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In this set of papers we formulate a stand alone method to derive maximal number of linearizing
transformations for nonlinear ordinary differential equations (ODEs) of any order including coupled
ones from a knowledge of fewer number of integrals of motion. The proposed algorithm is simple,
straightforward and efficient and helps to unearth several new types of linearizing transformations
besides the known ones in the literature. To make our studies systematic we divide our analysis into
two parts. In the first part we confine our investigations to the scalar ODEs and in the second part
we focuss our attention on a system of two coupled second order ODEs. In the case of scalar ODEs,
we consider second and third order nonlinear ODEs in detail and discuss the method of deriving
maximal number of linearizing transformations irrespective of whether it is local or nonlocal type
and illustrate the underlying theory with suitable examples. As a by-product of this investigation
we unearth a new type of linearizing transformation in third order nonlinear ODEs. Finally the
study is extended to the case of general scalar ODEs. We then move on to the study of two coupled
second order nonlinear ODEs in the next part and show that the algorithm brings out a wide variety
of linearization transformations. The extraction of maximal number of linearizing transformations
in every case is illustrated with suitable examples.

1. Introduction

The study of linearization of nonlinear ODEs is one of the classic topics but is yet to be

brought to a concise structure. A systematic study on this subject had been initiated by

Sophus Lie long ago [1–3]. In his seminal work he presented the necessary and sufficient

conditions for a second order nonlinear ODE to be linearizable under point transformations.

Nevertheless, there has been a revival of interest during the past two decades on linearizing

procedures. In particular, progress has been made in the following directions. Durate et al

had studied the linearization of a second order nonlinear ODE by Sundman transforma-

tion in which the new independent variable can be in a nonlocal form [4–6]. Recently, the

present authors have proposed certain generalized linearizing transformations in which the

new independent variable is allowed to have derivative terms also besides being nonlocal [7].

Apart from these, attempts have also been made to linearize certain second order nonlinear

ODEs by specific nonlocal transformations [8]. As far as the third order nonlinear ODEs

are concerned the study on linearization was started by Lie himself. He investigated the

linearization of third order nonlinear ODEs by contact transformations [2]. The necessary

and sufficient conditions for a third order nonlinear ODE to be linearizable by point trans-

formations were derived by Bocharov et al [9], and were later on investigated in detail by

Ibragimov and Meleshko [10]. The Sundman transformation for third order nonlinear ODE

was analysed by Euler et al [11, 12]. Recently the present authors have demonstrated the

existence of generalized nonlocal transformations in the case of third order nonlinear ODEs

as well [13].

The above developments have been essentially concerned with identifying linearizable

forms of nonlinear ODEs under various kinds of transformations. Throughout this period

only very few investigations have been devoted to develop systematic methods to derive

linearizing transformations. As far as our knowledge goes at present Lie symmetry analysis
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and some ad-hoc methods are being used to derive linearizing transformations. In fact both

of them have very limited applicability in the case of nonlocal transformations. Recently, we

have proposed a straightforward procedure to derive linearizing transformations of any type

(point transformation, contact transformation, Sundman transformation and generalized

linearizing transformation) for nonlinear ODEs of any order including coupled ones [7,13–15]

starting from an integral of motion associated with the given system.

The main goal of this present set of papers is to penetrate further into the above men-

tioned algorithm and bring out multifacted applications of it. In particular, we report here

for the first time the existence of a new kind of contact transformation for second order

nonlinear ODEs which preserves the order of the equation and in the case of third order

nonlinear ODEs a new form of linearizing transformation. Both these results have emerged

when we started investigating the role of the other integrals in constructing linearizing

transformations for an ODE. Of course in the case of second order nonlinear ODEs once

the integral of motion is given one can look for the solution through quadrature. Our aim

here is that without quadrature how to deduce the solution from the given integral just

by performing algebraic operations on it which is obviously a difficult problem in the case

of higher order ODEs. More interestingly through this “rewriting” procedure one can get

new types of linearizing transformations besides the known ones. We also stress here that

the various linearizing transformations, the remaining integrals and the general solution are

derived from a known integral.

The algorithm essentially requires one to rewrite the given first integral as a product of

perfect derivatives of two functions and to redefine one of them as a new dependent variable

and the other as a new independent variable. Interestingly, here we demonstrate that one

can rewrite the integral as two perfect derivatives only in a finite number of nontrivial ways

(precisely three in the case of second order nonlinear ODEs and two in the case of third

order nonlinear ODEs) which in turn gives point transformations and in an infinite number

of ways by relaxing the condition that just one of them be a perfect derivative and the

others need not be. The latter turn out to be Sundman transformations and generalized

linearizing transformations which are infinite in number for a given ODE. In the case of

coupled ODEs, we start with two integrals and rewrite each one of them as products of two

functions and investigate the possibility of getting new types of linearizing transformations

(in the follow up paper). Through this attempt we have come up with certain concrete

results in the theory of linearization of nonlinear ODEs.

We organize the rest of the paper as follows. In Sec. 2, we consider second order nonlin-

ear ODEs and discuss the method of identifying linearizing transformations, namely point

transformation, contact transformation, Sundman transformation and generalized lineariz-

ing transformation one by one in detail, starting from an integral. We also derive the general

solution for the original equation from the linearized equation for each one of the cases sep-

arately. We explain the underlying ideas with suitable examples. In Sec. 3 we consider third

order nonlinear ODEs and discuss the method of identifying linearizing transformations

and general solution in detail. The case of N-th order scalar equations is taken up in Sec.

