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Experimental observations of typical kinds of synchronization transitions are reported in unidi-
rectionally coupled time-delay electronic circuits with a threshold nonlinearity and two time delays,
namely feedback delay τ1 and coupling delay τ2. We have observed transitions from anticipatory
to lag via complete synchronization and their inverse counterparts with excitatory and inhibitory
couplings, respectively, as a function of the coupling delay τ2. The anticipating and lag times depend
on the difference between the feedback and the coupling delays. A single stability condition for all
the different types of synchronization is found to be valid as the stability condition is independent
of both the delays. Further, the existence of different kinds of synchronizations observed experimen-
tally is corroborated by numerical simulations, and from the changes in the Lyapunov exponents of
the coupled time-delay systems.

PACS numbers: 05.45.Xt,05.45.Pq

I. INTRODUCTION

Time-delay is a veritable blackbox which can give rise
to several interesting and novel phenomena such as multi-
stable states [1], amplitude death [2], chimera states [3],
phase flip bifurcation [4], Neimark-Sacker type bifurca-
tions [5], etc., which cannot be observed in the absence
of delay in the underlying systems. Further, it has also
been shown that delay coupling in complex networks en-
hances the synchronizability of networks and interest-
ingly it leads to the emergence of a wide range of new col-
lective behavior [5, 6]. On the other hand, it has also been
shown that connection delays can actually be conducive
to synchronization so that it is possible for delayed sys-
tems to synchronize, whereas the undelayed systems do
not [5]. Enhancement of neural synchrony, that is, the ex-
istence of a stable synchronized state even for a very low
coupling strength for a significant time-delay in the cou-
pling has also been demonstrated [7]. Time-delay feed-
back has been used to generate high-dimensional, high-
capacity waveforms at high bandwidths to sucessfully
transfer digital information at gigabit rates by chaotically
fluctuating laser light travelling over 120 kilometers of
a commercial fibre-optic link around Athens, Greece [8].
Time-delay feedback control has also been used to control
pattern formation in neuroscience to prevent the patho-
logical activity in cortical tissues [9, 10].
Synchronization in dynamical systems with time-

delay feedback and in intrinsic time-delay systems
with/without time-delay coupling has been receiving cen-

tral importance during the past decade both theoreti-
cally and experimentally [5–28]. However, experimental
investigations/confirmations of theoretical results of syn-
chronization transitions in coupled time-delay systems re-
main lagging in the available literature. Nevertheless, ex-
perimental investigations on differerent kinds of synchro-
nization transitions in semiconductor laser systems with
a delay feedback have been carried out recently [5–21].
However, experimental investigations in intrinsic time-
delay systems, whose dynamics cannot be realized in the
absence of time-delay such as the paradigmatic Mackey-
Glass or Ikeda systems, using electronic circuits remain
poorly explored and very few experimental results have
been reported so far [22–25].

In particular, real time anticipatory synchronization of
chaotic states using time-delayed electronic circuits with
single-humped smooth nonlinearity was demonstrated
by Voss [22]. Dual synchronization of chaos in two
pairs of unidirectionally coupled Mackey-Glass electronic
circuits with time-delayed feedback was demonstrated
in [23]. These authors have also investigated the re-
gions for achieving dual synchronization of chaos when
the delay time is mismatched between the drive and re-
sponse circuits. The effect of frequency bandwidth lim-
itations in communication channels on the synchroniza-
tion of two unidirectionally coupled Mackey-Glass analog
circuits was demonstrated in [24]. Recently, experimental
demonstration of simultaneous bidirectional communica-
tion between two chaotic systems by means of isochronal
synchronization was carried out using Mackey-Glass elec-
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FIG. 1: (Colour online) The nonlinear function f(x). (a)
Plot of the piecewise linear function f(x) given by Eq. (1).
(b) Measured characteristic curve of the nonlinear unit ND
from Fig. 3, UinvsUout. Vertical scale 2V/div., horizontal
scale 1V/div.

tronic circuits with time-delay feedback [25].
Further, experimental observation of both anticipated

and retarded synchronization has been demonstrated us-
ing unidirectionally coupled semiconductor lasers with
delayed optoelectronic feedback [21]. It has been shown
that depending on the difference between the transmis-
sion time and the feedback delay time the lasers fall into
either anticipated or retarded synchronization regimes,
where the driven receiver laser leads or lags behind
the driving transmitter laser, confirming the theoreti-
cal works of Voss and Masoller [29–31]. Recently, we
have demonstrated theoretically the transition from an-
ticipatory to lag via complete synchronization as a func-
tion of the coupling delay with suitable stability condi-
tion in a system of unidirectionally coupled time-delay
systems [27]. Further, it was also shown that anticipa-
tory/lag synchronizations can be characterized using ap-
propriate similarity functions and the transitions from a
desynchronized state to an approximate anticipatory/lag
synchronized state is characterized by a transition from
on-off intermittency to periodicity in the laminar phase
distribution settling the skepticism on characterizing an-
ticipatory/lag synchronization using the similarity func-
tion as discussed by Zhan etal [32].
In the present manuscript, we will demonstrate exper-

