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Abstract

General solutions of nonlinear ordinary differential equations (ODESs) are in general difficult to
find although powerful integrability techniques exist in the literature for this purpose. It has been
shown that in some scalar cases particular solutions may be found with little effort if it is possible
to factorize the equation in terms of first order differential operators. In our present study we use
this factorization technique to address the problem of finding solutions of a system of general two-
coupled Liénard type nonlinear differential equations. We describe a generic algorithm to identify
specific classes of Liénard type systems for which solutions may be found. We demonstrate this
method by identifying a class of two-coupled equations for which the particular solution can be
found by solving a Bernoulli equation. This class of equations include coupled generalization of the
modified Emden equation. We further deduce the general solution of a class of coupled ordinary

differential equations using the factorization procedure discussed in this manuscript.
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I. INTRODUCTION

The modified Emden equation (MEE)
il + aut + fu = 0, (1)

where overdot denotes differentiation with respect to time, has been studied by Painlevé [1]
more than a century ago. He and his coworkers found that () is integrable for two specific
parametric choices, namely (i) 8 = —a? and (ii) 8 = %2. Recently Chandrasekar et al [2]
have shown that this equation is integrable for any choice of arbitrary parameters o and
[B. The same authors have also underlined its immense applicability through its intimate
connections with other well-known systems like the force-free Duffing-type oscillator and the
two-dimensional Lotka-Volterra system. It also has substantial importance in physics itself
as it rears its head in a plethora of varied contexts such as the equilibrium configurations
of a spherical gas cloud acting under the mutual attraction of its molecules and subject to
the laws of thermodynamics [3-6], and in the modeling of fusion of pellets [7]. It is also the
governing equation for the spherically symmetric expansion or collapse of a relativistically
gravitating mass [8-10]. Equation (Il) can also be seen as a one-dimensional analog of the
boson ‘gauge-theory’ equations introduced by Yang and Mills [11, [12]. This equation also
comes up in a variety of mathematical problems such as univalued functions defined by
second-order differential equations [13] and the Riccati equation [11].

Equation () is a particular case of a more general family of equations of the Liénard

type,
i+ f(u)u+ g(u) =0. (2)

The Liénard family of equations is in general not integrable, and only for some specific choices
of the arbitrary functions f(u) and g(u) complete solutions can be found. Its applications and
properties have been discussed in |14, [15]. However, in general, the task of finding general
solutions of such nonlinear second order systems requires the use of complicated, albeit
powerful, procedures like the Painlevé analysis, modified Prelle-Singer procedure, use of Lax
pairs and the associated inverse scattering transforms. Recently Rosu and Cornejo-Pérez
[16, 16] have suggested that at least in the case of some polynomial nonlinearities particular

solutions may be found rather simply by an elegant method of factorizing the system () into



two first order differential operators. Berkovich [18] has explored the factorization technique
for solving scalar ODEs in substantial detail. The factorizing procedure is also used to
obtain the travelling wave solutions of certain nonlinear partial differential equations such as
the Korteweg-de Vries-Burgers equation, Camassa-Holm equation, Kolmogorov-Petrovskii-
Piskunov equation [16, [19]. However this approach has not yet been applied to the study
of coupled systems. Our motivation in this present study is to extend this approach to the
study of coupled systems and identify which systems allow solutions to be found by such
means.

In our present paper we study a system of two-coupled Liénard type equations,

i+ fi(u,v)u+ folu,v)0 + g1(u,v) =0, (3a)

O+ fa(u,v)i+ fi(u,v)0 + ga(u,v) =0, (3b)

and investigate whether specific forms of this generic equation allow solutions to be found by
the factorization technique. Here we show that this can be done by factorizing the system
@) in terms of first-order differential operators by generalizing the procedure of Reyes and
Rosu [20] for scalar second-order ODEs. We find that for the following general class of

equations finding a solution is as simple as solving a Bernoulli equation in one variable:

it — bamahy + by&xby + (brghy — b2¢1)ﬁ + (b1the — bathy )b+ 8[ba(n — dy) (R + dy)y

—b1(§ - dz)(f_l + d2)1ps) = 0, (4a)
U+ a277¢1 - alflp'z — (@19 — a2w1)7l—(a1¢2 - azlbl)ﬁ — dlaz(n — dl)(ﬁ +dy1 )i
—a1(€ —dy)(h+ da))s] = 0, (4b)

where 119 = a1 92u + b1 2V + c12, 7, & are arbitrary functions of u and v, h is an arbitrary
homogeneous function in ¥, and vy, 0 = a1by — asby and d; 2, a1 2, b1 2, c1 2 are all constants.

