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Abstract

A novel time delayed chaotic oscillator exhibiting mono- and double scroll com-
plex chaotic attractors is designed. This circuit consists of only a few operational
amplifiers and diodes and employs a threshold controller for flexibility. It efficiently
implements a piecewise linear function. The control of piecewise linear function facil-
itates controlling the shape of the attractors. This is demonstrated by constructing
the phase portraits of the attractors through numerical simulations and hardware ex-
periments. Based on these studies, we find that this circuit can produce multi-scroll
chaotic attractors by just introducing more number of threshold values.

1 Introduction

Nonlinear systems with time delayed feedback have attracted considerable attention due to
their technological importance and their wide abundance in nature [see for example, Lu et
al., 1998; Senthilkumar & Lakshmanan, 2005; Senthilkumar et al., 2006]. Further, complex
chaotic attractors have been obtained experimentally using simple electronic circuits in re-
cent years [Namajūnas et al., 1995a; Tamaševičius et al., 2006; Wang & Yang, 2006; Yalcin
& Özoguz, 2007; Wagemakers et al., 2008]. While the earlier studies on such delay systems
mainly concentrated on constructing suitable nonlinear devices, in this letter we describe
circuit implementation of nonlinear time delay systems which are easily controllable using
a threshold mechanism so as to exhibit double scroll and even multiscroll chaotic attrac-
tors. The simplest delay differential equation (DDE) describing a time delayed feedback
oscillator can be written in the form

dx

dt
= −ax(t) + bF [x(t− τ)], (1)

where a and b are positive scalar parameters, x(t) is a dynamical variable, F (x) is a
nonlinear activation function and τ is the time delay. The well known Mackey-Glass (MG)
system [Mackey & Glass, 1977; Namajūnas et al., 1995a] corresponds to the form

F (x) = F1(x) =
Ax

1 + xm
. (2)

The parameters are commonly set at A = 2 and m = 10. The MG model has been studied
numerically by Farmer [1982], and also by Grassberger and Procaccia [1983], wherein they
have obtained Lyapunov exponents, entropies and various types of dimensions. It has
also been studied experimentally using an electronic circuit to understand its dynamics
[Namajūnas et al., 1995a, 1997] and for applications like controlling [Namajūnas et al.,
1995b, 1997], synchronization [Tamaševičius et al., 1998; Sano et al., 2007; Kim et al., 2006]
and secure communication [Pyragas, 1998]. Though the function F1(x) in (2) exhibits an
odd symmetry, the variable x(t) in (1) oscillates either in the positive (x > 0) or in the
negative (x < 0) region depending on the initial conditions. It does not switch between the
two regions and the system exhibits only simple mono-scroll chaotic behaviour. Other types
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of nonlinear functions F (x) have also been considered for Eq. (1). These include piecewise
constant rectangular-shaped function proposed by Haiden and Mackey and considered in
[Losson et al., 1993; Schwarz & Mögel, 1994], a piecewise linear tent-shaped function
[Schwarz & Mögel, 1994; Mykolaitis et al., 2003], a bell-shaped shifted Gaussian function
[Voss, 2001] and a third-order polynomial function [Voss, 2002]. We note that all the above
mentioned nonlinear functions exhibit only mono-scroll chaotic attractors.

Further, a five-segment function was introduced in [Lu & He, 1996; Lu et al., 1998;
Thangavel et al., 1998; Senthilkumar & Lakshmanan, 2005]:

F (x) = F2(x) =


0, x ≤ −4

3

−1.5Ax− 2.0, −4
3
< x ≤ −0.8

Ax, −0.8 < x ≤ 0.8
−1.5Ax+ 2.0, 0.8 < x ≤ 4

3

0 x > 4
3

(3)

where A = 1.0, which also exhibits mono-scroll chaotic attractor. The corresponding
delay system has been studied in detail for bifurcations and chaos in [Senthilkumar &
Lakshmanan, 2005; Senthilkumar et al., 2006].