imentally all the aforesaid synchronization transitions,
along with their inverse counterparts with inhibitory
coupling, in a unidirectionally coupled time-delay elec-
tronic circuit with a threshold nonlinearity supported by
an appropriate theoretical analysis. Specifically, in this
manuscript we demonstrate the transition from antici-
patory to complete and then from complete to lag syn-
chronizations as a function of the coupling delay, for a
fixed set of other system parameters, in a unidirection-
ally coupled piece-wise linear (designed using a threshold
controller) time-delay electronic circuit. Further we will
also show the existence of their inverse counterparts, that
is the transition from inverse anticipatory to inverse lag
synchronizations via inverse complete synchronization,
with inhibitory coupling. The importance of inhibitory
coupling and its intrinsic role in neural synchrony are dis-

DELAY

ND
R0

C0

U(t)

U(t - Td)

FIG. 2: Circuit block diagram of the delayed feedback oscil-
lator with a nonlinear device unit (ND), a time delay unit
(DELAY) and a lowpass first-order R0C0 filter. U(t) is the
voltage across the capacitor C0 and U(t − Td) is the voltage
across the delay unit (DELAY).

cussed in [28, 33, 34]. Furthermore, we will also show that
neither inverse complete synchronizations can be realized
with an excitatory coupling nor direct/conventional syn-
chronizations can be realized with an inhibitory coupling
as a result of the nature of the nonlinear function and the
parametric relation obtained from the stability analysis
using the Krasvoskii-Lyapunov stability theory. Numer-
ical simulations are presented in confirmation with the
experimental results and the transitions in the spectrum
of Lyapunov exponents of the coupled time-delay systems
also confirm the observed synchronization transitions.
The plan of the paper is as follows. In Sec. II, we

present the details of the delay dynamical system un-
der consideration and the experimental implementation
of the system using an appropriate analog electronic cir-
cuit. Unidirectionally coupled time-delay system and its
circuit details are discussed in Sec. III. In Sec. IV, we
analyze the different synchronization manifolds and iden-
tify the conditions for the stability of the synchronized
states of unidirectionally coupled time-delay systems. In
Sec. V, we demonstrate experimentally the existence of
anticipatory, complete, and lag synchronizations with ex-
citatory coupling, and their inverse counterparts with in-
hibitory coupling are discussed in Sec. VI, along with
their numerical confirmation. Finally in Sec. VII, we
summarize our results.

II. THE SCALAR DELAYED CHAOTIC

SYSTEM WITH THRESHOLD NONLINEARITY

We consider the following first-order time delay dif-
ferential equation (DDE) describing the delay feedback
oscillator,

dx

dt
= −ax(t) + bf [x(t− τ)], (1)

where a and b are positive parameters, x(t) is a dynamical
variable, f(x) is a nonlinear activation function and τ
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FIG. 3: Nonlinear device unit (ND): Circuit implementation
of the nonlinear activation function with amplifying stages
(OA2, OA3).
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FIG. 4: Circuit implimentation of the time delay unit with a
buffer (OA4) and an amplifying stage (OA5).

is the time delay. The function f(x) is taken to be a
symmetric piecewise linear function defined by [35]

f(x) = Af∗ −Bx. (2a)

Here

f∗ =







−x∗ x < −x∗,
x −x∗ ≤ x ≤ x∗,
x∗ x > x∗

(2b)

where x∗ is a controllable threshold value, and A and
B are positive parameters. In our analysis, we chose
x∗ = 0.7, A = 5.2, B = 3.5, a = 1.0 and b = 1.2. It may
be noted that for |x| > x∗, the function f(x) has the
negative slope −B and it lies in all the four quadrants
of the f − x plane (Fig. 1(a)). The figure reveals the
piecewise linear nature of the function. Experimental
implementation (see below) of the function f(x) is shown
in Fig.1(b) in the form of voltage characteristic UinvsUout

of the nonlinear device unit ND of Figs. 2 and 3.
This function f(x) employs a threshold controller for

flexibility. It efficiently implements a piecewise linear
function. The control of this piecewise linear function
facilitates controlling the shape of the attractors. Even
for a small delay value this circuit system exhibits hy-
perchaos and can produce multi-scroll chaotic attractors
by just introducing more number of threshold values, for
example a square wave. In particular, this method is ef-
fective and simple to implement since we only need to
monitor a single state variable and reset it if it exceeds
the threshold and so has potential engineering applica-
tions for various chaos-based information systems.

