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Using time dependent nonlinear (s-wave scattering length) coupling between the components of a weakly
interacting two component Bose-Einstein condensate (BEC), we show the possibility of matter wave switching
(fraction of atoms transfer) between the components via shape changing/intensity redistribution (matter
redistribution) soliton interactions. We investigate the exact bright-bright N -soliton solution of an effective
one-dimensional (1D) two component BEC by suitably tailoring the trap potential, atomic scattering length
and atom gain or loss. In particular, we show that the effective 1D coupled Gross-Pitaevskii (GP) equations
with time dependent parameters can be transformed into the well known completely integrable Manakov
model described by coupled nonlinear Schrödinger (CNLS) equations by effecting a change of variables of
the coordinates and the wave functions under certain conditions related to the time dependent parameters.
We obtain the one-soliton solution and demonstrate the shape changing/matter redistribution interactions
of two and three soliton solutions for the time independent expulsive harmonic trap potential, periodically
modulated harmonic trap potential and kink-like modulated harmonic trap potential. The standard elastic
collision of solitons occur only for a specific choice of soliton parameters.

PACS numbers: 03.75.Mn, 03.75.Lm, 05.45.-a

I. INTRODUCTION

The past decade has witnessed a considerable increase
of interest in the experimental and theoretical studies of
matter wave solitons of the dark1–3 and bright4,5 types
in Bose-Einstein Condensates (BECs). These solitons
have attracted a great deal of attention in connection
with the dynamics of nonlinear matter waves, includ-
ing soliton propagation6,7, vortex dynamics8, interfer-
ence patterns9 and domain walls in binary BECs10,11.
From an experimental BEC point of view, bright solitons
are created themselves as condensates4,5 while dark soli-
tons exist as notches or holes within the condensates1,2.
Note that bright solitons propagate over much larger dis-
tances than dark solitons. The bright matter-wave soli-
ton trains (multi-solitons) were experimentally observed
by Strecker et al.4 in 7Li and Khaykovich et al.5 in 87Rb
by magnetically tuning the atomic scattering length from
repulsive to attractive nature, through Feshbach reso-
nance12. The recent experiments at Heidelberg and Ham-
burg universities have shown the formation of dark soli-
tons, their oscillations and interaction in single compo-
nent BECs of 87 Rb atoms with confining harmonic po-
tential13–15.

Many aspects of the above novel and experimentally
accessible form of matter have been since then inten-
sively studied; one of them concerns with the investiga-
tion of the behaviour of multi-component BECs, which
have been experimentally studied in either mixtures of
different hyperfine states of the same atomic species or
even in mixtures of different atomic species. Experimen-
tal generation of two-component BECs of different hy-
perfine states of rubidium atoms in a magnetic trap16

and of sodium atoms in an optical trap17 stimulated

theoretical studies devoted to the mean-field dynamics
of multi-component condensates18. Recently, Zhang et
al.19 proposed a method for independent tuning of scat-
tering lengths in multi-component BECs. When a con-
densate is cigar shaped and has relatively low density,
that is, when the healing length of the components is
much larger than the transverse dimension of the con-
densate and much less than its longitudinal dimension,
the transverse atomic distribution is well approximated
by the Gaussian ground state and the system of coupled
1D Gross-Pitaevskii (GP) equations is adequate to de-
scribe multi-component condensates.

In the recent literature, there has been a growing
interest, both from experimental as well as theoreti-
cal perspectives20–25, in studying the dynamics of two-
component BECs coupled to the environment such as
external thermal clouds which leads to the mechanism of
loading (gain) external atoms (thermal clouds) into the
BECs by optical pumping or continuously depleting (loss
of) atoms. It is interesting to note that matter wave soli-
tons in multi-component BECs hold promise for a num-
ber of applications, including the multi-channel signals
and their switching, coherent storage and processing of
optical fields26–28.

Further, there has been increased interest in recent
times in studying the properties of BECs with time vary-
ing control parameters, such as (i) the temporal varia-
tion of atomic scattering length which can be achieved
through Feshbach resonance29–32, (ii) inclusion of appro-
priate time dependent gain or loss terms20–25,33–37, (iii)
the temporal modulation of trap frequencies25,38–42 and
so on. In particular, the study of matter wave solitons
under time varying control parameters is one of the cur-
rent active research fields25,38,42–48. Being motivated by
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the above considerations, in this paper, we study the dy-
namics of the exact bright-bright matter wave solitons
of two component BECs under the above time varying
control parameters.

