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The Landau-Lifshitz-Gilbert (LLG) equation is a fascinating nonlinear evolu-
tion equation both from mathematical and physical points of view. It is related to
the dynamics of several important physical systems such as ferromagnets, vortex
filaments, moving space curves, etc. and has intimate connections with many of the
well known integrable soliton equations, including nonlinear Schrodinger and sine-
Gordon equations. It can admit very many dynamical structures including spin
waves, elliptic function waves, solitons, dromions, vortices, spatio-temporal pat-
terns, chaos, etc. depending on the physical and spin dimensions and the nature of
interactions. An exciting recent development is that the spin torque effect in nano-
ferromagnets is described by a generalization of the LLG equation which forms a
basic dynamical equation in the field of spintronics. This article will briefly review
these developments as a tribute to Robin Bullough who was a great admirer of the
LLG equation.
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1. Introduction

Spin systems generally refer to ordered magnetic systems. Specifically, spin angu-
lar momentum or spin is an intrinsic property associated with quantum particles,
which does not have a classical counterpart. Macroscopically, all substances are
magnetic to some extent and every material when placed in a magnetic field ac-
quires a magnetic moment or magnetization. In analogy with the relation between
the dipole moment of a current loop in a magnetic field and orbital angular momen-
tum of a moving electron, one can relate the magnetic moment/magnetization with
the expectation value of the spin angular momentum operator, which one may call
simply as spin. In ferromagnetic materials, the moment of each atom and even the
average is not zero. These materials are normally made up of domains, which ex-
hibit long range ordering that causes the spins of the atomic ions to line up parallel
to each other in a domain. The underlying interaction (Hillebrands & Ounadjela
2002) originates from a spin-spin exchange interaction that is caused by the overlap-
ping of electronic wave functions. Additional interactions which can influence the
magnetic structures include magnetocrystalline anisotropy, applied magnetic field,
demagnetization field, biquadratic exchange and other weak interactions. Based on
phenomenological grounds, by including effectively the above type of interactions,
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Landau and Lifshitz (1935) introduced the basic dynamical equation for magneti-
zation or spin § (7,t) in bulk materials, where the effect of relativistic interactions
were also included as a damping term. In 1954, Gilbert (2004) introduced a more
convincing form for the damping term, based on a Lagrangian approach, and the
combined form is now called the Landau-Lifshitz-Gilbert (LLG) equation, which is
a fundamental dynamical system in applied magnetism (Hillebrands & Ounadjela
2002; Mattis 1988; Stiles & Miltat 2006).

The LLG equation for the unit spin vector S (7,t), because of the constancy
of length, is a highly nonlinear partial differential equation in its original form for
bulk materials. Depending on the nature of the spatial dimensions and interactions,
it can exhibit a very large variety of nonlinear structures such as spin waves, el-
liptic function waves, solitary waves, solitons, lumps, dromions, bifurcations and
chaos, spatiotermporal patterns, etc. It exhibits very interesting differential geo-
metric properties and has close connections with many integrable soliton and other
systems, for special types of interactions. In the general situations, the system is
highly complex and nonintegrable. Both from physical and mathematical points of
view its analysis is highly challenging but rewarding.

One can also deduce the LLG equation starting from a lattice spin Hamiltonian,
by postulating appropriate Poisson brackets, and writing down the corresponding
evolution equations and then introducing the Gilbert damping term phenomenolog-
ically. Thus we can have LLG equation for a single spin, a lattice of spins and then
the continuum limit in the form of nonlinear ordinary differential equation(ODE),
a system of coupled nonlinear ODEs and a nonlinear partial differential equation,
respectively, for the unit spin vector(s). Analysis of the LLG equation for discrete
spin systems turns out to be even harder than the continuum limit due to the na-
ture of nonlinearity. However, apart from exact analytic structures, one can also
realize the onset of bifurcations, chaos and patterns more easily in discrete cases.
Thus the LLG equation turns out to be an all encompassing nonlinear dynamical
system.