A. Experimental setup

The system described by Eq. (1) with the nonlinear
function f(x) is constructed using analog electronic de-
vices. The circuit (Fig. 2) has a ring structure and com-
prises of a diode based nonlinear device unit (Fig. 3) with
amplifying stages (OA2, OA3), a time delay unit (Fig. 4)
with a buffer (OA4) and an amplifying stage (OA5). The
dynamics of the circuit in Fig. 2 is represented by a DDE
of the form

R0C0

dU(t)

dt
= −U(t) + F [kfU(t− Td)], (3)

where U(t) is the voltage across the capacitor C0, U(t−
Td) is the voltage across the delay unit (DELAY), Td is
the delay time and F [kfU(t − Td)] is the static charac-
teristic of the ND.

In order to analyze the above circuit, we transform it
onto the dimensionless oscillator (1) on the basis of the
following relations by defining the dimensionless variables
and dimensionless parameters as

x(t) =
U(t)

Us

, t̂ =
t

R0C0

, τ =
Td

R0C0

. (4)

A nonzero Us is chosen such that ND(Us) = Us. In ad-
dition, the other parameters and variables are described
by the relations kf = 1 + (R8

R7
) = b, V 1 = V 2 = 0.7V ,

A = (R6/R4), B = (R6/R5). These relations reveal
that the circuit equation (3) is identical to Eq. (1) with
a = 1.0. Without loss of generality, t̂ is treated as t itself
in our further analysis.
The approximate time delay TD is given by

Td = n
√
LC, n ≥ 1 (5)

where n is the number of LC filters in Fig. 4. The ex-
perimental circuit parameters are : R1 = 1kΩ, R2 =
R3 = 10kΩ, R4 = 2kΩ, R5 = 3kΩ, R6 = 10.4kΩ
(trimmer-pot), R7 = 9.9kΩ, R8 = 2.1kΩ (trimmer-pot),
R9 = R10 = 1kΩ, R11 = 10kΩ, R12 = 20kΩ (trimmer-
pot), R0 = 2.68kΩ (trimmer-pot), C0 = 100nF , Li =
12mH(i = 1, 2, ..., 11), Ci = 470nF (i = 1, 2, ..., 10),
n = 10. From (5), we can see that Td = 0.751 ms,
R0C0 = 0.268 ms, so that the time-delay τ ≈ 2.8 for
the chosen values of the circuit parameters. The delay
time can be simply varied by using the variable resistance
R0. In our circuit, µA741s are employed as operational
amplifiers. The constant voltage sources V 1, and V 2,
and the voltage supply for all active devices are fixed at
±12 Volts. The threshold value of the three segments in-
volved in Eq. (2) can be altered by adjusting the values
of voltages V 1 and V 2.

For the above choice of the circuit parameters, the
values of the dimensionless parameters turns out to be
b = kf = 1 + (R8

R7
) ≈ 1.212, A = (R6/R4) = 5.2,

B = (R6/R5) ≈ 3.467 and the delay time τ = 2.8.
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FIG. 5: (Colour online) (a) Phase portraits of chaotic attrac-
tors from Eqs. (1) and (2) for the parameters a = 1, b =
1.2, A = 5.2, B = 3.5 and x∗ = 0.7: (i) one-band chaos
for τ = 1.33 and (ii) double-band chaos for τ = 2.8. (b)
Phase portraits of chaotic attractors from the circuit (Fig. 2),
U(t−Td) against U(t), vertical scale 2V/div., horizontal scale
0.2V/div.: (i) one band chaos for R0 = 5640 Ω and (ii) double
band chaos for R0 = 2680 Ω.

B. Results

To start with, Eq. (1) has been numerically integrated
with the chosen nonlinear function f(x) for the parame-
ter values a = 1.0, b = 1.2, τ = 2.8, x∗ = 0.7, A = 5.2,
and B = 3.5, with the initial condition x = 0.9 in the
range t ∈ (−τ, 0). A one-band chaotic attractor is shown
in Fig. 5a(i) for τ = 1.33, while for τ = 2.8 a double-band
hyperchaotic attractor is obtained (Fig. 5a(ii)). The cor-
responding experimental results are shown in Figs. 5b(i)
and 5b(ii) for the values of the parameter R0 = 5640Ω
(in this case τ = Td/R0C0 ≈ 1.331) and R0 = 2680Ω
(now τ = Td/R0C0 ≈ 2.8022), respectively. The experi-
mental results are in good agreement with the numerical
ones and also in their corresponding parameter values.
The system described by Eqs. (1) and (2) exhibit mul-