Most of the theoretical studies on the matter wave soli-
tons in multi-component BECs have been carried out
using either numerical or approximation methods. For
example, two component dark-bright solitons have been
reported in49; bound dark solitons have been numeri-
cally studied in50, where it has been found that the cre-
ation of slowly moving objects is possible; a diversity
of other bound states has been generated numerically
in51. The present authors have obtained the exact dark-
bright soliton solutions and their different kinds of in-
teractions of the two component BECs by suitably tai-
loring the trap potential, atomic scattering length and
atom gain/loss25. We also point out that Babarro et al.52

have shown the possibility of switching phenomenon of
matter-wave solitons via bright-bright soliton interaction
of different species of two component BECs essentially
without potential term or any modulation of control pa-
rameters, through an approximate theoretical analysis
and numerical simulations. In the present paper, we
have investigated a different kind of matter wave switch-
ing phenomenon (in two different hyperfine states of the
same species such as 85Rb with equal intra- and inter-
species atomic interactions) via intensity redistribution
of exact bright-bright soliton interactions with the tem-
porally modulated control parameters analytically.

Specifically, in the present paper we bring out the exact
bright-bright one-, two-, three- andN -soliton solutions in
two-component BECs by simply mapping a class of two
coupled effective 1D GP equations onto the completely
integrable two coupled nonlinear Schrödinger (2CNLS)
equations (Manakov system) and making use of the ex-
act N -soliton solutions of the latter system. In particu-
lar we have demonstrated the bright-bright shape chang-
ing/matter redistribution of two and three solitons un-
der collision, while elastic collision occurs for a very spe-
cial choice parameters. We have also shown the shape
restoring property in the case of three soliton interac-
tion. These types of elastic and shape changing inter-
actions of two and three solitons have been well studied
in the context of optical computing, where the intensity
of light pulses are transformable between two modes of
Manakov type systems53–57. From the BEC point of view
the shape changing interaction can be interpreted as the
transformation of the fraction of atoms between the com-
ponents, which is the so called matter wave switch. Such
matter wave switching phenomenon can be used to ma-
nipulate matter wave devices such as switches, logic gates
and atom-chip26–28. One of the long term prospectives
of matter wave devices is their potential application to
quantum information processing, for details see for exam-
ple Refs.26–28. In the present paper we have shown that
such a matter wave switching phenomenon in two com-
ponent BECs is possible via shape changing soliton in-
teractions by suitably tailoring the trap potential, atomic

scattering length and gain or loss term.
This paper is organized as follows. In Section II, we

present the ansatz for the two coupled GP equations in
1D to be mapped onto the integrable 2CNLS equations.
In Section III we deduce the one-, two-, three- and N -
soliton solutions of the two coupled GP equation from
the one-, two-, three- and N -soliton solutions, respec-
tively, of the 2CNLS equations. In section IV, we bring
out the one soliton solution, elastic and shape changing
soliton interaction of two and three soliton solutions for
different forms of the trap potential, gain/loss term and
interatomic interaction (scattering length). We have also
shown the shape restoring property in three soliton inter-
actions. Elastic collision occurs only for a specific choice
of parameters. The analysis can also be extented to N -
solitons without much difficulty. Finally, in Section V,
we present a brief summary of our study.

II. ANSATZ FOR MAPPING TWO COUPLED GP

EQUATIONS ONTO MANAKOV SYSTEM

We consider the dynamics of a 1D two-component
trapped BEC with gain or loss term by the mean-field
equations for the wave functions, Ψ1 and Ψ2, of the con-
densates |1〉 and |2〉:

i
∂Ψj

∂t
= − 1

2

∂2Ψj

∂x2
+

[

R(t)

2
∑

k=1

σjk|Ψk|2

+ V (x, t) − µj +
i

2
γ(t)

]

Ψj , j = 1, 2, (1)

where V (x, t) = Ω2(t)x2/2 is the external time varying
trap potential, which is expulsive for Ω2(t) < 0 and con-
fining for Ω2(t) > 0. Here Ω2(t) = ω2

x(t)/ω
2
⊥, ωx(t)

is the temporally modulated axial trap frequency, ω⊥

is the time independent radial trap frequency, R(t) =
2as(t)/aB, as(t) is the magnitude of the s-wave atomic
scattering length, aB is the Bohr radius, σjk ’s are the
signs of the s-wave scattering lengths, which are nega-
tive for attractive and positive for repulsive interactions,
µj is the chemical potential of the jth component and
γ(t) = Γ(t)/ω⊥, where Γ(t) is the gain (for +ve) or loss
(for −ve) term, which is the phenomenologically incor-
porated interaction of external atoms (thermal clouds).
The time dependent gain/loss term corresponds to the
mechanism of continuously loading external atoms into
the BEC (gain) by optical pumping or continuous deple-
tion (loss) of atoms from the BEC33–37.
The atomic scattering length of alkali atoms such as 7Li

and 85Rb atoms can be experimentally varied by suitably
tuning the external magnetic field through the Feshbach
resonance as4,5,58

as(t) = a0s

(

1− ∆

B(t)−B0

)