The LLG equation has also close relationship with several other physical sys-
tems, for example motion of a vortex filament, motion of curves and surfaces, o-
models in particle physics, etc. One of the most exciting recent developments is that
a simple generalization of the LLG equation also forms the basis of the so called
spin torque effect in nanoferromagnets in the field of spintronics.

With the above developments in mind, in this article we try to present a brief
overview of the different aspects of the LLG equation, concentrating on its nonlinear
dynamics. Obviously the range of LLG equation is too large and it is too difficult
to cover all aspects of it in a brief article and so the presentation will be more
subjective. The structure of the paper will be as follows. In Sec.2, starting from the
dynamics of the single spin, extension is made to a lattice of spins and continuum
systems to obtain the LLG equation in all the cases. In Sec.3, we briefly point out the
spin torque effect. Sec.4, deals with exact solutions of discrete spin systems, while
Sec.5 deals with continuum spin systems in (141) dimensions and magnetic soliton
solutions. Sec.5 deals with (2+1) dimensional continuum spin systems. Concluding
remarks are made in Sec.6.
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2. Macroscopic Dynamics of Spin Systems and LLG
Equation

To start with, in this section we will present a brief account of the phenomenological
derivation of the Landau-Lifshitz-Gilbert (LLG) equation starting with the equa-
tion of motion of a magnetization vector in the presence of an applied magnetic field
(Hillebrands & Ounadjela, 2002). Then this analysis is extended to the case of a lat-
tice of spins and its continuum limit, including the addition of a phenomenological
damping term, to obtain the LLG equation.

(a) Single Spin Dynamics

Consider the dynamics of the spin angular momentum operator S of a free
electron under the action of a time-dependent external magnetic field with the
Zeeman term given by the Hamiltonian

9B & 5 ~

Hy, =-==5.B(t), B(t)=nH(), (1)
where g, up and pg are the gyromagnetic ratio, Bohr magneton and permeability in
vacuum, respectively. Then, from the Schrodinger equation, the expectation value
of the spin operator can be easily shown to satisfy the dynamical equation, using
the angular momentum commutation relations, as

d ~ — —

L8> = LB 50> xB(1). 2)

dt h
Now let us consider the relation between the classical angular momentum Lofa
moving electron and the dipole moment M. of a current loop immersed in a uniform
magnetic field, M. = 5= L, where e is the charge and m is the mass of the electron.

Analogously one can define the magnetization M= 9BL < S >= v < s >, where
v = 242, Then considering the magnetization per unit volume, M, from (2) one

can write the evolution equation for the magnetization as

L~ o) < A ), 3)

where B = uoﬁ and v = po7.

From (3) it is obvious that M.M = constant and M.H = constant. Conse-
quently the magnitude of the magnetization vector remains constant in time, while
it precesses around the magnetic field H making a constant angle with it. Defining
the unit magnetization vector

Sy = MO ey g (st sv.57), (4)
|M(#)]

which we will call simply as spin hereafter, one can write down the spin equation
of motion as (Hillebrands & Ounadjela 2002)

%t) = —lS() x H(B), H = (H, H H) (5)
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Figure 1. Evolution of a single spin (a) in the presence of a magnetic field and (b) when
damping is included.

and the evolution of the spin can be schematically represented as in Fig. 1(a).

It is well known that experimental hysteresis curves of ferromagnetic substances
clearly show that beyond certain critical values of the applied magnetic field, the
magnetization saturates, becomes uniform and aligns parallel to the magnetic field.
In order to incorporate this experimental fact, from phenomenological grounds one
can add a damping term suggested by Gilbert (2004) so that the equation of motion
can be written as

~_dS
S x E] , A < 1(damping parameter). (6)

On substituting the expression (6) again for ”Cll—f in the third term of (6), it can be
rewritten as

ds I L
(1+/\270)E = =[S x H(t)] = Ao S x [S x H()].

After a suitable rescaling of ¢, Eq.(6) can be rewritten as

—

s

dt

(S x H(t)) + AS x [S x H(t)]
_ Gx iy (7)
Here the effective field including damping is
Hepp = H(t)+ AS x H]. (8)

The effect of damping is shown in Fig 1(b). Note that in Eq.(7) again the constancy
of the length of the spin is maintained. Eq.(7) is the simplest form of Landau-
Lifshitz-Gilbert equation, which represents the dynamics of a single spin in the
presence of an applied magnetic field H (t).