4. Finally, we present our conclusion in Sec. 5. Appendix A contains some details about

the nonavailability of point/contact transformations from a second integral for third order

nonlinear ODEs.
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2. Second order ODEs

Let us consider a second order nonlinear ODE

ẍ = φ(t, x, ẋ), (.= d/dt), (2.1)

where φ is a smooth function. Let it admit an integral of motion I = f(t, x, ẋ) which can

be recast in the form [14,15]

I = f

(

1

G(t, x, ẋ)

d

dt
F (t, x)

)

, (2.2)

where F and G are functions of their arguments. Such an integral, if it exists, can be

found systematically by any one of the recently developed methods like the modified Prelle-

Singer procedure [15], symmetry based analysis [1–3, 5, 6, 16, 17] or Jacobi’s last multiplier

method [18, 19], etc. Further, if the function G(t, x, ẋ) in (2.1) is an exact derivative of

another function, that is G = dz(t, x)/dt, then (2.2) can be further simplified to the form

I = f

(

1
dz

dt

dF

dt

)

= f

(

dF

dz

)

. (2.3)

Now identifying the function w as the new dependent variable and z as the new independent

variable, that is

w = F (t, x), z =

∫

t

o

G(t′, x, ẋ)dt′, (2.4)

one can rewrite equation (2.3) in the form I = f(dw/dz). Rewriting this equation as

dw/dz = I1, where I1 is a constant (which can also be treated as the integral of motion)

and by simple differentiation one can obtain the free particle equation, d2w/dz2 = 0. The

new variables w and z constitute nothing but the linearizing transformation for the given

second order nonlinear ODE since they transform the given second order nonlinear ODE

into the free particle equation.

With the appropriate selection of the functions w and z one can deduce all the known

linearizing transformations reported in the literature, including point transformation, Sund-

man transformation and generalized linearizing transformation. In the following we discuss

each one of them separately.

2.1. Point transformations

2.1.1. First pair:

When the function G in (2.4) is an exact derivative of t, that is G(t, x, ẋ) = Ḡt + ẋḠx,

then the linearizing transformation can be simplified to the form w = F (t, x) and z =
∫

t

o
G(t′, x, ẋ)dt′ = Ḡ(t, x). As a result one gets the invertible point transformations reported

in the literature. In this case we have the first integral I1 = dw/dz = Ḟ /G = (Ft +

ẋFx)/(Ḡt + ẋḠx). Integrating this equation we get w = I1z + I2. In terms of F and Ḡ the

latter reads as F (x, t) = I1Ḡ(x, t) + I2, where I2 is an arbitrary constant which can be

treated as the second integral of motion. Expressing x in terms of t one gets the general

solution for the given nonlinear ODE.
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A question which now naturally arises is that since the second order nonlinear ODE

possesses two integrals, namely I1 and I2, whether one can derive a second set of linearizing

transformation by utilizing the second integral. This can indeed be deduced from the form

of the above linearizing transformation itself, as we shall show below.

2.1.2. Second pair:

We have, from w = I1z + I2 and I1 =
dw

dz
,

I2 = w − I1z = w − dw

dz
z. (2.5)

Now replacing the variables w, z and dw/dz in terms of F , G and Ḡ (vide equation (2.4)

and discussion above), we get

I2 = F −
(

Ḡ

G

)(

dF

dt

)

=
1

G

(

FG− Ḟ Ḡ

)

(2.6)

which can be rewritten as

I2 = −
[

d

dt

(

1

Ḡ

)]

−1[ d

dt

(

F

Ḡ

)]

. (2.7)

(In the above we have used the relation ˙̄G = G). Equation (2.7) can be brought to the form

I2 = dw1/dz1 by identifying w1 = F/Ḡ and z1 = 1/Ḡ, which in turn yields d2w1/dz
2
1 = 0.

Thus one gets a second set of linearizing transformation from the integral I2, without

actually evaluating its specific form.

2.1.3. Third pair:

From the identities I2 = (F ˙̄G− Ḟ Ḡ)/ ˙̄G and I1 = Ḟ /G, we can deduce a relation

Î2 =
I2
I1

=
1

Ḟ

(

FG− Ḟ Ḡ

)

. (2.8)

Rewriting (2.8) as Î2 = −(d(1/F )/dt)−1[d(Ḡ/F )/dt], we can choose w2 = Ḡ/F and z2 =

−1/F , so that Î2 = dw2/dz2. Thus we arrive at the free particle equation through a third

set of point transformations as well.

2.1.4. Nonexistence of other pairs

Now we show the nonexistence of any other linearizing transformation for a second order

nonlinear ODE. For this purpose we consider a more general form of the integral given by

I = Ir11 Ir22 =
Ḟ r1

Gr1+r2

(

FG− Ḟ Ḡ

)r2

=

(

Ḟ
r1

r2 F

G
r1

r2

− Ḟ
r1

r2
+1

Ḡ

G
r1

r2
+1

)r2

, (2.9)

where r1 and r2 are some real numbers. We find that equation (2.9) can be recast in the

form (2.2) only for the following three cases: (i) r2 = 0, r1 = arbitrary (first pair) (ii) r1 = 0,
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r2 = arbitrary (second pair) and (iii) r1/r2 = −1 (third pair). For all other cases the right

side of (2.9) becomes nonlinear in ẋ and hence it excludes all other possible choices.

As a result one can basically have three different sets of linearizing point transforma-

tions for the given second order nonlinear ODE. This is due to the fact that we can derive

the linearizing transformations from the integrals, namely I1 and I2, and rewriting them as

products of perfect derivative functions. Now each integral gives a linearizing transforma-

tion, through the relation, I1 = dw/dz and I2 = dw1/dz1 and the third pair comes from

I2/I1(= (dw1/dw)(dz/dz1) = −F 2/Ḟ (d(Ḡ/F )/dt)) which is also nothing but a product of

perfect derivatives in the new variables.

The above analysis also reveals the fact that in the case of invertible point transfor-

mations one can have the privilege to rewrite the first integral, I1 = dw/dz, also in the

form Î1 = dz/dw. In other words one can also treat the new independent variable as a

dependent variable and vice-versa. In this sense one can enumerate six sets of linearizing

point transformations for a second order nonlinear ODE, though only three are nontrivial.

2.1.5. Example:

Let us consider the modified Emden type equation (MEE),

ẍ+ kxẋ+
k2

9
x3 = 0, (2.10)

where k is an arbitrary parameter. A vast amount of literature is available on the lineariza-

tion and integrability properties of this equation, see for example Ref. [15,20] and references

therein.