For suitable choice of arbitrary functions and parameters, namely n = h, & = h, o =

u, Py =vand h = —(kyu+ kov), where k; and k, are constants, this reduces to the form
i+ 2(kyu + ko)t 4+ (ki + kot)u + (kyu + kov)?u + wiu = 0, (ha)
O 4 2(kyu + kov) 4 (ki + kot)v + (kru + kav)?v + wiv = 0, (5b)

where wy 9 = dj». This system has been studied in the literature [21] and shown to be

completely integrable by Chandrasekar et al [22]. Also ({) is a two-coupled version of the



special modified Emden type equation with additional linear forcing,
i + 3kut 4+ k*u® 4+ w?u = 0. (6)

This equation exhibits the isochronous property [23].

The plan of the paper is as follows. In Section [T we investigate the factorization technique
for the two-coupled system (3) in terms of first order differential operators. In section [[III
we introduce a generic algorithm to identify classes of coupled Liénard type equations (3]
whose solutions can be found by simple methods and chalk out the procedure to identify
a class whose solution may be found in terms of the Bernoulli equation. In section [V]
we discuss the procedure to deduce the general solution of a class of coupled ODEs using
the factorization procedure. We illustrate the procedure by considering a specific equation.
Finally in section [Vl we conclude by summarizing our main results. In appendix A we prove
that the functions 5 in Eqgs. (@) should be linear in v and v. In appendix B, we discuss
the factorization procedure for the equations (23]) in which h; is a function of ¢); alone and
hs is a function of ¥5 only. In appendix C, we show that the procedure to obtain the general
solution for coupled ODEs discussed in this paper can also be straightforwardly used to

obtain the general solutions of the scalar equations discussed in Ref. [16].

II. FACTORIZATION OF THE GENERAL CASE

If the coupled Liénard system (BaH3D)) can be factorized in the form:

[D = é1(u, 0)][D = da(u, v) ¢ (u, v) = 0, (7a)
[D = ds(u, 0)][D = da(u, v)]¢ha(u, v) = 0, (7b)

where D = Y12 are arbitrary functions of w and v, and ¢; are functions of v and v to

d
dt?
be determined, then the problem of finding the general solution of (B]) may be addressed by

simultaneously solving the following set of first order differential equations:

[D = ¢1(u, v)]Pr(u,v) =0, (8a)
[D = ¢3(u,v)| Pa(u,v) =0, (8b)
[D = ¢2(u, v)|vhi (u,v) = Pr(u,v), (8c)
[D = da(u, v)[Y2(u, v) = Po(u,v). (8d)



Also, as pointed out by Rosu and Cornejo-Pérez [16] for the scalar case, the problem of

finding particular solutions to Eq. (B) can be addressed by solving the reduced equations,

[D - ¢2(u7 U)]wl(uv U) = 07 (9&)
[D - ¢4(u7 U)]w2(u7 U) = 07 (9b>

which may in some cases be relatively simple.

We are thus motivated to explore the question: For what forms of f; and g; in (3) can the
system of coupled equations be explicitly factorized in the form (7)?. To answer this question
we proceed as follows.

By expanding ([7) and manipulating the resulting equations appropriately, we get the
equivalent of ([3]) as

U“‘%[(wluud)h) - w2uu¢lv)u2 + (¢1uvw2v - ¢2uvw1v)ui} + (wlvvaU - ¢2vvw1v)i}2]

+ frit i+ G =0, (10a)
U+%[(¢luuw2u - ¢2uuw1u)u2 + (djluvd@u - 1/}2m)1/}1u)7'“‘) + (1/}11’”1/}2“ - 1/}2”1’1/}1“){]2]
+ i+ fio + o =0, (10b)

where the functions

fl = %[((bii + ¢4)w2uwlv - (¢1 + ¢2)7~p11ﬂ/}2v - ¢2u1/}1w2v + ¢4u¢2wlv]7 (11&)

fo= %[(Cb?, + P4 — O1 — G2) V120 — D2ut12y + PavtPatry], (11b)

f3 = %[%uwﬂ/&u — (¢34 Ps — d1 — D2)V1u2u — GauWV214], (11c)

fi= %[(Cbl + P2)2ut10 — (3 + Gu)1u20 + G20tP1V2u — Par V21, (11d)

g1 = % [P102020001 — P304P1012] (12a)

