —7),

o Jo ) dEn—2

and so on.

5. Conclusion

In the present paper, we have presented a systematic method of finding linearizing transfor-
mations starting from an integral of motion associated with a given nonlinear ODE. To make
the analysis transparent, first we considered a single second order nonlinear ODE. We then
discussed each one of the possible transformations, namely point transformation, Sundman
transformation, generalized linearizing transformation and contact transformation. In some
cases they turn out to be infinite in number. We have also clarified the method of finding
the general solution with the main algorithm for the cases of Sundman transformation, gen-
eralized linearizing transformation and contact transformation. We have extended the same
analysis for third order nonlinear ODEs and presented the outcome in detail. Here also we
have demonstrated that our method yields certain new kinds of linearizing transformations
as well, besides the above ones. Finally the underlying ideas have been extended to n?
order scalar ODEs also.

In the present paper we have restricted our attention only on the scalar ODEs only.
The question which naturally arises is what happens if one extends the algorithm to cou-
pled ODEs. We consider this hard question in the follow-up Paper II and report certain
interesting results.
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A.1. Absence of point/contact transformations from Is for third order
nonlinear ODEs

In the case of third order nonlinear ODEs we have demonstrated in Sec.[Blthat one can derive
the linearizing transformations only from the first and third integrals. In the following, we
show that from the second integral one cannot extract any point/contact transformation.
Integrating the equation d?w;/dz? = 0 we get w; = I321 + I which can rewritten of the
form
dw1

IQ = w1 — 1321 = w1 — d—zlzl (Al)

Substituting (37)) into (A.l) and rewriting the resultant equation we get

2 d (G [ Gadt
L= =4z, . A2
27 Gy dt( 2 /GlGth> (A-2)
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%: O | L= ””;;—z” Contact w = % 9] w=% —.25"1&;;& z(t) =[£I} + I2 =20 (I3 — 1)
I3 = 12;;” (log i)? Transformation W= ot W= 2% —L] x exp[—[I1 + I»
+mzx — Zlog z =logad Z:_loz_dc FVIF + 13 - 20,13 — t)]/11]
LM | L==% w =i, [12] w= 2%,
Iy =% — 132 Sundman W = 127 W= =2, x(t) = 21y cosh 211 (t + K)
transformation dz = xdt dz = Qz—@dt -
% +E =4 Generalized w =z [13 w= % é
Iy= £z 142 linearizing W= g w=1 o(t) = V2N tan | (¢ + )
transformation dz = %dt dz = —Ldt N
TT2 ~
S
T =3i—-2% | [ = (i® + 2% —2xd)e”? | New w = zie 2 w=el(xd —2?)7! =
30 388 | [y = et odedta” ot linearizing dib = zie3tdt diy = Rt z(t) = Ve —2Let + I
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The new dependent and independent variables then can be identified as

G | Gadt Godt
w1 = 1‘[% — /Gngdt, 21 = fTQ (A3)

In terms of wy and Z; one can go back to the original equation, that is

dwq

I, =—. A4

2= 7 (A.4)
Thus one gets a second order free particle equation from Is.

Next we look for the other case. To rewrite the integral as a perfect second order deriva-

tive, the integral

. t dt dt
iy :/ (GlGQZ{Gz - GQ[C;HGQ >dt’ (A.5)

should be integrated explicitly. While doing so we observe that equation (A.H]) cannot be
done so which implies that one cannot extract any linearizing point/contact transformation
from Is.

Integrating (A.4]) we obtain

wy = Iz + I, (AG)

in which the integration constant turns out to be I3.
Similarly by rewriting equation (A.2]) in the following form

([ Gadt)? d [ G
L=- Go %(faia)’ (A7)

we can identify the new dependent and independent variables as

G 1

==, Zy= . A.
[Godt” 27 [Goat (4.8)

w2

Then we can rewrite equation (A.7)) in the form

dws
I, =——=. A9
2 dZQ ( )
Thus one gets a free particle equation from I. However one cannot extract the point/contact
transformation to transform the given equation to linear third order ODE. This is because

of the fact that the expression
t
- G1G3 )
= ——— |dt A.10
2 / <(f szt>3> (410

cannot be evaluated explicitly which implies that one cannot deduce the linearizing
point/contact transformation from I5. Thus one cannot derive point/contact transformation
from the second integral fro third order nonlinear ODEs.
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