Equation (2.10) admits the following integrals [15,20], namely

I1 = −t+ 3x
kx2+3ẋ

, I2 =
k

6
t2 +

1− k

3 tx
k

3x
2 + ẋ

. (2.11)

Rewriting the first integral I1 in the form

I1 =
1

d

dt

(

k

3 t−
1
x

)

[

d

dt

(

t

x
− kt2

6

)]

, (2.12)

one can get the first pair of linearizing transformation in the form

w = F (x, t) =
t

x
− kt2

6
, z = Ḡ(x, t) =

k

3
t− 1

x
, (2.13)

which is nothing but the ones derived by Mahomed and Leach [20].

Let us now consider the second integral given in (2.11) and rewrite it in the form

I2 =
(3− ktx)2

kx2 + 3ẋ

[

d

dt

(

t

6
− t

2(ktx− 3)

)]

. (2.14)

Identifying (2.14) with (2.7) one can get the second pair of linearizing transformation of the

form

w1 =
t

6

(

1− 3

ktx− 3

)

=
F

Ḡ
, z1 =

x

3− ktx
=

1

Ḡ
. (2.15)
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One can easily check that in the new variables (w1, z1), equation (2.10) becomes a free

particle equation. The third pair of linearizing transformation can also be deduced straight-

forwardly in the form

w2 =
2(3− ktx)

6t− kt2x
, z2 =

6x

6t− kt2x
, (2.16)

from the integral I3 = I2/I1. As pointed out earlier one may treat the new independent

variable as the dependent variable and vice-versa and enumerate three more linearizing

transformations.

2.2. Sundman transformation

It has been shown that the second order nonlinear ODEs can also be linearized by nonlocal

transformations. The simplest example is the Sundman transformation [4],

w = F (x, t), dz = G(x, t)dt, (2.17)

where F and G are arbitrary smooth functions such that the Jacobian J =

(∂(z, w)/∂(t, x)) 6= 0. In the case of Sundman transformation the first integral in terms

of F and G reads as I1 = (Ft + ẋFx)/G(t, x). In other words, we have Ft + ẋFx = I1G(t, x)

which upon integration yields

F (x, t) = I1

∫

G(t, x)dt + C ⇒ w = I1z +C, (2.18)

where C is a constant. Since w is an explicit function of x and t, one can rewrite the latter

and obtain x = F̂ (t, I1, z, C). Substituting this in the expression dz = G(t, x)dt one gets

dz = Ĝ(t, I1, z, C)dt. We observe that in the case of linearizable equations one can always

separate the variables z and t and integrate the resultant equation which in turn gives z

in terms of t. Substituting this back in the expression x = F̂ (t, I1, z, C), where z is now a

function of t, one gets the general solution for the given second order nonlinear ODE.

A similar procedure can be adopted for the second integral also to identify the second

pair of Sundman transformation and to obtain the general solution for the given equation.

2.2.1. Example:

To illustrate the ideas in the case of Sundman transformation let us consider an example

given in Ref. [4],

ẍ− 2

x
ẋ2 +

2x

t2
= 0. (2.19)

Equation (2.19) admits two integrals of the form

I1 =
ẋt− x

t2x2
, I2 =

ẋt2 + 2xt

x2
. (2.20)

2.2.2. Transformation and solution from first pair:

Rewriting I1 as the perfect derivative of two functions of the form I1 =

(d(
∫

x2dt)/dt)−1(d(x/t)/dt) one can identify the Sundman transformation, w = x/t, z =
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∫

x2dt which in turn transforms equation (2.19) to the free particle equation d2w/dz2 = 0

as noted in Ref. [4].

Now we follow the procedure given above and deduce the general solution for this prob-

lem. For the present case equation (2.18) reads as

x = I1zt+ Ct. (2.21)

Substituting (2.21) in dz = t2(I1z+C)2dt and integrating it, one gets z+C/I1 = 3
I1(I2−I2

1
t3)

.

Inserting this back in (2.21), we obtain the general solution of (2.19) in the form

x(t) =
3t

I2 − I21 t
3
. (2.22)

2.2.3. Transformation and solution from second pair:

Now let us consider the second integral given in (2.20). Rewriting this as a product of two

perfect derivatives, namely I2 = (d(
∫

x2dt)/dt)−1)(d(xt2)/dt), one can identify the second

pair of nonlocal transformation of the form

w1 = xt2, z1 =

∫

x2dt. (2.23)

Following the procedure given above one can again deduce the general solution which in

turn exactly matches with (2.22).

2.2.4. Infinite sequence of Sundman transformations:

Next, we identify another interesting result that unlike the fixed number of linearizing

point transformations discussed earlier, one can generate an infinite number of Sundman

transformations for a given second order nonlinear ODE. To demonstrate this we rewrite

the any one of the integral (I1 or I2) in the form

I =
Fn(Ft + ẋFx)

FnG(t, x)
. (2.24)

With this choice one can generate a sequence of Sundman transformations of the form

w = Fn+1(x, t), dz = (n+ 1)Fn(x, t)G(t, x)dt, n 6= −1

w = logF (x, t), dz =
G(t, x)

F (x, t)
dt, n = −1 (2.25)

where n is any integer.

Applying this procedure to the present example (2.19) one can have an infinite number of

Sundman transformations from each integral of motion. For instance, for the above example

(2.19), from I1 we get w = (x/t)n+1 and z = (n + 1)
∫

x2(x/t)ndt and from I2 we obtain

w1 = (t2x)n+1 and z1 = (n + 1)
∫

x2(t2x)ndt (n 6= −1). For n = −1, from I1 we get

w = log(x/t) and z =
∫

xtdt and from I2 we obtain w1 = log(t2x) and z1 =
∫

1/(t2x)dt.



January 26, 2012 9:43 WSPC/INSTRUCTION FILE sca˙rev

8 LINEARIZATION

2.3. Generalized linearizing transformation

Our recent studies show that one can also linearize second order nonlinear ODEs with more

generalized nonlocal transformations [7]. One such generalization is of the form

w = F (x, t), dz = G(t, x, ẋ)dt, (2.26)

where we have included derivative terms also to define the new independent variable. In

fact, we have shown that a class of equations can be linearized only through this kind of

generalized transformation, see for example Ref. [7]. By proceeding as in the case of the

Sundman transformation, one can also deduce these transformations from the integrals of

motion.