Interestingly, with a slight alteration of (3), system (1) was shown to possess a two-
scroll chaotic attractor for a = b = 1, τ = 8, where the function F (x) assumes a piecewise
linear activation function of the form

F (x) = F3(x) =


B(x+ 1)− A x < −1,

Ax −1 ≤ x ≤ 1, (A > 0, B < 0)
B(x+ 1) + A x > 1

(4)

where A = 2.15, B = −4.3 [Tamaševičius et al., 2006]. Wang and Yang [2006] have shown
the construction of multi-scroll chaotic attractor for the function F (x) of the form

F (x) = F4(x) = Ax+0.5(A−B)[(|x+m|−|x−m|)−(|x+n|−|x−n|)], (A > 0, B < 0) (5)

where A = 4.3, B = −5.8,m = 1.1, n = 3.3. Recently Yalcin & Özoguz [2007] studied
Eq. (1) experimentally by introducing delay in both the terms on the right hand side with
the following form of nonlinear function F (x),

F (x) = F5(x) =
Mx∑
i=1

g(−2i+1)/2(x) +
Nx∑
i=1

g(2i−1)/2(x), (6a)

where

gθ(ζ) =


1, ζ ≥ θ, θ > 0,
0, ζ < θ, θ > 0,
0, ζ ≥ θ, θ < 0,
−1, ζ < θ, θ < 0.

(6b)
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The authors found that the system exhibits n-scroll chaotic attractors for suitable values
of Mx and Nx.

In this letter, a piecewise linear function with a threshold controller is introduced in
the DDE instead of the commonly used F (x) function in the literature as pointed above.
Depending on the delay parameter τ the novel system exhibits one-scroll and two-scroll
chaotic attractors through the familiar period doubling route. We also discuss the hard-
ware implementation of the system. The experimental observations reveal the fact that
this circuit can also produce multi-scroll chaotic attractors by increasing the number of
threshold voltage values. In particular, this method is effective and simple to implement
since we only need to monitor a single state variable and reset it if it exceeds the threshold
and so has potential engineering applications for various chaos-based information systems.

The activation function F (x) in our study takes a symmetric piecewise linear form,

F (x) = F6(x) = AF ∗ −Bx. (7a)

Here

F ∗ =


−x∗ x < −x∗,
x −x∗ ≤ x ≤ x∗,
x∗ x > x∗,

(7b)

where A and B are positive parameters and x∗ is the controllable threshold value. In our
analysis, we chose x∗ = 0.7, A = 5.2, B = 3.5. It may be noted that for |x| > x∗, the
function F6(x) has a negative slope −B and lies in all the four quadrants of the (F − x)
plane which is shown in Fig. 1(a). The figure reveals the piecewise linear nature of the
function. Experimental implementation of the function F6(x) is shown in Fig. 1(b) in the
form of Vout against Vin characteristic by the nonlinear device unit ND of Fig. 2.

2 Circuit realization

The system described by Eq. (1) with the nonlinear function F6(x) can be constructed
using analog electronic devices. The circuit (Fig. 2) has a ring structure and comprises of
a diode based nonlinear device unit (ND) with amplifying stages (U2, U3), a time delay
unit (DELAY) with a buffer (U4) and an amplifying stage (U5), and a low pass first-order
R0C0 filter. The experimental time delay TD is given by

TD = n
√
LC, n ≥ 1 (8)

where n is the number of LC filters. The dimensionless delay parameter can be calculated
by the relation

τ = TD/R0C0, n ≥ 1. (9)

The experimental circuit parameters are R1 = 1 kΩ, R2 = R3 = 10 kΩ, R4 =
2 kΩ, R5 = 3.0 kΩ, R6 = 10.4 kΩ(trimmer-pot), R7 = 1 kΩ, R8 = 5 kΩ(trimmer-pot), R9 =
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R10 = 1 kΩ, R11 = 10 kΩ, R12 = 20 kΩ(trimmer-pot), R0 = 1.86 kΩ, C0 = 100 nF, Li =
12 mH(i = 1, 2, ..., 11), Ci = 470 nF (i = 1, 2, ..., 10), n = 10. From (8) and (9), we can
see that TD = 0.751 ms, R0C0 = 0.19 ms, and so τ = 3.952. In our circuit, µA741s are
employed as operational amplifiers. The constant voltage sources are V 1, and V 2, and
the voltage supply for all active devices is ±12 Volts. The threshold value of the three
segments involved in Eq. (7) can be altered by adjusting the values of the voltages V 1 and
V 2.