G2 = 5 [Bs0wtnatts — drubath] (12b)

and the quantity

0 = Y12y — Vout1, 7 0. (12¢)



Comparing Eq. ([B]) with Eq. ([I0), we find ¢1 24,

one can assume

= Y1 2u0 = V1,200 = 0. This implies that

P12 = arou + by ov + C1, (13)

without loss of generality. Here a;, b;, and , ¢; are arbitrary constants. Using (I3)) in (I2d), we

infer that 8 = a;by — ash; = constant. Further, defining the variables f; = 6f;, i = 1,2,3,4
and g; = 0g;, j = 1,2, we obtain the relations
arg1 + biga = ¢10291, azg1 + baga = P304t)a. (14)
From the above two equations in (I4]) one can solve for ¢; and ¢3 as
I {a191 + 5192} 1 {@91 + 5292}
- , = | === =g 15
N b2 { (1 %5 N (O (15)

Using (I3)) to eliminate ¢; and ¢3 in (II]) one can, after some manipulations, get a set of

PDEs which determine ¢o and ¢4:

a [%ﬁf } = —ar(ags + bigs) — (avfy + b fs)bath, (16)
a [%@”f } — by(argn + biga) — (avfo + byfa)bath, (17)
% [ﬁﬁ } — —as(asgs + baga) — (asfs + bafs) o, (18)
a% {@T%} — —by(asgs + bag) — (anfo + bafa)bat. (19)

Compatibility of (I6) with (I7) and of (I8) with (I9) requires that

A Tan(gy + bigs) + (@ fi + b fs)om] = o ulangs + bigs) + (anfo + b fi) o]
£ a1+ baga) + (anfi + b fs) ] = a o Dalaagn + bage) + (afo + baf )],
which implies
0B 0% (afo b fut o fuli)n b~ i =0, (200)
wm% - wzfg% t (anfs = bofs + Lo — foult)n + baghu — asgo =0, (20D)
where
g1 = a191 + b1 go, Go = 2971 + baga, (21a)
fi = anfi + bifs, fo=aifo+bifi, (21Db)
fs = asfr + by fs, f1=aafs + bafs. (21c)



Note that in Eq. (2I]), the various functions f;s, i = 1,2,3,4 and g;s, ¢ = 1,2, are just the
coefficients occurring in the coupled ODE (3]).

We thus have two first order linear PDEs (20al) and (20D) for ¢ and ¢4, respectively,
which may be solved to find the explicit forms of ¢ and ¢4. When this is found one can find
the explicit forms of ¢; and ¢3 from (I5]), which imply that the factorization (7)) is complete.

Thus we have answered the question posed at the beginning of this section. The system of
coupled Liénard type equations (B]) can be factorized in the form () if and only if the pair of
first order PDEs(20) can be solved explicitly for ¢ and ¢4 in terms of u and v. Conversely,
for every solution ¢, and ¢, for (20), there exists a factorization (7)) corresponding to a

system of coupled second order nonlinear ODEs of the form (3]).

III. OUTLINE OF THE PROCEDURE

We next turn to the problem of finding solutions by using the factorized form([7). If the
lower order forms () and (@) can be associated with some known system of equations for
which the solution is known, then the solution of the original coupled second order system (3]
can be found. With this motivation we explore the inverse problem: Given some particular
forms of ¢;, i = 1,2,3,4, satisfying Eqs. (I3) and (20), what is the subclass of two-coupled
Liénard type systems (I0) that can be factorized to the form (8) and (3), for some choice of
arbitrary constants a;, b;, ¢; ¢

We start off by identifying such an interesting choice of ¢;.