To construct the general solution for the original equation one may replace the variables

x and ẋ which appear in G by t so that the resultant equation can be integrated to provide

an expression for z in terms of t. Once w and z are known explicitly in terms of x and t,

just by inverting the free particle equation solution, w(x, t) = I1z + C, one can arrive at

the general solution for the given second order nonlinear ODE.

2.3.1. Example:

Let us consider the same example which we considered in the previous case, that is equation

(2.19) and consider the integral (I2/I1) of the form

I3 =
ẋt4 + 2t3x

ẋt− x
, (2.27)

which in turn yields the generalized linearizing transformation,

w =
1

xt2
, z =

∫

x− ẋt

x2t6
dt. (2.28)

One may note that the new independent variable is in nonlocal form with derivative terms.

In the new variables equation (2.19) is nothing but the free particle equation.

2.3.2. Method of finding the solution:

To obtain z in terms of t we replace ẋ and x in terms of t in the following way. Rewriting

(2.27) for ẋ, we get

ẋ =
x(I3 + 2t3)

t(I3 − t3)
. (2.29)

Now making use the general solution for the free particle equation, w = I3z + C, that is

1/(xt2) = I3z + C, we get

x =
1

(I3z + C)t2
. (2.30)

Substituting (2.29) and (2.30) in the second equation in (2.28), we obtain

dz =
I3z + C

t(I3 − t3)
dt. (2.31)
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Integrating (2.31) one gets z in terms of t explicitly. Substituting the latter now in (2.30)

we arrive at the general solution which is given in (2.22).

2.3.3. Infinite sequence of generalized linearizing transformations:

As in the case of the Sundman transformation one can have an infinite sequence of gener-

alized linearizing transformations for a second order nonlinear ODE. This fact comes again

from the observation that one can rewrite the integrals of motion in the form

I =
Fn(Ft + ẋFx)

FnG(t, x, ẋ)
. (2.32)

Consequently one can deduce a sequence of transformations from I in the form

w = Fn+1(x, t), dz = (n+ 1)Fn(x, t)G(t, x, ẋ)dt, n 6= −1

w = logF (x, t), dz =
G(t, x, ẋ)

F (x, t)
dt, n = −1. (2.33)

For the example given in equation (2.19), from the third integral (2.27), one can deduce a

family of generalized linearizing transformations as

w = (
1

xt2
)n+1, z = (n+ 1)

∫

x− ẋt

x2t6
(
1

xt2
)ndt, (n 6= −1) (2.34)

w = − log(xt2), z =

∫

x− ẋt

xt4
dt. (n = −1) (2.35)

2.4. Contact Transformations

Besides the above three types, certain second order nonlinear ODEs can be linearized

through a contact transformation of the form w = F (t, x, ẋ) and z = G(t, x, ẋ). Interest-

ingly this transformation can also be deduced from our procedure. For illustrative purpose

let us consider the MEE and its first integral again (vide equation (2.11)). The first integral

associated with the MEE (2.10) can also be rewritten in the form

I1 =
d

dt
(
k

6
t2 +

ẋ

(k3x
2 + ẋ)2

). (2.36)

Identifying w = (k/6)t2+ẋ/((k/3)x2+ẋ)2 and z = t as the new dependent and independent

variables, respectively, equation (2.36) can be brought to the form I1 = dw

dz
which in turn

leads to the free particle equation d2w/dz2 = 0. Integrating the latter, we get w = I2 + I1t,

and using the expression dw/dz = dw/dt = (k/3)t−kx/(kx2 +3ẋ), we get (w− k

6 t
2)2/(ẇ−

k

3 t) = (9ẋ)/(k2x2) so that

(I2 + I1t− k

6 t
2)2

I1 − k

3 t
=

9ẋ

k2x2
. (2.37)

Performing a simple integration we arrive at the same solution reported in the literature

[7, 15].
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2.5. Other possible transformations

Needless to say one can look for more generalized version of the linearizing transformations

dicussed in the above sub-sections. Two such obvious choices one may think of will be

(i) w = F (t, x, ẋ) and z =
∫

G(t, x, ẋ)dt and (ii) w =
∫

F (t, x, ẋ)dt and z = G(t, x, ẋ).

To give support for this type of linearizing transformations, we note that the MEE (2.10)

can also be linearized to the free particle equation (d2w/dz2 = 0) and third order linear

equation (d3w/dz3 = 0) through the nonlocal transformations (i) w = xe
∫
xdt, z = t and

(ii) w = e
∫
xdt, z = t, respectively [8]. However, in this paper we restrict our attention only

to the case in which the new dependent variable is not a nonlocal one. We will present a

detailed account of these results elsewhere.

The discussions and demonstrations presented above clearly show that the method of

identifying linearizing transformations from the integral of motion is a versatile one and

can be used for multifaceted applications. In the following we extend the theory to third

order nonlinear ODEs.

3. Third order ODEs

The third order nonlinear ODEs of the form
...
x = φ(ẍ, ẋ, x, t) can be linearized through (i)

point transformation [3, 21, 22], (ii) contact transformation [9, 21], (iii) Sundman transfor-

mation [11,12,23] and (iv) their generalizations [7,13]. In the following we identify all these

transformations from the integrals, linearize the nonlinear ODEs and find their general

solutions.

We recall here that in the case of second order nonlinear ODEs we rewrite the first

integral and obtain a relation dw/dz = I which in turn provides the free particle equation

by differentiation. In the case of third order nonlinear ODEs while rewriting the integral

one can have two choices: Either express it as dw/dz = I or d2w/dz2 = I, as we see below.

In the first case one ends up with a second order linear ODE, while in the second case a

third order linear ODE results. Nevertheless, we discuss the consequences in both the cases.