tiple positive Lyapunov exponents for large values of the
delay time, a typical feature of time-delay systems. The
seven maximal Lyapunov exponents for the above param-
eter values as a function of the time-delay τ in the range
τ ∈ (1, 10) are shown in Fig. 6, which are evaluated using
the procedure of [36]. Now it is evident from the max-
imal Lyapunov exponents that the single band chaotic
attractors shown in Figs. 5a(i) and b(i) for the value of
delay time τ = 1.33 and the resistance R0 = 5640Ω,
respectively, has one positive Lyapunov exponent, while
the double band chaotic attractor shown in Figs. 5a(ii)
and b(ii) for the value of the delay time τ = 2.8 and
the resistance R0 = 2680Ω, respectively, has two positive
Lyapunov exponents corroborating its hyperchaotic na-
ture. We will demonstrate in the following sections the
existence of different kinds of synchronization transitions

-0.4

-0.2

 0

 0.2

 0.4

 1  2  3  4  5  6  7  8  9  10

λ m
ax

τ 

FIG. 6: The seven maximal Lyapunov exponents λmax of the
time-delay system (1) and (2) for the parameter values a = 1,
b = 1.2, x∗ = 0.7, A = 5.2, B = 3.5 and τ ∈ (1, 10).

DELAY

DELAY

R1 R2

C1 C2

Lowpass

ND1 ND2

U1(t - T1d)
DELAY

ND1

U1(t) U2(t)

U2(t - T2d)

U1(t - T3d)
R3 C3

FIG. 7: Circuit block diagram of the coupled delayed feedback
oscillator. Two delay oscillators are coupled through a nonlin-
ear activation function (ND) but with a different time delay
T3d in the coupling with a low pass first-order R3C3 filter.
U1(t) and U2(t) are the voltages across the capacitances C1

and C2, respectively. U(t−T1d) = U(t−T2d) are the voltages
across the delay units of both the coupled oscillators.

in the hyperchaotic regime in coupled systems.

III. COUPLED TIME DELAY SYSTEMS WITH

THRESHOLD NONLINEARITY

Now let us consider the following set of unidirectionally
coupled first-order delay differential equations,

dx

dt
= −a1x(t) + b1f [x(t − τ1)] , (6a)

dy

dt
= −a2y(t) + b2f [y(t− τ1)] + b3f [x(t− τ2)] , (6b)

where a1 = a2 > 0 are positive constants, b1 6= b2 con-
tributes to the parameter mismatch resulting in coupled
non-identical systems, b3 is the coupling strength, τ1 is
the feedback delay and τ2 is the coupling delay. The
nonlinear function f(x) is of the same form as in Eq. (2).
Now to analog simulate the coupled time-delay sys-

tems (Eqs. (6)) and to demonstrate experimentally the
existence of different types of synchronizations, a unidi-
rectionally coupled time-delay electronic circuit is con-
structed as shown in the block diagram of Fig. 7. One
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of the electronic oscillator circuits is used as the drive
system, while the other structurally identical circuit is
used as the response system with some parameter mis-
matches. The drive voltage (U1(t)) after the delay line in
the drive system is fed back to the nonlinear part (ND1)
of the drive system and a fixed R1C1 filter with time
delay to generate chaotic/hyperchaotic oscillations. Sim-
ilarly, the response circuit with a nonlinear part (ND2),
a delay line and a fixed R2C2 filter is capable of gener-
ating chaotic/hyperchaotic oscillations. The signal after
the nonlinear function of drive is used as the transmission
signal, which is unidirectionally transmitted through the
lowpass filter (R3C3), delay line and nonlinear part to the
response circuit. All the parameters need to be matched
between the drive and the response circuits, whereas the
parameters of the nonlinear activation functions of the
drive, the response and the coupling are to be fixed ac-
cording to the parametric relation obtained from the sta-
bility analysis (given below in Sec. IV).

The state equations of the coupled electronic circuit
(Fig. 7) can be written as

R1C1

dU1(t)

dt
= −U1(t) + f [k1fU1(t− T1d)], (7a)

R2C2

dU2(t)

dt
= −U2(t) + f [k2fU2(t− T2d)] (7b)

+f [k3fU1(t− T3d)],

where the variables U1 and U2 correspond to the out-
put variables of each circuit. By defining the new nor-
malized variables as x = U1

Us
, y = U2

Us
, t̂ = t

R1C1

,

τ1 = T1d

R1C1

= T2d

R2C2

and τ2 = T3d

R3C3

, one can check

that the circuit equation (7) is identical to Eq. (6) with
a1 = a2 = 1.0, k1f = b1, k2f = b2, k3f = b3 and t̂ → t.