3 Dynamics of the Time Delayed System with Thresh-

old Controller

3.1 Period doubling route to chaos

To start with, Eq. (1) has been integrated with the nonlinear function F6[x(t − τ)] for
the parametric values a = 1.0, b = 1.2, A = 5.2, B = 3.5, x∗ = 0.7, τ ∈ [1, 3], where τ is
employed as a control parameter. The results are presented in Fig. 3 with the projection of
phase trajectories. For small values of the delay parameter τ the system exhibits period-T
limit cycle. Further increase of τ makes the system to undergo period-doubling bifurcations
resulting in a chaotic attractor (Fig. 3). For a range of τ values, (1.3 < τ < 1.98), mono-
scroll attractors are formed similar to the MG and other delayed-feedback systems. The
phase trajectories stay on the mono-scroll isolated attractors up to τ = 1.98. When τ is in
the region, 1.98 < τ < 6.5, two-scroll chaotic attractors are formed and in this range some
narrow periodic windows are also observed. The dynamics of the circuit can also be studied
experimentally through the associated analog circuit simulation (Fig. 2) and the results are
illustrated in Fig. 4, where one division in horizontal and vertical axes correspond to 0.2 V
and 2 V , respectively. From Figs. 3 and 4, we observe that for the system (1) and (7), the
dynamical behaviour of the experimental circuit is similar to that obtained by numerical
simulations.

It is to be mentioned that all the results shown in this paper are plotted after leaving
out a very large number transients of the order 108. The details of bifurcations and chaos
can be easily summarised by the one parameter bifurcation diagram in the (τ−xmax) plane
given in Fig. 5(a). The period-doubling bifurcation sequence to chaos is observed for initial
range of delay values (see Fig. 5(b)). For instance, it is clear that for 1 < τ < 1.15 there
is a limit-cycle attractor of period T . At τ = 1.151, a period-doubling bifurcation occurs
and a period 2T limit cycle develops and is stable in the range 1.151 < τ < 1.23. When
the delay is increased further the period 2T limit cycle bifurcates to a period 4T attractor,
and then to 8T and 16T period limit cycles. After successive bifurcations, it forms a one-
band chaotic attractor at τ = 1.26. On further increase in the delay value, the system
exhibits double-band chaotic attractor. From the bifurcation diagram, it may be noted
that this interval of τ ∈ (3.1, 5) is not fully occupied by the chaotic orbits alone. Many
fascinating changes in the dynamics take place at different critical values of τ . Particularly,
the asymptotic motion consists of chaotic orbits interspersed by periodic orbits (windows)
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as may be seen from Fig. 5. For τ > 5 the system exhibits more complex hyperchaotic
motion as in evident from the fact that more than one Lyapunov exponents are positive
(see Fig. 6).

3.2 Lyapunov exponents and hyperchaotic regimes

One of the interesting aspects of the dynamics associated with Eq. (1) and (7) is the
existence of hyperchaos in a single first order scalar equation with time delay even for
small values of τ while the other system parameters are fixed. As the delay parameter is
increased, for most parameter values the dimension increases and the attractor generally
becomes more complicated, thereby contributing to the hyperchaotic nature of the system,
which is confirmed by the increasing number of positive Lyapunov exponents. The first
seven maximal Lyapunov exponents, for parameter values a = 1.0, b = 1.2, x∗ = 0.7, A =
5.2, B = 3.5 and τ ∈ (1, 10), are shown in Fig. 6, where it is evident that the number of
positive Lyapunov exponents increases with time delay τ . One can see from Fig. 6, simple
chaotic oscillations appear at about τ = 1.0 (single positive LE), while at τ = 1.35 the
second positive LE emerges, indicating hyperchaotic behaviour. In the region τ ∈ [3.2, 3.6]
and τ ∈ [4.0, 5.0] there exits several periodic windows with zero LE. Also there are weakly
hyperchaotic domains with relatively low values of LE. Eventually for τ > 5.0 the number
of the positive LE starts to grow rapidly and becomes 7 for τ > 9.0.

3.3 One and Two parameter bifurcation diagrams

A two parameter (A−B) bifurcation diagram for the range A ∈ [3.0, 8.0] and B ∈ [1.1, 1.6]
when a = 1.0, b = 1.2, x∗ = 0.7 and τ = 2.8, is shown in Fig. 6, which clearly brings out the
behaviour of the time delayed system with threshold controller for the combined system
parameters A and B in a 800×800 grid (Fig. 7). In this phase diagram, each colored region
represents a particular type of steady-state behaviour: for example, red, period-1 attractor;
green, period-2 attractor; blue, period-3 attractor; 4-magenta; 5-cyan; 6-yellow; 7-copper;
12-gray; chaos-black; and further periodic regions-white. Various dynamical phenomena
are observed for different ranges of parameters A and B. In the range A ∈ [3.0, 5.4], we
observe periodic orbits of periods T, 2T, 3T, 6T, 12T, . . . which leads to chaotic behaviour
as the value of B is increased. Note that the period doubling route to chaos is observed
from period 3T . On the other hand in the range A ∈ [5.5, 8.5], we observe regular period
doubling phenomenon, starting from period T to 2T, 4T, . . . leading to chaos as the value
of B is increased. In the chaotic region, many periodic windows are also observed.