(b) Dynamics of Lattice of Spins and Continuum Case

The above phenomenological analysis can be easily extended to a lattice of
spins representing a ferromagnetic material. For simplicity, considering an one di-
mensional lattice of N spins with nearest neighbour interactions, onsite anisotropy,
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demagnetizing field, applied magnetic field, etc., the dynamics of the ith spin can
be written down in analogy with the single spin as the LLG equation,

—

ds;

= S, x Herr, i=1,2,....N 9
o X Hepy, i 9)

where

Aopp= (Sipr+ Sy + ASPit, + BSYit, + OSFii. + H(t) + ...
—~ MSii1 4 S0 + ASFii, + BSYit, + CSZit, + H(t) + ...} x S; (10)

Here A, B,C are anisotropy parameters, and 7, iy, 7. are unit vectors along the
x,y and z directions, respectively. One can include other types of interactions like
biquadratic exchange, spin phonon coupling, dipole interactions, etc. Also Eq.(9)
can be generalized to the case of square and cubic lattices as well, where the index
i has to be replaced by the appropriate lattice vector i

In the long wavelength and low temperature limit, that is in the continuum
limit, one can write

g{(t) = g(F’t)a 7= (m,y,z),
2
Sz—i-l + S = S(Ft)+avs+ %VQS + higher orders, (11)

(@: lattice vector) so that the LLG equation takes the form of a vector nonlinear
partial differential equation (as @ — 0),

55 =5 x [{V?§ + AS*1, + BSVii, + CS%i. + (1) + ... }]
[{VQS + AS®fi, + BSYii, + CS*it, + H(t) + .. } x S(F, t)} ,
=S x Hosy (12)
S(7,1) =(S*(F.t), SU(7, 1), S*(7, 1)), §° =1, (13)

In fact, Eq.(12) was deduced from phenomenological grounds for bulk magnetic
materials by Landau and Lifshitz originally in 1935.
(¢) Hamiltonian Structure of the LLG Equation in the Absence of Damping

The dynamical equations for the lattice of spins (9) in one dimension (as well as
in higher dimensions) posses a Hamiltonian structure in the absence of damping.
Defining the spin Hamiltonian

Hy=—Y 8i.8ip1+A(SP)? + B(SY)? + C(S7)* + p(H(t).5:) + ..... (14)
(i3}

and the spin Poisson brackets between any two functions of spin A and B as

3
0A 0B
=Y e : 1
{AvB} wb By aSaasﬁs ( 5)
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one can obtain the evolution equation (9) for A = 0 from ddsti = {S_’;, H,}. Here €4+
is the Levi-Civitta tensor. Similarly for the continuum case, one can define the spin

Hamiltonian density

-,

1.~ .

H, = 5[(VS)2 + A(S%)? + B(SY)? + O(S*)? + (H.S) + Haemag + -] (16)
along with the Poisson bracket relation

{S“(F, t),sﬁ(#,t’)} =€apy STO(F— 7t — 1), (17)

and deduce the spin field evolution equation (12) for A = 0.
Defining the energy as

- % /d%[(vg)? FAST? 4 B(SY2+ OS2+ HS+..]  (18)

one can easily check that

dE =
— == 2d%r.
dt /'St| "

Then when X\ > 0, the system is dissipative, while for A = 0 the system is conser-
vative.

3. Spin Torque Effect and the Generalized LLG Equation

Consider the dynamics of spin in a nanoferromagnetic film under the action of a
spin current (Stiles & Miltat, 2006; Bertotti et al. 2009). In recent times it has
been realized that if the current is spin polarized, the transfer of a strong current
across the film results in a transfer of spin angular momentum to the atoms of
the film. This is called spin torque effect and forms one of the basic ideas of the
emerging field of spintronics. The typical set up of the nanospin valve pillar consists
of two ferromagnetic layers, one a long ferromagnetic pinned layer, and the second
one is of a much smaller length, separated by a spacer conductor layer [6], all of
which are nanosized. The pinned layer acts as a reservoir of spin polarized current
which on passing through the conductor and on the ferromagnetic layer induces
an effective torque on the spin magnetization in the ferromagnetic film, leading to
rapid switching of the spin direction of the film. Interestingly, from a semiclassical
point of view, the spin transfer torque effect is described by a generalized version
of the LLG equation (12), as shown by Berger (1996), and by Slonczewski (1996),
in 1996. Its form reads
S = =