Rewriting (@) we have

U1 = goibr, Yo = Puiby (22)

We consider the case that the reduced equations are of the form

U1 = (w1 + by (1, o) )iy, (23a)
Py = (wy + ha(v1, o) )iba, (23b)

where w; and wy are constants, so that ¢o = wy + hy (Y1, 19), G4 = wo + ho(1h1,1s). If hy is
independent of ¥y and hs is independent of 1)1, then the reduced equations are uncoupled
and the problem of finding particular solutions reduces to the much simpler problem of

solving a pair of scalar first order ODEs. An example of this is dealt with in Appendix [Bl

7



Otherwise if hy = ahy where « is a constant then one integral can be found by eliminating
hy from (23a) and (23D) as
bty — Yoty = (awy — wa)ihreba. (24)

Eq.(24) can be rearranged to

a% - % = (aw; — wy). (25)

Integrating Eq.(20]) one gets
P = Creler w2l = c(t)ahy, (26)

where C) is the integration constant, c(t) = Cjelewr—2)t,
Let us now consider the specific case hy = ahy = h(1,13), where h(11,15) is a polyno-

mial containing N terms and is of the form

N
h(r, 1) = Z kb g, (27)
i=1
where p; and ¢; are real constants. Using the relation (26]) and rewriting the above equation
we get
N N
h=7 ki(c(t)ga)" 45 (28)

i=1
The above polynomial becomes homogeneous for the condition 2 + ¢; = m, where m is a

constant,
N
Py
h=45> kic(t)s. (29)
i=1
Next, substituting (I3]) in (I0) and simplifying we get

i+ % |:(Cl2b1¢3 +wy 4+ h) — arba(¢r +wi + ) + (bihe — bzwl)hu] U

+% {5152(6253 — 1+ wy —wp) + (1 — b2¢1)hv:| 0
+% {62051(001 + h)1 — bids(we + h)%} =0, (30a)

b — % [a1bz(¢3 +wy + h) = agbi(¢1 +wi + h) + (a1 — aﬂbl)hv} v

—% {Chaz(% — P+ we —wip) + (a1 — azwl)hu} U

—% [a2gl(wl + h)Y1 — ar1ga(wse + h)%] =0, (30Db)

8



where h is given by (29) and ¢; and ¢3 are given by

a191 + b1go azg1 + bago
_ : = = Tede 31
N %= (3)
Redefining now the constants and functions as w; = ddq, wy = 0do, o1 = o(n —

dy), o3 = 0(§ — da), h = 6h, where § = ayby — asb; =constant, we find that (30)
reduces to the coupled Eq. (). A particular solution of (B0 can be obtained by solving the

following Bernoulli type equation
U = wothy + d(t)Py T, (32)

where d(t) = SN | kie(t) s, which is obtained by substituting (2J) in Eq. (235). Equation
[B2) admits the following explicit solution

ol v) = o — (33)
[Cy —m [ emtd(t)dt] ™

where Cy is an integration constant. and, since ¢ = 19c(t), we have

1(u,v) = c(t)e . 34
file) [Cy —m [ emeatd(t)dt] 3

Inverting the relation (I3]) one can obtain v and v as

w= 2 ) - s - ), (350)

v = %(% —c3) — %(% —c1), (35Db)

Using the explicit forms of 11 and v, as given by Egs. (33]) and (34]), we can then write

wat wat
U:@ C(t>€ 3 —C —ﬁ < 1 —C2 7(36)
0\ [Cy—m [emestd(t)dt] ™ 0\ [Cy—m [ emestd(t)dt] ™
wat wat
U:% € 1 — Cy —% C(t)e 1 -G 7(37)
0\ [Cy—m [ emntd(t)dt] 0\ [Cy—m [ ematd(t)dt] ™

where C in ¢(t) (vide Eq. (26])) and Cy are arbitrary integration constants.

A. An example : Case ¥ = u, o =v

We now consider a specific equation belonging to the class of coupled ODEs ([B0) and

obtain a particular solution using the above factorization procedure. For illustrative purpose,

9



let us consider the simple case 1; = u and 95 = v for which Eq. (B0L) reduces to the form
it — uh + [h + w1 + ¢1]i — hyui+gru(h + wi) =0, (38a)
B — hvit + vh + [h + ws + ¢a]i+d3v(h + ws) = 0. (38b)
Choosing the arbitrary functions
o1 = — (kiu + kov) — wy, o3 = —(k1u + kov) — wo,

we find (B8] reduces to the two-coupled version of the modified Emden equation ([H), studied
in the literature [21,122]. Substituting these forms of ¥4, ¢, and h in (B5) we get the following

particular solution of (&)

C’lwlwgewlt
u= , (39a)
CQ(Ul(A)Q + kgwle“’?t + C’lklwge“lt
Wy woe2!
e (39D)

v Cowiwy + kowiev2t + Crkjwqoewtt’
where ('} and C5 are arbitrary constants. One can check that this particular solution can be
obtained from the general solution (13) given in Ref. [21] after fixing two of the integration
constants.