Before demonstrating the experimental results and
the corresponding numerical confirmation of various syn-
chronizations in the coupled time-delay systems (6) and
(7), we deduce a sufficient stability condition, using the
Krasovskii-Lyapunov theory, valid for different synchro-
nization manifolds. After choosing the appropriate pa-
rameter values satisfying the obtained stability condition,
we will demonstrate the existence of anticipatory, com-
plete and lag synchronizations as a function of the cou-
pling delay τ2 for excitatory coupling and their inverse
counterparts for inhibitory coupling in the same system
both experimentally and numerically. It is to be noted
that neither inverse synchronizations can be realized with
excitatory coupling nor direct/conventional synchroniza-
tions can be realized with inhibitory coupling as a result
of the nature of the nonlinear function and the parametric
relation between b1, b2 and b3 obtained from the stability
analysis.

IV. SYNCHRONIZATION MANIFOLD AND ITS

STABILITY CONDITION

Consider the direct synchronization manifold ∆ =
xτ2−τ1 − y = 0 of the coupled time-delay equation (6)
with excitatory coupling +b3f [x(t − τ2)] , b3 > 0, (cor-
respondingly the inverse complete synchronization man-
ifold becomes ∆ = xτ2−τ1 + y = 0 with the inhibitory
coupling −b3f [x(t− τ2)] , b3 > 0, in Eq. (6b)), where
xτ2−τ1 = x(t − (τ2 − τ1)), which corresponds to the fol-
lowing distinct cases:

1. Anticipatory synchronization (AS) occurs when
τ2 < τ1 with y(t) = x(t − τ̂ ); τ̂ = τ2 − τ1 < 0,
where the state of the response system anticipates
the state of the drive system synchronously with
the anticipating time |τ̂ |. In contrast, in the case
of the inverse anticipatory synchronization (IAS),
the state of the response system anticipates ex-
actly the inverse state of the drive system, that is,
y(t) = −x(t− τ̂ ).

2. Complete synchronization (CS) results when τ2 =
τ1 with y(t) = x(t); τ̂ = τ2 − τ1 = 0, where the
state of the response system evolves in a synchro-
nized manner with the state of the drive system,
while in the case of inverse complete synchroniza-
tion (ICS), the state of the response system evolves
exactly identical but inverse to the state of the drive
system, that is, y(t) = −x(t).

3. Lag synchronization (LS) occurs when τ2 > τ1
with y(t) = x(t − τ̂); τ̂ = τ2 − τ1 > 0, where the
state of the response system lags the state of the
drive system in synchronization with the lag time τ̂ .
However, in the case of inverse lag synchronization
(ILS), the state of the response system lags exactly
inverse to the state of the drive system, that is,
y(t) = −x(t− τ̂ ).

Now, the time evolution of the difference system with
the state variable ∆ = xτ2−τ1−y can be written for small
values of ∆ by using the evolution Eqs. (6) as

∆̇ = ẋτ2−τ1 + ẏ(t) (8)

= −a∆+Af(x(t − τ2)) [b1 − b2 − b3] + b2Af
′(x(t− τ2))×

∆τ1 −Bx(t− τ2) [b1 − b2 − b3]− b2B∆τ1 . (9)

The above inhomogeneous equation can be rewritten as
a homogeneous equation of the form

∆̇ = −a∆+ b2 [Af
′(x(t− τ2))−B] ∆τ1 , (10)

for the specific choice of the parameters

b1 = b2 + b3, (11)

so that the stability condition can be deduced ana-
lytically. The synchronization manifold corresponding
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FIG. 8: (Colour online) Experimental time series plot of the

drive U1(t) (blue) and the response U2(t) (yellow), T1d

R1C1
=

T2d

R2C2

= τ1 ≈ 2.8022, T3d

R3C3

= τ2, C1 = C2 = C3 = 100 nF ,

R1 = R2 = 2680 Ω and T1d = T2d = T3d = 0.751 ms (a) antic-
ipatory synchronization for R3 = 3004 Ω (now τ2 ≈ 3.1007),
(b) complete synchronization for R3 = 2680 Ω (now τ2 ≈

2.8022) and (c) lag synchronization for R3 = 2422 Ω (now
τ2 = 2.5); vertical scale 5V/div., horizontal scale 1ms.

to Eq. (10) is locally attracting if the origin of the
above error equation is stable. Following the Krasovskii-
Lyapunov functional approach [27, 37], we define a posi-
tive definite Lyapunov functional of the form

V (t) =
1

2
∆2 + µ

∫ 0

−τ1

∆2(t+ θ)dθ, (12)

where µ is an arbitrary positive parameter, µ > 0.