3.1. From third order to linear second order ODEs

Let us assume that the third order nonlinear ODE admits an integral, I = F (t, x, ẋ, ẍ),

where F is a function of t, x, ẋ and ẍ only. As we did in the second order case let us split

the function F as a product of two perfect derivatives and rewrite it as a first order ODE,

that is [13]

I = f

(

1

G2(t, x, ẋ, ẍ)

d

dt
G1(t, x, ẋ)

)

= f

(

1
dz

dt

dG1

dt

)

= f

(

dG1

dz

)

. (3.1)

Now identifying the function G1(t, x, ẋ) = w as the new dependent variable and z =
∫

G2(t, x, ẋ, ẍ)dt as the new independent variable, equation (3.1) can be recast in the form

I = f(dw/dz). In other words, we have I1 = dw/dz, where I1 is a constant, from which we

get d2w/dz2 = 0. Expressing w and z in terms of the old variables, namely

w = G1(t, x, ẋ), z =

∫

t

o

G2(t
′, x, ẋ, ẍ)dt′, (3.2)
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one can identify an appropriate linearizing transformations to transform the third order

nonlinear ODE into the free particle equation. In the following we rewrite the first integral

as a second derivative and study the consequence.

3.2. From nonlinear to linear third order ODEs

To transform third order nonlinear ODE into a third order linear ODE we rewrite the first

integral as a perfect second order derivative, that is I1 = d2ŵ/dz2 so that d3ŵ/dz3 = 0.

Since we also have I1 = dw/dz, one can get w = dŵ/dz ⇒ ŵ =
∫

w(dz/dt)dt, so that

ŵ =

∫

t

o

G1(t
′, x, ẋ)G2(t

′, x, ẋ, ẍ)dt′ =

∫

Ĝ3(t, x, ẋ, ẍ)dt = G3(t, x, ẋ), (3.3)

where G1 and G2 are as defined above [13]. In other words only in the case G1G2 is an

exact derivative one can rewrite the integral as a perfect second derivative. Then ŵ(t, x, ẋ)

and z are the required variables for the third order nonlinear ODE to be linearized to a

third order linear ODE.

3.3. The nature of transformations

The identified variables ŵ and z are rather general and depending upon the explicit forms

of the variables one can get point transformation, contact transformation, Sundman trans-

formation and generalized linearizing transformations. To demonstrate this let us consider

the transformation, ŵ = G3, z =
∫

t

o
G2dt

′ (vide equations (3.3) and (3.2)), which trans-

forms the given third order nonlinear ODE into a linear equation. Depending upon the

forms of the dependent and independent variables one can have any one of the following

transformations, that is

(1) point transformation: ŵ = G3(x, t) and z = Ĝ2(x, t) =
∫

t

o
G2(t

′, x, ẋ)dt′,

(2) contact transformation: ŵ = G3(t, x, ẋ) and z = Ĝ2(t, x, ẋ) =
∫

t

o
G2(t

′, x, ẋ, ẍ)dt′,

(3) Sundman transformation: ŵ = G3(t, x) and z =
∫

t

o
G2(t

′, x)dt′,

(4) generalized linearizing transformation: ŵ = G3(t, x, ẋ) and z =
∫

t

o
G2(t

′, x, ẋ, ẍ)dt′

and

(5) new type of nonlocal transformation: ŵ =
∫

t

o
Ĝ3(t

′, x, ẋ, ẍ)dt′ and z = Ĝ2(t, x, ẋ)dt.

In the following, we group both the point transformation and the contact transforma-

tion together and treat Sundman transformation and generalized linearizing transformation

separately (since in the latter two cases the new independent variable is in integral form)

and present our discussion.

3.4. Point and contact transformations

3.4.1. Transformation from I1:

Using the first choice (w, z) (Sec. 3.1) one can arrive at the free particle equation from

the first integral and consequently obtain w = I1z + I2, where I1 and I2 are integration

constants (integrals of motion). Rewriting this expression, w(t, x, ẋ) = I1z(t, x, ẋ) + I2,

for ẋ and integrating the resultant equation one gets the general solution for the given

third order nonlinear ODE. In the other case (Sec. 3.2), one ends up with d3ŵ/dz3 = 0

and obtain ŵ = (I1/2)z
2 + I2z + I3 with Ii’s, i = 1, 2, 3, being integration constants. If
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the transformation is of point type, one can straightforwardly replace ŵ and z by t and

x, and express x in terms of t and obtain the general solution for the original equation.

In the case of contact transformations, in which ŵ is an explicit function of ẋ, one can

rewrite the expression ŵ for ẋ and substituting the latter into the w expression, that is

w(t, x, ẋ) = I1z(t, x, ẋ) + I2, and rewriting it for x one can obtain the general solution,

x = f(t, I1, I2, I3).

Now the question arises, as we observed in the case of second order nonlinear ODEs,

whether one can derive any additional linearizing point/contact transformations from the

other integrals I2 and I3 also for the given third order nonlinear ODE. Our analysis shows

that one can deduce a second set of linearizing transformations only from the third inte-

gral (I3) which we present in the following and demonstrate that one cannot extract the

linearizing point/contact transformation from I2 in the Appendix.

3.4.2. Transformation from I3:

Let us now consider the integral I3, and analyse the consequences. From the expression

ŵ = (I1/2)z
2 + I2z + I3, we find

I3 = ŵ − I1
2
z2 − I2z. (3.4)

Rewriting equation (3.4) in terms of G1 and G2 using equations (3.2) and (3.3), we obtain

I3 =
∫

G1G2dt− (
∫
G2dt)2

2G2
Ġ1 −

∫
G2dt

G2

(

G1G2 − Ġ1

∫

G2dt

)

=
∫

G1G2dt+
(
∫
G2dt)2

2G2
Ġ1 −G1

∫

G2dt. (3.5)

As in the previous case one can rewrite the above expression on the right hand side of (3.5)

as a product of two perfect derivatives to obtain a free particle equation or as a second

derivative to deduce a third order linear ODE.