We are also exploring further how the forms (23]) can be generalized so that more general
system belonging to the class (B can be brought into the above formalism. The results will

be presented in future.

IV. METHOD OF CONSTRUCTING GENERAL SOLUTION

In the previous section we have obtained the particular solutions for a class of coupled
second order ODEs by factorizing them. In this section we obtain the general solution of
a subset of these coupled nonlinear ODEs ([I0) by factorizing them for suitable parametric
choices. For this purpose we assume ¢; = ¢ + x;, ¢ = 1,2,3,4, where x;, ¢ = 1,2,3,4,

are arbitrary constants and ¢ is some arbitrary function of u and v. Then the equation (8]

becomes
[D = ¢(u,v) = xa]Pi(u,v) =0, (40a)
[D — ¢(u,v) — x3]P2(u,v) =0, (40b)
[D — é(u,v) — xo|t1(u,v) = Pi(u,v), (40c)
[D — ¢(u,v) = xaltb2(u,v) = Pa(u,v). (40d)



This implies that the following relation holds good :

%’ — %

D= )= 1, 7=1,2 41

() -np+ri- (41)

where Y1 = (x2 —x1) and x2 = (x4 — x3). Upon integrating equation (4I]) we find a solution

of the form
. . 1

Yi_ eXit (Ij - _—e_th), j=1,2 (42)

P Xj

where I; and I5 are two integration constants. Using (42]), one can rewrite Eqs. (40d) and

HOd) as

P D —Xjt
_J:M_gb(uav)_)%j: ‘ ) ]:1a2 (43)
¢] w] <I _ _e th)
Xj
where x1 = x2 and X2 = x4. From ([43]) we get
D[i1] — D[yp] . . d L — g e
_ — — = (1 X2 ) 44
by o) = s 7 Lo (44)
Integrating equation (44)) we obtain
I, — Lexaty
oy = —X ; e gy = a(t)yy, (45)
[2 — %6 —X2

where
— Lexat
a(t) = 411 X0 © 1 e(X2=X1)t+1s
IQ - é€ X2t
Let us assume that the function ¢(u,v) = h(¢r, 1) = h(u,v), where h(1)1,1) is given in

(27). Now the equation for ¢; (see Eq. ([@3)) becomes

i (- Sl Lo v,

where
N
= Z kia(t)*, m = p; + g,

ko, k1, ..., ky are arbitrary parameters.

Equation (46]) has the explicit solution
|i[ — 6 Xlt:| e_mf(lt
Ur1(u,v) = : (47a)
|:I4 — mf |:Il — %6_21{| emfﬁtS(t)dt]

2=

11



a(t) [Il — %e_fﬁt] e~ mxit
Yo(u,v) = T (47D)
|:I4 — mf |:Il — %6_21{| emfﬁtS(t)dt]

From the relations (I3]) we find

b b
U= 32(% —01)—31(%—02)7 (48)
a a
v = —1(% —C3) — —2(¢1 —c1), (49)
) )
where 1; and v, are given by Eq. (@), 6 = a;bs — asb;. Note that the above solution

contains four arbitrary constants Iy, I, I3, and I, (with I, I3 appearing in the function

a(t), see Eq. ([AH)) so that ([@Ta))-(47h) constitute the general solution.

A. Example

We illustrate the above procedure by considering the following equation belonging to the

class of equations given by (B0),

i+ koud 4 (3kiu + 2k — x1 — X2)i + kguv(kav — x1 — x2) — kF1u*(x1 + x2 — 2kav)
+Efu® + xixou = 0, (50a)
b+ kvt + (3kov + 2k1u — X3 — X4)0 + kruv(kru — x5 — xa) — k2v? (X3 + x4 — 2k10)

+k30° + xaxav = 0, (50b)

which can be factorized as

[D + (kyu + kov) — x1] Pi(u,v) =0, (51a)
[D + (k1u + kav) — x3] Pa(u,v) = 0, (51b)
[D + (kyu + kov) — x2] u = Pi(u,v), (51c)
[D + (kiu + kov) — x4] v = Po(u,v). (51d)
We obtain the following relations from the above equations,
u U
v v
D|l—=)=xa=+1 2
(5) —wp+1 (520)