, (2)
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where a0s is the scattering length of the condensed atoms,
B(t) is the external time varying magnetic field, B0 is the
resonance magnetic field and ∆ is the resonance width.
Recently, Zhang et al.19 proposed a method for a simi-
lar kind tuning of scattering lengths for two component
condensates of two different hyperfine states of 87Rb.
In the present study we have considered the attractive-
attractive (σjk = −1) two component BECs as in the
case of two different hyperfine states of 85Rb with equal
intra- and inter-species atomic interactions.
By applying the following transformation,

Ψj(x, t) = exp

[

iµjt+

∫

γ(t)

2
dt

]

Qj(x, t), (3)

where j = 1, 2, Eq. (1) can be transformed to a system
of two coupled GP equations without gain/loss term and
chemical potential as

i
∂Qj

∂t
=

[

R̃(t)

2
∑

k=1

σjk|Qk|2 + V (x, t) − 1

2

∂2

∂x2

]

Qj, (4)

where j = 1, 2 and

R̃(t) = exp

[∫

γ(t)dt

]

R(t). (5)

Eq. (4) can be mapped onto the 2CNLS (Manakov) equa-
tions under the following transformation38,43,48,59,60,

Qj(x, t) = Λqj(X,T ), j = 1, 2, (6)

where the new independent variables T and X are chosen
as functions of the old independent variables t and x as

T =G(t), X = F (x, t), (7)

while Λ = Λ(x, t) is a function of t and x. Applying the
above transformation (6), so that

∂

∂t
= Gt

∂

∂T
+ Ft

∂

∂X
,

∂

∂x
= Fx

∂

∂X
,

∂2

∂x2
= Fxx

∂

∂X
+ F 2

x

∂2

∂X2
, (Gt =

∂G

∂t
, Fx =

∂F

∂x
), (8)

one can reduce Eq. (4) to the 2CNLS equation of the
form

i
∂qj
∂T

+
∂2qj
∂X2

+ 2

(

2
∑

k=1

|qk|2
)

qj = 0, j = 1, 2, (9)

subject to the conditions that the functions Λ, F , G, Ω
and R̃ should satisfy the following set of equations,

iΛt +
1

2
Λxx −

Ω(t)

2
x2Λ = 0, (10a)

iΛFt +
1

2
(2ΛxFx + ΛFxx) = 0, (10b)

Gt =
F 2
x

2
=
R̃

2
|Λ|2. (10c)

In order to solve for the unknown functions Λ, F and G
in the above equations (10) we assume the polar form

Λ = r(x, t) exp[iθ(x, t)]. (11)

One can immediately check from the relations (10c) that

r is a function of t only, r = r(t), since G and R̃ are
functions of t only. Then from Eqs. (10) one can easily
deduce the transformation function Λ given by (11) and
the transformations G(t) and F (z, t) through the follow-
ing relations,

r2 = 2r20R̃, (12a)

θ = − R̃t

2R̃
x2 + 2br20R̃x− 2b2r40

∫

R̃2dt, (12b)

F (x, t) = X =
√
2r0R̃x− 2

√
2br30

∫

R̃2dt, (12c)

G(t) = T = r20

∫

R̃2dt. (12d)

Here b, r0 are arbitrary constants, and R̃ and Ω2 should
be related by the following condition,

d

dt

(

R̃t

R̃

)

−
(

R̃t

R̃

)2

− Ω2(t) = 0, (13)

which is a Riccati type equation for R̃t/R̃. Eq. (9) is
the celebrated Manakov system61–64, which is well stud-
ied in the context of nonlinear optics, biophysics, plasma
physics etc. Eq. (9) is a completely integrable soliton
system and exhibits interesting one-, two-, three- and
N -soliton solutions of bright-bright type53,55–57. From
the solutions of Eq. (9), one can straightforwardly con-
struct the one-, two-, three- and N -bright-bright soliton
solutions for Eq. (1), provided Rt, γ(t) and Ω(t) satisfy
Eq. (13). In the context of BECs, it is of fundamen-
tal interest to study the bright-bright soliton solutions
of Eq. (1). In the following we shall describe the multi-
soliton solutions corresponding to the coupled GP equa-
tion (1).
Note that in Eq. (1), the variable x actually represents

x/a⊥, where a⊥ = ~/(mω⊥), and similarly t stands for
ω⊥t.

III. MULTI-SOLITON SOLUTIONS OF TWO COUPLED

NONLINEAR SCHRÖDINGER EQUATIONS

The 2CNLS equation (9) in contrast to the sin-
gle component NLS system admits solutions which ex-
hibit certain novel energy sharing (shape changing) col-
lisions53,55–57. Recently, the general expression for N -
soliton solution of the Manakov system in the Gram de-
terminant form has been given in Ref.57 by using Hirota’s
bilinear method.
In order to write down the multi-soliton (N -soliton)

solution of the focusing Manakov system (9), we define
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the following (1 × N) row matrix Cs, s = 1, 2, (2 × 1)
column matrices ψj , and (N × 1) column matrix φ, j =
1, 2, . . . , N , and the (N ×N) identity matrix I:

Cs = −
(

α
(s)
1 , α

(s)
2 , . . . , α

(s)
N

)

, 0 = (0, 0, . . . , 0),

(14a)

ψj =

(

α
(1)
j

α
(2)
j

)

, φ =











eη1

eη2

...
eηN











, I =











1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1











. (14b)

Here α
(s)
j , s = 1, 2, j = 1, 2, . . . , N , are arbitrary complex

parameters and ηi = kiX + ik2i T , i = 1, 2, . . . , N , and
ki are complex parameters. We write down the multi-
soliton solution of the 2-CNLS system57 as below:

qs(X,T ) =
g(s)

f
, s = 1, 2, (15)

where

g(s) =

∣

∣

∣

∣

∣

∣

A I φ
−I BT

0
T

0 Cs 0

∣

∣

∣

∣

∣

∣

, f =

∣

∣

∣

∣

A I
−I BT

∣

∣

∣

∣

. (16a)

Here the matrices A and B are defined as

Aij =
eηi+η∗

j

ki + k∗j
, Bij =

ψ†
jψi

k∗j + ki
, i, j = 1, 2, . . . , N. (16b)

In equation (16b), † represents the transpose conjugate.
In particular the one-soliton solution (N = 1 case) reads
as

qj(X,T ) =

∣

∣

∣

∣

∣

∣

A11 1 eη1

−1 B11 0

0 −α(j)
1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A11 1
−1 B11

∣

∣

∣

∣

=
α
(j)
1 eη1

1 + β0eη1+η∗

1

, (17)

where j = 1, 2 and

β0 =
|α(1)

1 |2 + |α(2)
1 |2

(k1 + k∗1)
2

(18)

For the N = 2 case, we can write the two-soliton solution
from Eq. (15) as

qj(X,T ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A11 A12 1 0 eη1

A21 A22 0 1 eη2

−1 0 B11 B21 0
0 −1 B12 B22 0

0 0 −α(j)
1 −α(j)

2 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A11 A12 1 0
A21 A22 0 1
−1 0 B11 B21

0 −1 B12 B22

∣

∣

∣

∣

∣

∣

∣

, (19)

with j = 1, 2. The explicit form of the two-soliton solu-
tion can be written as

qj(X,T ) =
1

D

2
∑

l=1

(

α
(j)
l eηl + ξ

(j)
l eη1+η2+η∗

l

)

, (20)

where

D = 1 +
2
∑

l,m=1

(

βlme
ηl+η∗

m

)

+ β3e
η1+η∗

l +η2+η∗

2

ξ
(j)
l =

k1 − k2
(k1 + k∗l )(k2 + k∗l )

(

α
(j)
1 κ2l − α

(j)
2 κ1l

)

,

β3 =
|k1 − k2|2(κ11κ22 − κ12κ21)

(k2 + k∗2)(k2 + k∗1)|k1 + k∗2 |2
,

βlm =
κlm

kl + k∗m
, κlm =

2
∑

j=1

α
(j)
l α

(j)∗
m

kl + k∗m
. (21)

Similarly, the three-soliton and N -soliton solutions can
be written down explicitly.
Now using the transformation (3), the bright-bright

N -soliton solution of the two-coupled GP equations can
be written as

Ψj(x, t) =2r0

√

R̃ exp

[

i(θ + µjt) +

∫

γ

2
dt

]

qj(X,T ),

(22)

where X and T are given in Eqs. (12c) and (12d). Note
that the variables X and T are complicated functions of
the original independent variables x and t as given by
Eqs. (12c) and (12d). Consequently the width which is

inversely proportional to R̃(t), see Eq. (12 c), changes as
a function t and x, even though it is not so in the case of
the Manakov system.

IV. ELASTIC AND INTENSITY REDISTRIBUTION

INTERACTIONS OF BEC BRIGHT-BRIGHT SOLITONS

Depending on the various forms of the trap potential,
gain/loss and interatomic interaction satisfying Eq. (13),
we have deduced different kinds of bright-bright soliton
solutions using the above expression for the soliton solu-
tions (22), and the transformations (6), (11) and (12). In
the following, we demonstrate soliton solutions for three
typical choices of trap potentials. In particular, we have
focussed on the shape changing and elastic interactions
of two soliton (N = 2) and three-soliton (N = 3) solu-
tions of the two component BEC. The analysis can be
systematically extended to arbitrary N , which we do not
present here for brevity.