Figure 8(a) shows the dynamics of the system at B = 1.5 for the range of A ∈ [2.4, 9.0].
As the value of A increases the system exhibits period T, 3T, 6T, . . . orbits and finally
becomes chaotic (see Fig. 8(b)). In a similar fashion the dynamics is demonstrated in
Fig. 9(a) for different values of B at A = 5.2. As the value of B is increased the period T
bifurcates to 2T and further increase in B leads to oscillations of period 3T . Any further
increase in B leads to chaotic behaviour through novel period doubling route to chaos (see
Fig. 9(b)).
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3.4 Amplification of chaotic attractors

The system (1) exhibits two-scroll chaotic attractor for τ = 2.36 with fixed values of other
parameters as mentioned in the previous section. In this section, the effect of the threshold
controller is demonstrated for two values of x∗. When x∗ = 0.7 the system (1) exhibits a
double band chaotic attractor. For x∗ = 1.1 the system also exhibits a double band chaotic
attractor with amplification of the oscillations. The numerical and experimental results
are shown in Fig. 10. Note that the amplification is due to the fact that the threshold
controller effectively controls the piecewise linear function which in turn alters the shape
of the attractor and hence oscillations. In short, threshold controlling mechanics facilitates
the amplification of chaotic attractors. Therefore, the controlling mechanism can help in
altering the amplification of the signal depending upon the requirement.

These details can be easily summarised by the one parameter bifurcation diagram in
the (x∗ − xmax) plane given in Fig. 11. From the figure, it is clear that an increase in the
threshold value leads to an increase in the amplitude of the chaotic attractor.

4 Multi-scroll Chaotic Attractors of the Time De-

layed System with Threshold Controller

In this section, we briefly demonstrate that the threshold controller can produce multi-
scroll chaotic attractors also. The threshold control approach for creating multi-scroll
attractors has recently been studied in Jerk circuit [Lu et al., 2008]. Here, we show the
effect of threshold controller in producing multi-scroll attractors in a time-delayed circuit
for proper choice of the parameter values. Fixing a = 1.0, b = 1.2, A = 5.0, B = 2.0 and
threshold values x∗ for the amplitude of the modulating square wave as (0.7, 1.2),the system
(1) exhibits two single scroll chaotic attractors (Fig. 12(Ia)) when τ = 1.4 . However when
τ = 2.2 the system is found to exhibit two double scroll chaotic attractors (Fig. 12(Ib)).

Correspondingly for the experimental investigation the threshold voltages V 1 and V 2
for the amplitude of the modulating square wave are chosen as (0, 1.2 V ). The frequency
of the square wave is fixed as 100 Hz. The square wave used to modulate V 1 switches
between 0.0 (which corresponds to −0.7 V of diode break point voltage) and −1.2 V and
V 2 switches between 0.0 (which corresponds to 0.7 V of diode break point voltage) and
1.2 V , respectively. Figure 12 shows the plot of (x(t− τ), x(t)), where the two single scroll
chaotic attractor (Fig. 12(IIa)) and two double scroll chaotic attractor (Fig. 12(IIb)) are
seen for the threshold voltages V 1 and V 2. For these two values of threshold voltages,
the chaotic attractor switches back and forth between the two breakdown voltages. The
jumping of the mono- and double scroll attractors between one chaotic state and another
can be controlled by the frequency of the threshold modulated square wave. Similarly
multi-scroll chaotic attractors (n > 2) can also be observed by choosing more number of
threshold voltages. That is, one needs to carefully clip the threshold function into multiple
segments.
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5 Conclusion

A novel time delayed chaotic oscillator exhibiting mono- and double scroll complex chaotic
attractors is proposed. This time delay system contains a threshold controlled piecewise
nonlinearity. By just adjusting the threshold values, the shape and size of the attractors can
be varied. Good qualitative agreement is obtained between the numerical simulation and
the hardware experimental results. The experiments reveal that this circuit can produce
multi-scroll chaotic attractors by just adding more number of threshold voltages. Due to
its simplicity, this circuit can find applications in communication and signal processing.
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Caption of Figures

Figure 1: The nonlinear function F6(x). (a) Plot of the piecewise linear function F6(x) given
by Eq. (7). (b) Measured characteristic curve of the nonlinear device unit ND from
Fig. 2, Vout against Vin. Vertical scale 2 V/div., horizontal scale 1 V/div.