12



where Y1 = x2 — x1 and X2 = x4 — X3. Integrating we get

_ 1 . 1 .
%1 _ pat ([1 _ ie_X1t)’ %2 — pXat <]2 _ %e—th), (53)

Using these relations in (51d) and (51d) we get

U e~ Xt

— 4 (kyu + ko) — ¥y = —, (bda)
u ([1 — %je_Xlt)

v e~ X2t

; + (k:lu + k’gv) — )22 = . (54b)

([2 — %€_X2t)

Integrating the above system of equations we get

X

]1 — ;6_211‘/
v = +
[2 — _—€_X2t

X2

}6(22—21)t+13u = a(t)u (55)
Substituting for v in (54al) we get

d 1 .
U= )A(lu - — (log []1 - _—e_Xlt:|) U+ (1{51 + kga(t))uz. (56)
dt X1

We wish to note that the above equation falls under the Riccati equation which upon inte-

gration leads to the following general solution,

(Il — %e‘*lt> extt
X1

{14 + [ ([1 - %e_fﬁt) eXit(ky + kQa(t))dt} |

u =

Substituting for u in (B3]) we get

a(t) (]1 _ %6—%) eXit
v = (58)

{14 + [ (11 - %e—fﬁt> exit (ky + kga(t))dt} |

We note here that the above solution contains four integration constants Iy, I, I3 and I,
and this solution can also be obtained by following the procedure discussed in Ref. [24].
We find that the general solution of a restricted class of equations, a subset of the class of
equations (30) , which can be factorized in the form (40]) can be obtained using the above
procedure. For the case of scalar second order ODEs discussed in Ref. [16], obviously we
can apply the above procedure straightforwardly. The details are given in Appendix C. It
should be possible to generalize the above procedure to more general cases than (40), though

we do not attempt this in this paper.
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V. CONCLUSION

In this paper we have identified a system of coupled Liénard type equations which can be
factorized in terms of first order differential operators. We have shown that a particular so-
lution of equations belonging to this class of coupled Liénard type equations can be obtained
by solving a Bernoulli type equation. This generic class of ODEs contains the a coupled
version of the modified Emden equation which has been recently studied in the literature.
We have also shown that the general solution of a restricted class of equations can also be
obtained using this procedure of factorization. Several generalizations of our study can be
proceeded with, by relaxing the various restrictions mentioned in the present work. These
are being pursued currently.

In addition to this, one can extend this procedure to higher order scalar/coupled ODEs
and obtain their corresponding particular/general solutions for suitable choice of the pa-
rameters. One can also straightforwardly extend this procedure of factorization to a system
of N coupled second order ODEs. The factorization of N coupled second order ODEs will
result in a system of 2N coupled first order ODEs similar to (0). From these 2N first order
ODEs one can obtain a relation similar to Eq. (@Il with j = 1,2,..., N. Integrating this
system of equations one can obtain the general solution of the underlying N coupled second

order ODEs.
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Appendix A: Proof of ¢1,2uu = ¢1,2uv = ¢1,2vv =0

Requiring that the coefficients of the higher powers of the derivatives contained in the

bracketed terms in (IOD]) be zero we get

(wluuw%) - w2uuw1v)u2 + (¢1uv¢2v - ¢2uv¢lv)ui] + (¢1vv¢2v - ¢2vv¢1v)b2 =0 (A]-)
(wluud@u - 7~p2uu1/}1u)u2 + (¢1uvw2u - Q/JQM,th)?'M‘J + (wlvvw2u - 1/}2vv7~p1u)7‘)2 = 0 (A2>

2

Since u and v are independent the coefficients of 42, 41, ¥? in each equation must individually

be zero.

= wluud@v = w2uuwlvu ¢1uuw2u = 1/}2mﬂ/}1u7
wluvd@v = w2uvwlva ¢1uvw2u = 1/}2mﬂ/}1u7
¢1vvw2v = w2vv¢lv> ¢1vv¢2u = w2vvw1u> (AB)

It w2uu> w2uv> w2vv 7é 0 then (M) lmphes

wluu _ wluv _ ¢1UU _ % _ wlv
w2uu w2uv ¢2vv ¢2u w2v

The last equality in (Ad)) implies 6 = 11,99, — 2411, = 0 which is not permissible in (I0D)
as in that case the leading order terms i, v vanish and the resulting equation is first order.
Thus Youu; Youw, Yave = 0.