A. Expulsive Potential

For time independent expulsive parabolic trap poten-
tial, Ω2(t) = −Ω2

0, where Ω0 is a constant, we get R̃(t) =
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sech(Ω0t + δ) from Eq. (13). The intensity of the wave

packet (|Ψj |2) is proportional to R̃(t)e
∫
γ(t)dt as seen from

Eq. (22) and the width of the wave packet is inversely pro-

portional to
√

R̃(t). We have constructed different types

of soliton solutions by suitably tuning the gain term but
here we have presented only the constant intensity case
for γ = Ω0 tanh(Ω0t + δ). Fig. 1 shows one such possi-

FIG. 1. (color online) Choice of the atomic scattering
length as(t) and gain term Γ(t) as a function of time for
time-independent expulsive harmonic trap potential V (x) =
−Ω2

0x
2/2, Ω0 = constant.

ble gain term Γ(t) = ω⊥Ω0 tanh(Ω0t+ δ) and the atomic
scattering length as(t) =

1
2aBR(t) =

1
2aB sech2(Ω0t+ δ),

which can be experimentally realized by varying the ex-
ternal magnetic field as

B(t) = B0 +
a0s ∆

a0s − 1
2aBsech

2(Ω0t+ δ)
. (23)

One may note that such a form of scattering length as(t)
has been realized in 7Li and 85Rb atoms4,5,58. Simi-
larly the gain term Γ(t) can be experimentally realized by
pumping of atoms optically as demonstrated in Refs.35,37.

For N = 1, we get the one-soliton solution of the cou-
pled GP equation (1) from Eq. (22). As noted above, if
we choose γ(t) = Ω0 tanh(Ω0t + δ), the intensity of the
soliton is constant. Figure 2 shows the bright-bright one-
soliton solution for the two components |1〉 = |Ψ1| and
|2〉 = |Ψ2| for the above gain term where the amplitude
of the wave packet remains constant. For the N = 2
case we get the two-soliton solution of (1) from Eq. (22).
In this case, elastic collision occurs only for the specific

choice of the parameters (α
(1)
1 /α

(1)
2 ) = (α

(2)
1 /α

(2)
2 ), see

Eqs. (20) and (22). For all other choices of the parameter
values, shape changing/matter redistribution interaction
occurs. Fig. 3 shows the elastic interaction of the bright-
bright two-soliton solution for k1 = 1 + i, k2 = 2 − i,

α
(1)
1 = α

(2)
1 = α

(1)
2 = α

(2)
2 = 1. Here the intensity of

FIG. 2. (color online) One-soliton solution for time-
independent expulsive harmonic trap potential V (x) =
−Ω2

0x
2/2 and γ(t) = Ω0 tanh(Ω0t + δ). The parameters are

k1 = 1 + 0.5i, α
(1)
1 = α

(2)
1 = 1.0, Ω0 = 890/53 and r0 = 0.5.

FIG. 3. (color online) Elastic interaction of bright-bright two
solitons for time-independent expulsive harmonic trap po-
tential V (x) = −Ω2

0x
2/2 and γ(t) = Ω0 tanh(Ω0t + δ) for

α
(1)
1 = α

(2)
1 = α

(1)
2 = α

(2)
2 = 1. The parameters are k1 = 1+ i,

k2 = 2− i, Ω0 = 0.06 and r0 = 0.5.

the two solitons (S1 and S2) in both the components are
unchanged before and after interaction. The two distinct
possibilities of the shape changing two-soliton interac-
tion are shown in Figs. 4(a) and 4(b), see also Table I(a).
Figs. 4(a) illustrate the shape changing two-soliton inter-

action for k1 = 1 + i, k2 = 2− i, α
(1)
1 = α

(2)
1 = α

(2)
2 = 1,

α
(1)
2 = (39 + 80i)/89. Here the intensity of the soliton
S1 gets enhanced while that of soliton S2 is suppressed
after interaction in the component |1〉, whereas in the
component |2〉 it gets reversed. Fig. 4(b) shows another
possible way of the shape changing two-soliton interac-

tion for k1 = 1 + i, k2 = 2 − i, α
(1)
1 = (0.02 + 0.1i),

α
(1)
2 = α

(2)
1 = α

(2)
2 = 1. Here in contrast to the above [cf.

Figs. 4 (a)], the intensity of the soliton S1 gets suppressed
while that of soliton S2 is enhanced after interaction in
the component |1〉, whereas in the component |2〉 it gets
reversed similar to the well studied case of Manakov sys-
tem53,55,56.

For the N = 3 case, we get the three-soliton solutions
of the coupled GP equation (1) from Eq. (22). Here

elastic interaction occurs only for α
(1)
1 : α

(1)
2 : α

(1)
3 =

α
(2)
1 : α

(2)
2 : α

(2)
3 and for all other choice of parameters,

matter redistribution interaction occurs. Fig. 5(a) shows
the elastic interaction of bright-bright 3-soliton (N = 3
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FIG. 4. (color online) Shape changing interactions of bright-
bright two solitons for time-independent expulsive harmonic
trap potential V (x) = −Ω2

0x
2/2 and γ(t) = Ω0 tanh(Ω0t+ δ)

for (a): α
(1)
1 = α

(2)
1 = α

(2)
2 = 1, α

(1)
2 = (39 + 80i)/89 and for

(b): α
(1)
1 = (0.02 + 0.1i), α

(1)
2 = α

(2)
1 = α

(2)
2 = 1. The other

parameters are k1 = 1+ i, k2 = 2− i, Ω0 = 0.06 and r0 = 0.5.