Let us identify the dependent variable by rewriting (3.5) as

I3 =
−1

d

dt

(

2∫
G2dt

)

d

dt

(

G1 −
2
∫

G1G2dt
∫

G2dt

)

. (3.6)

Then the new dependent and independent variables can be chosen as

w1 = G1 −
2
∫

G1G2dt
∫

G2dt
≅ G̃1, z1 =

−2
∫

G2dt
≅

∫

G̃2dt, (3.7)

so that (3.5) can be transformed to I3 = dw1/dz1 ⇒ d2w1/dz
2
1 = 0. Integrating the latter

we obtain w1 = I3z1 + I2. We have chosen the integration constant as I2 rather than I1
which can be proved from equations (3.4), (3.5) and (3.7).

Now we investigate the other possibility, that is to rewrite the integral I3 as a second

derivative of some function. As mentioned earlier this can be implemented only when the
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product G̃1G̃2 is a perfect derivative (vide equation (3.3)). Now we can easily check that

ŵ1 =

∫

t

o

(

G1 −
2
∫

G1G2dt
∫

G2dt

)

2G2

(
∫

G2dt)2
dt′ (3.8)

is an exact integral, and (3.8) can be brought to the form

ŵ1 = 2

∫

G1G2dt

(
∫

G2dt)2
. (3.9)

Consequently we have dŵ1/dz1 = w1. Now differentiating this with respect to z1 and using

the identity dw1/dz1 = I3 we arrive at I3 = d2ŵ1/dz
2
1 , which in turn leads us to d3ŵ1/dz

3
1 =

0. Thus the variables ŵ1 and z1 (vide equations (3.7) and (3.9)) become a second set of

linearizing point/contact transformation for the given third order nonlinear ODE.

We mention here that one may split equation (3.5) as a product of two perfect derivatives

in certain other decompositions as well. However, one may not be able to rewrite the integral

as a second derivative eventhough it can be written as a first derivative in the new variables..

To illustrate this point let us rewrite equation (3.5) in a different form, that is

I3 =
(
∫

G2dt)
3

2G2

d

dt

(

G1
∫

G2dt
−
∫

G1G2dt

(
∫

G2dt)2

)

, (3.10)

and identify the new dependent and independent variables from this as

w2 =
G1

∫

G2dt
−
∫

G1G2dt

(
∫

G2dt)2
, z2 =

−1

(
∫

G2dt)2
. (3.11)

Consequently equation (3.5) can be brought to the form I3 = dw2/dz2 which upon integra-

tion yields w2 = I3z2 + I1. Here we note that the integration constant turns out to be I1.

Thus one gets a second order free particle equation.

Now let us try to rewrite I3 as a second order derivative. In this case, the following

integral

ŵ2 = 2

∫

t

o

(

G1G2

(
∫

G2dt)4
−
∫

G1G2dt

(
∫

G2dt)5

)

dt′ (3.12)

should be evaluated explicitly. However, the integration on the right hand side cannot

be performed explicitly. This implies that one cannot obtain the linearizing point/contact

transformation by rewriting the integral in the form (3.10).

Our analysis shows that one can deduce only two sets of point/contact transformations

for the given third order nonlinear ODE, see Appendix for further details. For the sake

of illustrative purpose we present an example for each of the cases (point and contact

transformations) separately (Examples 1 and 2) in Table I along with the explicit forms of

linearizing transformations from I1 and I3 and the general solution.

3.5. Sundman transformation and generalized linearizing transformation

Since the method of identifying the generalized linearizing transformation and Sundman

transformation has been pointed out earlier in the case of second order nonlinear ODEs

let us move straight away to the method of finding the general solution when the new
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independent variable is in nonlocal form. In the following, we present a method which is

applicable both to generalized linearizing transformation and Sundman transformation.

3.5.1. Transformation from I1:

From (3.1) considering the integral I1 in the form I1 =
dw

dz
, we obtain

G1(t, x, ẋ) = I1

∫

t

o

G2(t
′, x, ẋ, ẍ)dt′ + C ⇒ w = I1z + C. (3.13)

From equation (3.13) and (3.3) we get

ŵ = G3(t, x, ẋ) = I1

∫

zdz =
I1
2
z2 + Cz + I3. (3.14)

Since w is a function of t, x and ẋ one can invert equation (3.13) for ẋ and obtain

ẋ = F̂ (x, t, z, C, I1). (3.15)

Substituting this into equation (3.14) and rewriting the latter in terms of x, one can express

x in terms of t and z, that is x = Ĥ(t, z, I1, C, I3). From the first integral we can express

ẍ = K(t, x, ẋ, C, I1) = K̂(t, z, I1, C, I3). Now substituting the expressions x, ẋ and ẍ in

dz = G2(t, x, ẋ, ẍ)dt we get an ODE in z and t. One can separate the variables z and t and

integrate the resultant equation which in turn provides the general solution for the given

equation.

3.5.2. Transformation from I3:

Rewriting equation (3.14) in the form I3 = ŵ− (I1/2)z
2 −Cz and using equation (3.13) in

it we get

Î3 = I1ŵ − 1

2
w2, (3.16)

where Î3 = I1I3. Rewriting equation (3.16) in terms of the variables G1 and G2 we obtain

Î3 =
1
G2

(Ġ1

∫

G1G2dt− 1
2G

2
1G2). (3.17)

First let us see the possibility of transforming the equation (3.17) into a free particle

equation. With this aim we split equation (3.17) in the form

Î3 =
(
∫

G1G2dt)
3

2

G2

d

dt

(

G1

(
∫

G1G2dt)
1

2

)

. (3.18)

The new dependent and independent variables from (3.18) can be chosen as

w1 =
G1

(
∫

G1G2dt)
1

2

, z1 =

∫

G2

(
∫

G1G2dt)
3

2

dt, (3.19)

so that equation (3.18) can be brought to the form Î3 = dw1/dz1 ⇒ d2w1/dz
2
1 = 0. Inte-

grating the latter we get w1 = Î3z1 + I2.
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From equation (3.3) we get

ŵ1 =

∫

t

o

(

G1G2

(
∫

G1G2dt)2

)

dt′ =
1

∫

G1G2dt
. (3.20)

In other words, we have dŵ1/dz1 = w1. Differentiating the latter with respect to z and

using the identity dw1/dz1 = Î3 one gets Î3 = d2ŵ1/dz
2
1 , which in turn gives d3ŵ1/dz

3
1 = 0.