If Youus Youvs Yove = 0 but one of Y1y, V1w, V10w # 0 then from Eq ([Ad)) 1y, = 1y, = 0

which again implies 6 = 0 which is inadmissible. Thus ¥1 2uu = V1,200 = V1,200 = 0.

(A4)

Appendix B: Separable reduced equations
We consider the case where hy and hy in ([23al230) are of the form
hy = k)b, hy = kothd. (B1)
The reduced equations are then a pair of Bernoulli equations in v and v

lb'l = w1y + kﬂﬁfﬂa
o = wathy + kothd . (B2)
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For the class of systems for which (22)) is equivalent to (23al23D]) with h; and hy given by
(BI)) explicit solutions can be found relatively simply by solving (B2)). Using the condition
¢y = wi + k1Y and ¢y = wo + kotyg and (IX) in (IOD]), we identify this class of systems to
be

.1 _ _ )
i 5| (asbi 4l + 1D08) = st -+ -+ 00D
1 .
+5 {5152(92 — 1 +wr —wi + ka(q 4+ 1)Y3 — ki(p+ 1)¢f)] v
1
+5 {b2gl (w1 + k1)) — biga(wa + k2¢g)¢2} =0, (B3a)

1 )
v — g |ia1b2(g_2 + wo + ]{72((] + 1)1P(21) - CL251(9_1 + w1 + kl(p + 1)¢§):|U

—% {alag(g‘g — 1 +we —w +ko(qg+ 1) — ki(p+ 1)%)} (
—% {@g‘l(wl + k)b — aygolws + kziﬁg)%} =0, (B3b)

where 1, and v, are given by (I3) and g; and g are given by (31I).
The solution to (B2) is found using ([B3H34)) to be

P = k1(01€_pw1t - ﬁ)} )

%1
Vg = |ko(Coe™ %2t — i)] .
L W2

Using (35D) we get an explicit solution for u and v as

b b -
1 (e R R (I

V= —% <|:k1(016—pw1t — wﬁl):|

where C and Cy are integration constants.

.
|
o
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~___—
+
|2
VR
| —
™
(Y]
—~
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N
2
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N—
_
|
Q=
|
@)
(Y]
~___~

Appendix C: General solution of scalar ODEs

Using the factorization procedure Cornejo-Pérez et al. in Ref. [16] have obtained par-
ticular solutions of a class of scalar second order ODEs. Now, we show that the procedure
of obtaining general solution discussed in Sec. [V]is also applicable to scalar second or-

der ODEs. We demonstrate this by considering a specific equation discussed in Ref. [16]
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and obtain its general solution through factorization for suitable parametric choice. Let us

consider the following equation
Z+ (a — azP)i + Bz (1 — aP) (2P — b) =0, (C1)

which is obtained from the Burgers-Huxley equation [16] using a traveling wave reduction.

2

We find that for the parametric choice § = 45z, b= —2(p+2)—1, a=-1p+2)(azx

(x2 — x1), Eq. (CI) can be factorized in the form
(D—¢—x1)P =0, (C2a)
(D—¢—x2)z =P, (C2b)

where D = %, o= (pf“ma:p — %(Xl + x2 +a), x1 and xo are arbitrary parameters. From Eq.

(C2) and following the procedure discussed in Sec. [Vl we get

x x
D (—) = (X2 — Y1) = + 1. C3
7Y = )5+ (©3)
Integrating we obtain
T e—x)t < 1 _(X2—X1)t)
—=e L ———c¢ . C4
P ey (©

Rewriting Eq. (C2)) and substituting for g from the above equation we get

Pl 4 o= | ()
x <[1 — 1 e(m—xzﬁ)

(x2—x1)

where ¢ = ﬁ:ﬂp — %(Xl + X2 +a). Integrating the above Bernoulli type equation we obtain

<]1 — 760(17)(2”) 6_%(X2—X1+a)t

X2—X1
_ p p
(12 -pf (Il - —e(;;_fjf) e—§<><2—><1+a>tdt>

Similarly one can obtain the general solution for all the other equations discussed in Ref.

(C6)

x(t) =

[16] for suitable choice of parameters using the procedure discussed here.
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