The above Lyapunov function, V (t), approaches zero
as ∆ → 0. Hence, the required solution ∆ = 0 to the
error equation, Eq. (10), is stable only when the deriva-
tive of the Lyapunov functional V (t) along the trajectory
of Eq. (10) is negative. This requirement results in the
condition for stability as

Γ(µ) = 4µ(a− µ) > b2
2
[Af ′(x(t− τ2))−B]

2
. (13)

Again Γ(µ) as a function of µ for a given f ′(x) has an
absolute minimum at µ = [|b2(Af ′(x(t− τ2))−B)|] /2
with Γmin = |b2(Af ′(x(t − τ2))−B)|. Since Γ ≥ Γmin =
|b2(Af ′(x(t − τ2))−B)|, from the inequality (13), it
turns out that a sufficient condition for asymptotic sta-
bility is

a > |b2(Af ′(x(t− τ2))−B)| . (14)

Now from the form of the piecewise linear function f(x)
given by Eq. (2), we have,

|f ′(x(t− τ2))| =
{

0, |x| > x∗

1.0, |x| ≤ x∗ (15)

Consequently the stability condition (14) becomes a >
|b2(A−B)| > |b2B| along with the parametric relation
b1 = b2 + b3. Since the deduced stability condition is
independent of the delay times τ1 and τ2, the same gen-
eral stability condition is valid for anticipatory, complete
and lag synchronizations with excitatory coupling and to
their inverse counterparts with inhibitory coupling.
We remark here that if one substitutes y → ŷ = −y

in Eq. (6b), then the excitatory coupling becomes an in-
hibitory coupling and the inhibitory coupling becomes
an excitatory coupling due to the nature of the nonlinear
function, f(x). Furthermore, one obtains the parametric
relation b2 = b1+ b3 along with the same stability condi-
tion (14) for both the cases of excitatory coupling with an
inverse synchronization manifold and inhibitory coupling
with a direct synchronization manifold. Therefore, to ob-
tain both direct and inverse synchronizations either from
excitatory or from inhibitory coupling both the para-
metric relations, that is b2 = b1 + b3 and b1 = b2 + b3
given by (11), have to be satisfied for fixed values of
the nonlinear parameters b1 or b2 and for positive val-
ues of the coupling strength b3. The only way to satisfy
both the parametric relations and the stability condition,
a > |b2(A−B)| > |b2B|, is to choose negative values for
the coupling strength b3 and this changes the nature of
the coupling. Hence, one cannot obtain inverse (antici-
patory, complete and lag) synchronizations with excita-
tory coupling or direct (anticipatory, complete and lag)
synchronizations with inhibitory coupling for the chosen
form of the unidirectional nonlinear coupling due to the
nature of the parametric relation (11) and the stability
condition (14).

V. DIRECT SYNCHRONIZATIONS WITH

EXCITATORY COUPLING

In this section, we will demonstrate the existence of an-
ticipatory, complete and lag synchronizations as a func-
tion of the coupling delay τ2, both experimentally and
numerically, for the choice of the parameters satisfying
the stability condition (14) for the case of excitatory cou-
pling.

A. Anticipatory Synchronization

For τ2 < τ1, the synchronization manifold ∆ =
xτ2−τ1 − y = 0 becomes an anticipatory synchronization
manifold as described above. We have fixed the value
of the feedback delay τ1 = 2.8 and the coupling delay
τ2 = 2.5, while the other parameters are fixed as a = 1.0,
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FIG. 9: (Colour online) Numerical time series plots of the
drive x(t) and the response y(t) systems for the parameter
values a1 = a2 = 1.0, b1 = 1.2, b2 = 0.58, b3 = 0.62, A =
5.2, B = 3.5, x∗ = 0.7 and τ1 = 2.8: (a) anticipatory syn-
chronization for τ2 = 2.5, (b) complete synchronization for
τ2 = 2.8 and (c) lag synchronization for τ2 = 3.1.

b1 = 1.2, x∗ = 0.7, A = 5.2, and B = 3.5. The value
of the nonlinear parameters are fixed as b2 = 0.58 and
b3 = 0.62 such that both the stability condition (14) and
the parametric relation (11) are satisfied. All the above
parameter values are fixed to be the same except for the
coupling delay τ2 for the remaining part of the study. The
experimental and the numerical time series plots of both
the drive x(t) and the response y(t) systems are shown
in Figs. 8a and 9a, respectively, for τ2 < τ1 demonstrat-
ing the existence of anticipatory synchronization. Both
the experimental and the numerical phase space plots
corresponding to the anticipatory synchronization mani-
fold of the drive and the response systems are shown in
Figs. 10(a)i and 10(a)ii, respectively.