5 =5 % [Hepp+Sxj], §=(5%8v8%), S2=1 (19)

where the spin current term

- a.Sp _(1+ P
T P)BT 5.5) IRy == (20)
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Here Sp is the pinned direction of the polarized spin current which is normally taken
as perpendicular to the direction of flow of current, a is a constant factor related
to the strength of the spin current and f(P) is the polarization factor deduced
by Slonczewski (1996) from semiclassical arguments. From an experimental point
of view valid for many ferromagneic materials it is argued that it is sufficient to
approximate the spin current term simply as

j = aS, (21)

so that LLG equation for the spin torque effect can be effectively written down as

—

0S5

E:S‘x [Heps+aS x 5], (22)
where
r7 24 s = z1. 7 7 al ag
Hepp = (V S+ ASTi+ BSYj+CS k—l—Hdemag—i-H(t)—l— ..... ) —AS x T (23)

Note that in the present case, using the energy expression (18), one can prove that

‘Z—If = /H|St|2 +a(S; x §).8,)d°r. (24)
This implies that energy is not necessarily decreasing along trajectories. Conse-
quently, many interesting dynamical features of spin can be expected to arise in
the presence of the spin current term.

In order to realize these effects more transparently, let us rewrite the generalized
LLG equation(22) in terms of the complex stereographic variable w(7, t) (Lakshmanan
& Nakumara, 1984) as

S +48Y

W = m, (25&)
e WHwW y_ 1 (w—w) . (I —ww”)
5= (14 ww*)’ 5= i (14 ww*)’ 5= (1 4 ww*) (25b)

so that Eq.(20) can be rewritten (for simplicity ﬁdemag =0)

, ) 9 2w*(Vw)? A (1 —w?)(w+w*)
i(1 —iN)ws + Viw — 0T wer) +§ Tt o)
B (1 + w?)(w—w*) o 1—ww*)w

2 (1 +ww*) a (1+ww*

1 1
(T = i)(1 = w?) + Si(HY 4+ i) (1 + %) — (HF + 7w =0, (20)

dw
ot )-

It is clear from Eq.(26) that the effect of the spin current term j is simply to
change the magnetic field H = (H*, HY, H*) as (H* — ij*, HY + ij¥, H* + ij*).
Consequently the effect of the spin current is effectively equivalent to a magnetic

where j = aS,, w, = (

Article submitted to Royal Society



8 Lakshmanan

field, though complex. The consequence is that the spin current can do the function
of the magnetic field perhaps in a more efficient way because of the imaginary term.

To see this in a simple situation, let us consider the case of a homogeneous
ferromagnetic film so that there is no spatial variation and the anisotropy and
demagnetizing fields are absent, that is we have (Murugesh & Lakshmanan, 2009a)

(1—iNwt = —(a—iH?)w. (27)
Then on integration one gets
() = wlO)eap— 5]
B _(a+AH*) . 7i(a/\sz)t
O |-Gy e |y _

Obviously the first exponent describes a relaxation or switching of the spin, while
the second term describes a precession. From the first exponent in (28), it is clear
that the time scale of switching is given by (al:)@l;)
that the spin torque term is more effective in switching the magnetization vector.
Furthermore letting H# term to become zero, we note that in the presence of damp-
ing term the spin transfer produces the dual effect of precession and dissipation.