Thus the variables ŵ1 and z1 become a second set of Sundman transformation/generalized

linearizing transformation for the given third order nonlinear ODE.

In Table I we present one example for each category (Sundman transformation and gen-

eralized linearizing transformation) separately (Examples 3 and 4) along with the explicit

forms of linearizing transformations from I1 and I3 and the general solution.

3.6. A new type of nonlocal transformation

Upon careful investigation, we also find that one can identify a linearizing transformation

in which the new dependent variable is in nonlocal form. This type of linearizing transfor-

mation comes out in the case that the function G2 in (3.2) is an exact derivative of t, that

is G2(t, x, ẋ, ẍ) = Ḡ2t + ẋḠ2x + ẍḠ2ẋ, and the right hand side of equation (3.3) is not an

exact derivative of t, that is
∫

t

o
G1(t

′, x, ẋ)G2(t
′, x, ẋ, ẍ)dt′ =

∫

G3(t, x, ẋ, ẍ)dt. Then the lin-

earizing transformation is modified to the form w = h1(t, x, ẋ), ŵ =
∫

t

o
h2(t, x, ẋ, ẍ)dt and

z = h3(t, x, ẋ). This transformation is different from Sundman transformation/generalized

linearizing transformation, since in the present case the dependent variable (ŵ) is in nonlocal

form whereas in the case of Sundman transformation/generalized linearizing transformation

the independent variable (z) is in nonlocal form. The method of finding the general solution

for this linearizing transformation is as follows:

From the free particle equation we have w = I1z + I2 so that

h1(t, x, ẋ) = I1h3(t, x, ẋ) + I2. (3.21)

From equation (3.21) and (3.3) we get

ŵ =

∫

wdz =
I1
2
z2 + I2z + I3. (3.22)

Since w and z are functions of t, x and ẋ one can invert equation (3.21) for ẋ and obtain

ẋ = F̂ (t, x, I1, I2). From the first integral we can express ẍ = K(t, x, ẋ, I1) = K̂(t, x, I1, I2).

Substituting the expressions ẋ and ẍ in equation (3.22) and rewriting the latter in terms of

x, one can express x in terms of t and z, that is x = Ĥ(t, ŵ, I1, I2). Now substituting the

expressions x, ẋ and ẍ in dŵ = h2(t, x, ẋ, ẍ)dt = ĥ2(t, ŵ, I1, I2)dt we can obtain an ODE

in ŵ and t. One can integrate the resultant equation which in turn provides the general

solution for the given equation. We also present an example for this category (Example 5)

in Table I along with the linearizing transformations and general solution.

Finally, we can extend the above analysis of linearizing transformations for second order

nonlinear ODEs and third order nonlinear ODEs to nth order nonlinear ODEs as well. The

details are as follows.
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4. nth order ODEs

In the case of third order ODEs we demonstrated that one can linearize the given equation

into a second or third order linear ODE. Extending this idea to fourth order ODE one

can demonstrate that given ODE can be linearized to either a second or third or fourth

order ODE by appropriately choosing the dependent variable. This result can be extended

directly to nth order ODE as discussed below.

Let us assume that the nth order nonlinear ODE, dnx

dtn
= φ(t, x, dx

dt
, . . . , d

n−1x

dtn−1 ), admits

an integral I = F (t, x, dx
dt
, . . . , d

n−1x

dtn−1 ). Now we split the first integral in the following form

I = f

(

1

G(t, x, dx
dt
, . . . , d

n−1x

dtn−1 )

d

dt
H1(t, x,

dx

dt
, . . . ,

dn−2x

dtn−2
)

)

= f

(

dH1

dz

)

=
dw1

dz
(4.1)

so that the new dependent and independent variables, namely

w1 = H1(t, x,
dx

dt
, . . . ,

dn−2x

dtn−2
), z =

∫

t

o

G(t′, x,
dx

dt′
, . . . ,

dn−1x

dt′n−1
)dt′, (4.2)

transforms the nth order nonlinear ODE into the second order linear equation d2w1

dz2
= 0. On

the other hand defining the dependent variable in the form

w2 =

∫

t

o

H1(t
′, x,

dx

dt′
, . . . ,

dn−2x

dt′n−2
)G(t′, x,

dx

dt′
, . . . ,

dn−1x

dt′n−1
)dt′

= H2(t, x,
dx

dt
, . . . ,

dn−2x

dtn−2
) (4.3)

one can transform the nth order nonlinear ODE into the third order linear equation d3w2

dz3
= 0.

Continuing further we can generate a sequence of variables of the form

wi =

∫

t

o

Hi−1(t
′, x,

dx

dt′
, . . . ,

dn−2x

dt′n−2
)G(t′, x,

dx

dt′
, . . . ,

dn−1x

dt′n−1
)dt′

= Hi(t, x,
dx

dt
, . . . ,

dn−2x

dtn−2
). (4.4)

Now combining (4.4) with z (vide Eq. (4.2)), one can transform the nth order nonlinear

ODE into the mth order linear equation, that is dmwm

dzm
= 0, m = 3, 4, . . . n.

Depending upon the nature of the underlying transformations they fall into any one of

the following categories, namely

(1) point transformation: wn = Hn(x, t) and z = Ĝ(x, t)

(2) contact transformation: wn=Hn(t, x,
dx

dt
, . . . , d

n−2x

dtn−2 ) and z=Ĝ(t, x, dx
dt
, . . . , d

n−2x

dtn−2 ) =
∫

t

o
G(t′, x, dx

dt′
, . . . , dn−1x

dt′n−1 )dt
′

(3) Sundman transformation: Hn = Hn(t, x) and z =
∫

t

o
G(t′, x)dt′

(4) generalized linearizing transformation: wn = Hn(t, x,
dx

dt
, . . . , d

n−2x

dtn−2 ) and z =
∫

t

o
G(t′, x, dx

dt′
, . . . , dn−1x

dt′n−1 )dt
′.