The seven largest Lyapunov exponents of the coupled
time-delay systems are shown in Fig. 11a as a function of
the nonlinear parameter b2 for the anticipatory synchro-
nization manifold. For the values of delay times τ1 = 2.5
and τ2 = 2.8 the uncoupled systems exhibit only two pos-
itive Lyapunov exponents as may be seen from Fig. 6.
The two positive Lyapunov exponents of the drive sys-
tem remain positive, while one of the positive Lyapunov
exponents of the response system becomes negative at

b2 ≈ 0.9 and the second positive Lyapunov exponent be-
comes negative at b2 ≈ 0.7 confirming the existence of
exact anticipatory synchronization for b2 < 0.7. It is to
be noted that the Lyapunov exponents of the coupled
systems indicate the existence of exact anticipatory syn-
chronization also in the range b2 ∈ (0.7, 0.58) in which the
stability condition (14) is not satisfied confirming that it
is only a sufficiency condition but not a necessary one.

B. Complete Synchronization

For τ2 = τ1, the synchronization manifold ∆ =
xτ2−τ1 −y = 0 becomes a complete synchronization man-
ifold ∆ = x(t) − y(t) = 0. Now, we have fixed the value
of the coupling delay as τ2 = τ1 = 2.8 for fixed values of
the other parameters as mentioned in the previous sec-
tion. The experimental and the numerical time series
plots of both the drive x(t) and the response y(t) sys-
tems are shown in Figs. 8b and 9b, respectively, demon-
strating the existence of complete synchronization be-
tween the coupled time-delay systems. The phase space
plots of both the systems corresponding to the complete
synchronization manifold are shown in Figs. 10b. The
seven largest Lyapunov exponents (Fig. 11b) of the cou-
pled time-delay systems corresponding to the complete
synchronization manifold indicate that both the positive
Lyapunov exponents of the response system become neg-
ative for b2 < 0.7, while the two Lyapunov exponents
of the drive system remain positive, confirming the ex-
istence of complete synchronization between the drive
and response systems. Note that the coupled systems
remain in a hyperchaotic state, that is, this transition to
complete synchronization is a transition from one hyper-
chaotic regime to another one.

C. Lag Synchronization

The synchronization manifold ∆ = xτ2−τ1 − y = 0 be-
comes a lag synchronization manifold for τ2 = 3.1 >
τ1 = 2.8. Both the time series and the phase space
plots of the coupled time-delay systems obtained using
our experimental realization are shown in Figs. 8c and
10(c)i, respectively, and those obtained using numerical
simulations are shown in Figs. 9c and 10(c)ii, respec-
tively, indicating the existence of a lag synchronization.
Again, the seven largest Lyapunov exponents of the cou-
pled time-delay systems shown in Fig. 11c for the lag
synchronization manifold confirm the existence of it for
b2 < 0.7.

VI. INVERSE SYNCHRONIZATIONS WITH

INHIBITORY COUPLING

Now we consider the inhibitory coupling,
−b3f [x(t− τ2)], in Eq. (6b) instead of the excita-
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FIG. 10: (Colour online) Phase space plots of the drive x(t)
and the response y(t): (a) anticipatory synchronization, (b)
complete synchronization and (c) lag synchronization. Here
the top panels correspond to experimental results for the same
values of the parameters as in Fig. 8 and the bottom panels
represent numerical results for the same values of the param-
eters as in Fig. 9.

tory coupling +b3f [x(t− τ2)] to demonstrate the
transition from inverse anticipatory to inverse lag
synchronization via an inverse complete synchronization
as a function of the coupling delay τ2 for the same values
of parameters as in the Sec. V.

A. Inverse anticipatory synchronization

As discussed above, the inverse synchronization mani-
fold ∆ = xτ2−τ1 + y = 0 becomes an inverse anticipatory
synchronization manifold for τ2 < τ1. For the same val-
ues of all the parameters as in Sec. VA, the coupled time-
delay system (6) exhibits an inverse anticipatory synchro-
nization in the presence of inhibitory coupling as shown
in Figs. 12a and 13a. The experimental and numerical
phase plots of the coupled time-delay system correspond-
ing to the inverse anticipatory synchronization manifold
are shown in Figs. 14(a)i and 14(a)ii, respectively. The
seven largest Lyapunov exponents of the coupled systems
corresponding to the inverse anticipatory synchronization
manifold are shown in Fig. 15a as a function of the non-
linear parameter b2. The two largest positive Lyapunov
exponents of the drive system remain unaltered in their
values, while that of the response system become nega-
tive for b2 < 0.7 confirming the existence of inverse antic-
ipatory synchronization between the coupled time-delay
systems with inhibitory coupling.