FIG. 5. (color online) Bright-bright three soliton interactions:

(a) Elastic interaction for α
(1)
1 = α

(2)
1 = α

(1)
2 = α

(2)
2 =

α
(1)
3 = α

(2)
3 = 1 and (b) Shape changing interaction for

α
(1)
1 = 0.39 + 0.1i, α

(1)
2 = 0.3 + 0.2i, α

(1)
3 = 1.0, α

(2)
1 =

(80.0−80i)/89.0, α
(2)
2 = 0.6+0.2, α

(2)
3 = (89.0+80i)/89.0 for

time-independent expulsive harmonic trap potential V (x) =
−Ω2

0x
2/2 and γ(t) = Ω0 tanh(Ω0t+ δ). The other parameters

are k1 = 1 + 0.5i, k2 = 1.5, k3 = 2 − 1.5i, Ω0 = 0.06 and
r0 = 0.5.

case) solution for k1 = 1 + 0.5i, k2 = 1.5, k3 = 2 − 1.5i,

α
(1)
1 = α

(2)
1 = α

(1)
2 = α

(2)
2 = α

(1)
3 = α

(2)
3 = 1. Here the

intensities of the three solitons in both the components

are unchanged before and after interactions. Fig. 5(b)
shows the shape changing interactions of bright-bright 3-

soliton solution for α
(1)
1 = 0.39 + 0.1i, α

(1)
2 = 0.3 + 0.2i,

α
(1)
3 = 1.0, α

(2)
1 = (80.0 − 80i)/89.0, α

(2)
2 = 0.6 + 0.2,

α
(2)
3 = (89.0 + 80i)/89.0. Here the intensity of the soli-

ton S1 gets suppressed (S) while that of solitons S2 and
S3 are enhanced (E) after interaction in the component
|1〉, whereas in the component |2〉 it gets reversed. The
six distinct possibilities of shape changing interactions
of three soliton solutions are shown in Table I(b). The

TABLE I. Possible combinations of matter redistributions of
two solitons (N = 2 case) and three solitons (N = 3 case)
under collision in component |1〉. E stands for enhancement
of intensity while S represent suppression. See also Ref.55

(a) N = 2 case
case S1 S2

1 E S
2 S E

(b) N = 3 case
case S1 S2 S3

1 E S S
2 S E S
3 S S E
4 S E E
5 E S E
6 E E S

above three soliton interaction process is equivalent to
two pairwise interactions. Kanna and Lakshmanan 55,56

have shown that for the corresponding Manakov system

the first interaction is controlled by the parameters α
(1)
1 ,

α
(1)
2 , α

(2)
1 , α

(2)
2 , k1, k2 and the second interaction is con-

trolled by α
(1)
3 , α

(2)
3 and k3.

Fig. 6 depicts the shape restoring property of soli-
ton S1 during its interaction with the other two soli-
tons, S2 and S3 for time-independent expulsive harmonic

FIG. 6. (color online) Shape restoring property of S1 in three
solitons interactions for time-independent expulsive harmonic
trap potential V (x) = −Ω2

0x
2/2 and γ(t) = Ω0 tanh(Ω0t+ δ)

for the choice of the parameters α
(1)
1 = (39− 80i)/89, α

(1)
2 =

(39 + 80i)/89, α
(1)
3 = 0.3 + 0.2i, α

(2)
1 = 0.39, α

(2)
2 = α

(2)
3 = 1,

k1 = 1+1.5i, k2 = 1.5, k3 = 2−1.5i, Ω0 = 0.06 and r0 = 0.5.

trap potential V (x) = −Ω2
0x

2/2 for the choice of the pa-
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rameters α
(1)
1 = (39 − 80i)/89, α

(1)
2 = (39 + 80i)/89,

α
(1)
3 = 0.3 + 0.2i, α

(2)
1 = 0.39, α

(2)
2 = α

(2)
3 = 1,

k1 = 1 + 1.5i, k2 = 1.5, k3 = 2 − 1.5i. Here the in-
tensity of the soliton S1 is unchanged after its interac-
tions with the other two solitons S2 and S3 in both the
components, while the intensities of solitons S2 and S3

get changed. The condition for the choice of the pa-
rameters for the shape restoration of soliton S1 is given
in Ref.56. Note that the shape restoring property is essen-
tial for the construction of universal logic gates which are
necessary for computing54,56. The above type of elastic,
shape changing interactions and shape restoring property
of solitons during the interactions are similar to the study
of Kanna and Lakshmanan55,56 in the context of optical
computing, where the intensities of light pulses are trans-
formable between two modes. Here, the shape changing
interactions are interpreted as the transform of the frac-
tion of atoms between the two components, which can
be achieved experimentally by suitable tuning of atomic
scattering length and gain/loss term. Note that exact
analytical representations for the soliton switching can
be given in the form of linear fractional tranformations
leading to logic gates as in the case of optical systems,
see Ref.54,56. This type of shape changing soliton inter-
actions can be used (as disscussed in Refs.26–28) in the
matter wave switching devices, logic gates and quantum
information processing as in the case of optical comput-
ing.