In the above nonlocality is introduced only in the new independent variables. However

one may also consider the cases where the new dependent variable is in nonlocal form. This

provides the following new additional linearizing transformations, namely
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(5) wn =
∫

t

o
Ĥn(t

′, x, dx

dt′
, . . . , dn−1x

dt′n−1 )dt
′ and z = Ĝ(t, x, dx

dt
, . . . , d

n−2x

dtn−2 )

(6) wn =
∫

t

o

∫

t1

o
Ĥn(t2, x,

dx

dt2
, . . . , d

n−1x

dt
n−1

2

)dt2dt1 and z = Ĝ(t, x, dx
dt
, . . . , d

n−2x

dtn−2 ),

and so on.

5. Conclusion

In the present paper, we have presented a systematic method of finding linearizing transfor-

mations starting from an integral of motion associated with a given nonlinear ODE. To make

the analysis transparent, first we considered a single second order nonlinear ODE. We then

discussed each one of the possible transformations, namely point transformation, Sundman

transformation, generalized linearizing transformation and contact transformation. In some

cases they turn out to be infinite in number. We have also clarified the method of finding

the general solution with the main algorithm for the cases of Sundman transformation, gen-

eralized linearizing transformation and contact transformation. We have extended the same

analysis for third order nonlinear ODEs and presented the outcome in detail. Here also we

have demonstrated that our method yields certain new kinds of linearizing transformations

as well, besides the above ones. Finally the underlying ideas have been extended to nth

order scalar ODEs also.

In the present paper we have restricted our attention only on the scalar ODEs only.

The question which naturally arises is what happens if one extends the algorithm to cou-

pled ODEs. We consider this hard question in the follow-up Paper II and report certain

interesting results.
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A.1. Absence of point/contact transformations from I2 for third order

nonlinear ODEs

In the case of third order nonlinear ODEs we have demonstrated in Sec. 3 that one can derive

the linearizing transformations only from the first and third integrals. In the following, we

show that from the second integral one cannot extract any point/contact transformation.

Integrating the equation d2w1/dz
2
1 = 0 we get w1 = I3z1+ I2 which can rewritten of the

form

I2 = w1 − I3z1 = w1 −
dw1

dz1
z1. (A.1)

Substituting (3.7) into (A.1) and rewriting the resultant equation we get

I2 =
2

G2

d

dt

(

G1

∫

G2dt

2
−
∫

G1G2dt

)

. (A.2)



J
an

u
ary

26,
2012

9:43
W

S
P
C
/IN

S
T
R
U
C
T
IO

N
F
IL
E

sca˙rev

1
8

L
IN

E
A
R
IZ

A
T
IO

N
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ẋ
[9] w = x

ẋ
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ẋ
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I21 + I22 − 2I1(I3 − t)]/I1]

3
...
x = ẍẋ

x
[12] I1 = ẍ

x
w = ẋ, [12] w =

√
2 ẋ

x
,

Î3 = ẍx

2 − 1
2 ẋ

2 Sundman ŵ = 1
2x

2 ŵ = −2
x2 , x(t) =

√
2I2 cosh

√
2I1(t+ I3)

transformation dz = xdt dz = 2
√

2
x2 dt

4
...
x = ẍ

2

ẋ
+ ẋẍ

x
I1 = ẋx

ẍ
Generalized w = x [13] w = x

√

ẋ

[13] I3 = ẋ
2
x

ẍ
− 1

2x
2 linearizing ŵ = ẋ ŵ = 1

ẋ
x(t) =

√
2I1I2 tan

√

I2

I1
(t+ I3)

transformation dz = ẍ

x
dt dz = ẍ

xẋ
3

2

dt

5
...
x = 3ẍ− 2ẋ I1 = (ẋ2 + xẍ− 2xẋ)e−t New w = xẋe−2t w = et(xẋ − x2)−1

+ 3ẋ2

x
− 3ẋẍ

x
I3 = xẍ+ẋ

2
−3xẋ+x

2

ẋ2+xẍ−2xẋ et linearizing dŵ = xẋe−3tdt dŵ = I1e
2t

(xẋ−x2)3 dt x(t) =
√
I2e2t − 2I1et + I3

[3] transformation z = −e−t z = (xẋ− x2)−1
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The new dependent and independent variables then can be identified as

w̄1 =
G1

∫

G2dt

2
−
∫

G1G2dt, z̄1 =

∫

G2dt

2
. (A.3)

In terms of w̄1 and z̄1 one can go back to the original equation, that is

I2 =
dw̄1

dz̄1
. (A.4)

Thus one gets a second order free particle equation from I2.

Next we look for the other case. To rewrite the integral as a perfect second order deriva-

tive, the integral

ˆ̄w1 =

∫

t

o

(

G1G2

∫

G2dt

4
− G2

∫

G1G2dt

2

)

dt′ (A.5)

should be integrated explicitly. While doing so we observe that equation (A.5) cannot be

done so which implies that one cannot extract any linearizing point/contact transformation

from I2.

Integrating (A.4) we obtain

w̄1 = I2z̄1 + I3, (A.6)

in which the integration constant turns out to be I3.

Similarly by rewriting equation (A.2) in the following form

I2 = −(
∫

G2dt)
2

G2

d

dt

(

G1
∫

G2dt

)

, (A.7)

we can identify the new dependent and independent variables as

w̄2 =
G1

∫

G2dt
, z̄2 =

1
∫

G2dt
. (A.8)

Then we can rewrite equation (A.7) in the form

I2 =
dw̄2

dz̄2
. (A.9)

Thus one gets a free particle equation from I2. However one cannot extract the point/contact

transformation to transform the given equation to linear third order ODE. This is because

of the fact that the expression

ˆ̄w2 =

∫

t

o

(

G1G2

(
∫

G2dt)3

)

dt′ (A.10)

cannot be evaluated explicitly which implies that one cannot deduce the linearizing

point/contact transformation from I2. Thus one cannot derive point/contact transformation

from the second integral fro third order nonlinear ODEs.
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