B. Inverse complete synchronization

An inverse complete synchronization manifold is ob-
tained for τ2 = τ1. The time series plot of both the drive
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FIG. 11: The seven largest Lyapunov exponents of the cou-
pled time-delay systems (6) for the same values of parameters
as in Fig. 9 for (a) anticipatory synchronization manifold, (b)
complete synchronization manifold and (c) lag synchroniza-
tion manifold.

and the response variables obtained from experimental
realization are depicted in Fig. 12b and those obtained
from numerical simulation are shown in Fig. 13b illus-
trating the existence of inverse complete synchronization.
The experimental and numerical phase space plots of
the coupled time-delay systems corresponding to the in-
verse complete synchronization manifold are depicted in
Figs. 14(b)i and 14(b)ii, respectively. The seven largest
Lyapunov exponents of the coupled time-delay systems
(Fig. 15) confirm the existence of inverse complete syn-
chronization indicated by a change in the signs of both
the positive Lyapunov exponents of the response system
for b2 < 0.7, while that of the drive system remain un-
changed.

C. Inverse lag synchronization

Again, for τ2 > τ1, the synchronization manifold
∆ = xτ2−τ1 + y = 0 becomes an inverse lag synchro-
nization manifold. The experimental and the numerical
time series plots, indicating the existence of inverse lag
synchronization, of both the drive and response systems
are shown in Figs. 12c and 13c, respectively. The cor-
responding phase space (of inverse lag synchronization)
plots are also depicted in Figs. 14(c)i and 14(c)ii, re-
spectively. The seven largest Lyapunov exponents of the
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FIG. 12: (Colour online) Experimental time series plots of the

drive U1(t) (blue) and the response U2(t) (yellow),
T1d

R1C1
= τ1,

T2d

R2C2

= τ1,
T3d

R3C3

= τ2, C1 = C2 = C3 = 100 nF , R1 =

R2 = 2680 Ω and T1d = T2d = T3d = 0.751 ms: (a) inverse
anticipatory synchronization for R3 = 3004 Ω, (b) inverse
complete synchronization for R3 = 2680 Ω and (c) inverse
lag synchronization for R3 = 2422 Ω; vertical scale 5V/div.,
horizontal scale 1ms/div

coupled time-delay systems corresponding to inverse lag
synchronization manifold are shown in Fig. 15c again as
a function of b2. The two positive Lyapunov exponents
of the drive system remain positive, while that of the re-
sponse system become negative for b2 < 0.7 confirming
the existence of inverse lag synchronization between the
coupled time-delay systems.

VII. SUMMARY AND CONCLUSION

In this paper, we have presented experimental obser-
vations of typical kinds of synchronization transitions
in a system of unidirectionally coupled piecewise-linear
time-delay electronic circuit designed using a threshold
controller. In particular, we have shown the transition
from anticipatory synchronization to lag synchronization
through complete synchronization and their inverse coun-
terparts with excitatory and inhibitory couplings, respec-
tively, as a function of the coupling delay and for a fixed
set of other parameters. A common stability condition
valid for all these synchronized states is deduced and it
is independent of both the feedback and the coupling
delays. Futher, experimental observations are confirmed
by numerical simulations and also from transitions in the
Lyapunov exponents of the coupled time-delay systems.
We also note that the nature of the piecewise linear func-
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FIG. 13: (Colour online) Numerical time series plots of the
drive x(t) and the response y(t) systems for the parameter
values a1 = a2 = 1.0, b1 = 1.2, b2 = 0.58, b3 = 0.62, A =
5.2, B = 3.5, x∗ = 0.7 and τ1 = 2.8: (a) inverse anticipatory
synchronization for τ2 = 2.5, (b) inverse complete synchro-
nization for τ2 = 2.8 and (c) inverse lag synchronization for
τ2 = 3.1.

FIG. 14: (Colour online) Phase space plots of the drive x(t)
and the response y(t) for the same parameter values as in
Figs. 9 and 8: (a) inverse anticipatory synchronization for
τ2 = 2.5, (b) inverse complete synchronization for τ2 = 2.8
and (c) inverse lag synchronization for τ2 = 3.1.



10

-0.4

-0.2

 0

 0.2

 0.4

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ m
ax

b2

(a)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ m
ax

b2

(b)

-0.4

-0.2

 0

 0.2

 0.4

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ m
ax

b2

(c)

FIG. 15: The seven largest Lyapunov exponents of the cou-
pled time-delay systems (6) for the same values of parameters
as in Fig. 9 for (a) inverse anticipatory synchronization man-
ifold, (b) inverse complete synchronization manifold and (c)
inverse lag synchronization manifold.

tion in the proposed circuit can be easily changed by us-
ing multiple threshold values and that multi-scroll hyper-
chaotic attractors can also be produced even for a small
value of delay time for further study and applications.
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