Figure 2: Circuit diagram of the time delayed feedback oscillator with a nonlinear device unit
(ND), a time delay unit (DELAY ) and a lowpass first-order R0C0 filter.

Figure 3: Period doubling bifurcations. Phase portraits of Eqs. (1) with the function F6(x)
given by Eq. (7) for different values of the delay parameter: (a) τ = 1.0, Period-1
limit cycle; (b) τ = 1.2, Period-2 limit cycle; (c) τ = 1.24, Period-4 limit cycle; (d)
τ = 1.33, One-scroll chaos; (e) τ = 2.36, Two-scroll chaos; (f) τ = 2.8, Two-scroll
chaotic attractor.

Figure 4: Phase portraits obtained from the experimental results of circuit of Fig. 2 for different
delay parameter values corresponding to the numerical phase portraits of Fig. 3.
A = (R6/R4) = 5.2, B = (R6/R5) = 3.467 and τ = TD/R0C0 : (a) R0 = 7500 Ω,
Period-1 limit cycle; (b) R0 = 6250 Ω, Period-2 limit cycle; (c) R0 = 6050 Ω, Period-4
limit cycle; (d) R0 = 5640 Ω, One-scroll chaos; (e) R0 = 3180 Ω, Two-scroll chaos;
(f) R0 = 2680 Ω, Two-scroll chaotic attractor.

Figure 5: One parameter bifurcation diagram (τ − xmax) for the parameter values a = 1.0, b =
1.2, A = 5.2, B = 3.5, x∗ = 0.7, (a) for τ ∈ (0.98, 10) and (b) for the subset τ ∈
(1.0, 1.6), after leaving out transients of order 1.0× 108.

Figure 6: The first seven maximal Lyapunov exponents for parameter values a = 1.0, b =
1.2, x∗ = 0.7, A = 5.2, B = 3.5 and τ ∈ (1, 10).

Figure 7: Two parameter (A−B) bifurcation diagram in the range A ∈ [3, 8.5] andB ∈ [1.1, 1.6]
when a = 1.0, b = 1.2, x∗ = 0.7 and τ = 2.8, after leaving out transients of order
1.0 × 108. The following color codes are used to represents various regions: red,
period-1 attractor; green, period-2 attractor; blue, period-3 attractor; 4-magenta;
5-cyan; 6-yellow; 7-copper; 12-gray; chaos-black; and further period regions-white.

Figure 8: One parameter bifurcation diagram (A−xmax) for the parameter values a = 1.0, b =
1.2, τ = 2.8, B = 1.5, x∗ = 0.7, (a) for A ∈ (2.4, 9) and (b) for the subset A ∈
(2.4, 4.5), after leaving out transients of order 1.0× 108.

Figure 9: One parameter bifurcation diagram (B−xmax) for the parameter values a = 1.0, b =
1.2, A = 5.2, τ = 2.8, x∗ = 0.7, (a) for B ∈ (1.12, 2) and (b) for the subset B ∈
(1.12, 1.4), after leaving out transients of order 1.0× 108.

Figure 10: Amplification of chaotic attractors. (I) Phase portraits (numerical) of two chaotic
attractors of Eqs. (1) and (7) : (a) x∗ = 0.7 and (b) x∗ = 1.1. (II) Phase portraits
(experimental) of two chaotic attractors from the circuit (Fig. 2), x(t − τ) against
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x(t). Vertical scale 2 V/div., horizontal scale 0.2 V/div.: (a) V 1 = V 2 = 0.7 V and
(b) V 1 = V 2 = 1.1 V . A = (R6/R4) = 5.2, B = (R6/R5) = 3.467.

Figure 11: One parameter bifurcation diagram (x∗−xmax) for the parameter values a = 1.0, b =
1.2, A = 5.2, B = 3.5, τ = 2.8 and x∗ ∈ (0.45, 20).

Figure 12: Multi-scroll chaotic attractors with threshold modulation of square wave amplitudes.
(I) Phase portraits (numerical) of chaotic attractors of Eqs. (1) and (7) : (a) τ = 1.4,
two single scroll and (b) τ = 2.2, two double scroll attractors. (II) Phase portraits
(experimental) of chaotic attractors from the circuit (Fig. 2), x(t − τ) against x(t).
Vertical scale 2 V/div., horizontal scale 0.5 V/div.: (a) R0 = 5364 Ω, two single
scroll and (b) R0 = 3413 Ω, two double scroll attractors. A = (R6/R4) = 5.0,
B = (R6/R5) = 2.01 and τ = TD/R0C0.
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