B. Periodically Modulated Trap Potential

Next, if we choose the periodically varying atomic scat-
tering length40 R(t) = 1 + ω cos(ωt + δ) and the corre-
sponding gain term

γ(t) =
ω2 sin(ωt+ δ)

2 [1 + ω cos(ωt+ δ)]
, ω ≤ 1, (24)

with δ as a constant, we get R̃(t) =
√

1 + ω cos(ωt+ δ)
from Eq. (5)and the periodically modulated trap fre-
quency from the integrability condition (13) as

Ω2(t) = ω2











1−
4 + 10ω cos θ̃ + 3ω2

[

1 + cos2 θ̃
]

4
[

1 + ω cos θ̃
]2











,

(25)

where θ̃ = ωt + δ. The intensity of soliton also remains
constant for this case but the width of the soliton is peri-
odically varying with time (that is, inversely proportional

to
√

R̃(t)). Fig. 7 shows the gain term

Γ(t) =
ω⊥ω

2 sin(ωt+ δ)

2[1 + ω cos(ωt+ δ)]
, (26)

which can can also be experimentally realized by suitable
optical pumping, and the corresponding choice of atomic

FIG. 7. (color online) Form of the (a) atomic scattering length
as(t) and (b) gain or loss term Γ(t) as a function of time for
the periodically modulated harmonic potential with the trap
frequency (25).

FIG. 8. (color online) One-soliton solution for the periodically
modulated harmonic potential with trap frequency (25). The

parameters are fixed as k1 = 1 + 0.5i, α
(1)
1 = α

(2)
1 = 1.0,

ω = 0.4 and r0 = 0.5.

scattering length as(t) = aB

2 [1 + ω cos(ωt+ δ)] which
may be experimentally realized by periodically tuning
the external magnetic field as

B(t) = B0 +
a0s ∆

a0s − 1
2aB [1 + ω cos(ωt+ δ)]

. (27)

Fig. 8 shows the snake-like effect of the one-soliton so-
lution for the above periodically modulated trap poten-
tial with R(t) = [1 + ω cos(ωt+ δ)] and γ(t) as given
in Eq. (24), where the intensity of the soliton remains
constant in both the components while the width of the
soliton varies periodically with time. Note that the oscil-
lation of the soliton goes on increasing with time due to
the fact that the width of the soliton is inversely propor-
tional to R̃(t). It is of importance to note that recently,
in scalar nonautonomous NLS equation for BEC38 and
optical solitons65, a similar kind of snake-like effect has
been demonstrated.
Next we analyze different types of two soliton interac-

tions for the periodically modulated potential for suitable
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FIG. 9. (color online) Bright-bright two soliton interactions
for the periodically modulated harmonic potential. (a) Elastic

collision for α
(1)
1 = α

(2)
1 = α

(1)
2 = α

(2)
2 = 1 and (b) Shape

changing collision for α
(1)
1 = α

(2)
1 = α

(2)
2 = 1, α

(1)
2 = (39 +

80i)/89. The other parameters are fixed as k1 = 1 + i, k2 =
2− i, ω = 0.4 and r0 = 0.5.

FIG. 10. (color online) Bright-bright three soliton interactions
for the periodically modulated harmonic trap potential. (a)

Elastic collision for α
(1)
1 = α

(2)
1 = α

(1)
2 = α

(2)
2 = α

(1)
3 =

α
(2)
3 = 1 and (b) Shape changing collision for α

(1)
1 = 0.39 +

0.1i, α
(1)
2 = 0.3 + 0.2i, α

(1)
3 = 1.0, α

(2)
1 = (80.0 − 80i)/89.0,

α
(2)
2 = 0.6+0.2, α

(2)
3 = (89.0+80i)/89.0. The parameters are

k1 = 1 + i, k2 = 1.5 − 0.5i, k3 = 2− i, ω = 0.4 and r0 = 0.5.

choice of other parameters. Fig. 9(a) shows the elas-
tic collision of snake like bright-bright two solitons while
Fig. 9(b) shows shape changing collision of snake-like
bright-bright two solitons for ω = 0.4. Figs. 10(a) and
(b) depict the elastic collision and shape changing col-

lision of snake-like bright-bright three-soliton solutions,
respectively, for this case. The other parameters are the
same as in the time independent expulsive harmonic po-
tential case. The collision effects are similar to the ones
discussed in the case of expulsive trap potential earlier
but now the widths of solitons oscillate periodically with
time because of the periodically varying atomic scatter-
ing length.

C. Kink-like Modulated Trap Potential

Finally, if we choose R(t) = 1 + tanh(ωt+ δ) and

γ(t) = −ω
4
[1− tanh(ωt+ δ)] , (28)

we get R̃(t) =
√

1 + tanh(ωt+ δ) and the integrability
condition (13) gives

Ω2(t) = −ω2

[

1− e4ωt

(1 + e2ωt)2

]

, (29)

which is a kink-like modulated trap. For the above case,

FIG. 11. (color online) Choice of the (a) atomic scattering
length as(t) and (b) gain term Γ(t) as a function of time
for the kink-like modulated harmonic potential V (x, t) =

−ω2

(

1−
e4ωt

(1 + e2ωt)2

)

x2.

we sketch the gain

Γ(t) = −ω⊥ω

4
[1− tanh(ωt+ δ)] , (30)

and the corresponding choice of atomic scattering length
as(t) =

aB

2 [1 + tanh(ωt+ δ)] in Fig. 11. The form (30)
of the gain can again be experimentally realized by con-
tinuously loading the external atoms into the condensate
by optical pumping as in the case of Refs.35,37 and the
atomic scattering length can be realized by a kink-like
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FIG. 12. (color online) One-soliton solution for the kink-like

trap potential. The parameters are k1 = 1 + 0.5i, α
(1)
1 =

α
(2)
1 = 1.0, ω = 0.06 and r0 = 0.75.

FIG. 13. (color online) Bright-bright two soliton interactions
for the kink-like modulated harmonic trap potential. (a)

Intensity unchanged under the collision for α
(1)
1 = α

(2)
1 =

α
(1)
2 = α

(2)
2 = 1. (b) Matter redistribution collision for

α
(1)
1 = α

(2)
1 = α

(2)
2 = 1, α

(1)
2 = (39+80i)/89. The parameters

are k1 = 1 + i, k2 = 2− i, ω = 0.06 and r0 = 0.4

tuning of the external magnetic field as

B(t) = B0 +
a0s ∆

a0s − 1
2aB [1 + tanh(ωt+ δ)]

. (31)

Fig. 12 shows the one-soliton solution for the kink-like
modulated trap potential with R(t) = 1 + tanh(ωt + δ)
and

γ(t) = −ω
4
[1− tanh(ωt+ δ)] .

Here the intensity of solitons in both the components are
constant while the width is decreasing with time (that is

inversely proportional to
√

R̃(t)).

Next we analyze the two-soliton (N = 2) and
three-soliton (N = 3) solutions for the two-component
BECs with kink-like modulated harmonic trap potential.

FIG. 14. (color online) Bright-bright three soliton interac-
tions for the kink-like modulated harmonic trap potential.

(a) Intensity unchanged collision for α
(1)
1 = α

(2)
1 = α

(1)
2 =

α
(2)
2 = α

(1)
3 = α

(2)
3 = 1. (b) Matter redistribution collision

for α
(1)
1 = 0.39 + 0.1i, α

(1)
2 = 0.3 + 0.2i, α

(1)
3 = 1.0, α

(2)
1 =

(80.0 − 80i)/89.0, α
(2)
2 = 0.6 + 0.2, α

(2)
3 = (89.0 + 80i)/89.0.

The parameters are k1 = 1 + i,k2 = 1.5 − 0.5i, k3 = 2 − i,
ω = 0.06 and r0 = 0.4

Fig. 13(a) shows the bright-bright intensity unchanged
collision of two solitons while Fig. 13(b) shows matter
redistribution collision of two solitons. The intensity
unchanged and matter redistribution collisions of three-
soliton solutions for the kink-like modulated potential are
shown in Figs. 14(a) and 14(b), respectively. The other
parameters are the same as in the time-independent po-
tential case. Note that, here, the widths of the two and
three solitons are also decreasing with time.

V. SUMMARY AND CONCLUSION

In summary, we have investigated the exact bright-
bright multi-soliton solutions of the two-component
BECs with time varying parameters such as trap fre-
quency, s-wave scattering length and gain/loss term. On
mapping the two coupled GP equations onto the cou-
pled NLS equations under certain conditions, we have
deduced different kinds of bright-bright one-soliton solu-
tions and interaction of two solitons for time independent
expulsive harmonic trapping potential, periodically mod-
ulated trap potential and kink-like modulated potential.
We have shown the shape changing and elastic interac-
tions of bright-bright two-soliton and three-soliton solu-
tions of the two component BECs. The present study
provides an understanding of the possible mechanism for
the fraction of atoms transform between the two compo-
nents. Especially the shape changing collisions of matter
wave solitons can used for matter wave switching devices,
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logic gates and quantum information processing. These
elastic and shape changing interactions can be realized in
experiments by suitable control of time dependent trap
parameters, atomic interaction and interaction with ther-
mal cloud.
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