In Fig.2, we point out clearly how the effect of spin current increases the rate of
switching of the spin even in the presence of anisotropy. Further, one can show that
interesting bifurcation scenerio, including period doubling bifurcations to chaotic
behaviour, occurs on using a periodically varying applied magnetic field in the
presence of a constant magnetic field and constant spin current (Murugesh & Lak-
shmanan, 2009a). Though a periodically varying spin current can also lead to such
a bifurcations-chaos scenerio (Yang et al. 2007), we believe the technique of apply-
ing a periodic magnetic field in the presence of constant spin current is much more
feasible experimentally. To realize this one can take (Murugesh & Lakshmanan,
2009b)

. Here A is small which implies

ﬁeff = K(ga‘)€|| + ﬁdemag + ﬁ(t), (29)

where £ is the anisotropy parameter and € is the unit vector along the anisotropy
axis and

Haemag = —4m(N1 S%7 + NaSYj + N3Sk). (30)

Choosing
H(t) = (0,0, H?), €| = (sinb)cosgy, sinb|sing|, cosd)), (31)
the LLG equation in stereographic variable can be written down(in the absence of

exchange term) as (Murugesh & Lakshmanan, 2009a,b)

1 , .
(1 =iNwt = —y(a — iH*)w 4 iS) Ky [cos@nw — §Sin9|\ ("1 — w2e™in)

14y N
T [Nl = Pl - 0 - o~ P
f%(uwt |w|Hw — (%) @], (32)

Article submitted to Royal Society



Landau-Lifshitz-Gilbert Equation 9
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Fig.2:Switching of spin due to spin current in the presence of anisotropy
(Murugesh & Lakshmanan, 2009a).
Fig.3: Bifurcation diagram corresponding to Eq.(32). Here h,, = H* (Murugesh &
Lakshmanan, 2009b).

where S = S .€)). Solving the above equation numerically one can shown that
Eq.(27) exhibits a typical period doubling bifurcation route to chaos as shown in
Fig.3.

The existence of periodic and chaotic spin oscillations in a homogeneous nano-
spin transfer oscillator (STO) leads to exciting other possibilities. For example,
an array/network of STO’s can lead to the possibility of synchronized microwave
power or synchronized chaotic oscillations (Grollier et al. 2006). Such studies are
in progress. Other possibilities include the study of inhomogeneous films (including
spatial variations) and discrete lattices, including higher dimensions (Bazaliy et al.
2004).

4. Anisotropic Heisenberg Spin Lattice

Next we consider the dynamics of a discrete anisotropic Heisenberg spin systems
without damping. Consider the Hamiltonian

H=- Z(ASﬁSﬁH +BSIS, 1 +CS S5 ) - D 2(55)2 ~H. Z Su o (33)

n

so that the equation of motion becomes(using the Poisson bracket relations(15))
dg" J T x = Y Y z
W = SWX[A(Sn—i-l + Sn—l)l + B(Sn-l-l + Sn—l)j
+C(S2,, + S2_)k +2DSzk| + S, x H, (34)
n=123,..N.

Recently (Lakshmanan & Saxena, 2008; Roberts & Thompson, 1988) it has been
found that the coupled system (34) admits several classes of exact solutions, though
the system may not be completely integrable for any choice of the parameters,
including the pure isotropic one (A = B=C=1,D =0, H= 0).

The class of exact solutions to (34) are as follows.
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(a) Spatially homogeneous time dependent solution:

Sk =—v1—-72k"2 sn(wt+9,k), (35a)

SY=+/1-72 en(wt+ 6, k), (35b)
Sz =~ dn(wt+4,k), (35¢)

where the frequency

1—+2(B - A)
=2 B-C)(A-C =" (B>A>C). 35d
w=27/( ) ); Y (A=0) ( >0). (35d)
Here « and § are arbitrary parameter and k is the modulus of the Jacobian elliptic
functions.

(b) Spatially oscillatory time periodic solutions

ST = (—=1)"T1 /1 — 42k'2 sn(wt + 6, k), (36a)
SY = (=1)"v/1—72 en(wt + 4, k), (36b)
SZ =~ dn(wt + 6, k), (36¢)
where
192 (B - 4)
=279/(A+C)(B+C), k= e d
w=2/[A+C)(B+0), el (86d)

This solution corresponds to a nonlinear magnon.

(¢) Linear magnon solutions

In the uniaxial anisotropic case A = B < C, the linear magnon solution is

5% = /1 —~2 sin(pn — wt + 6), (37a)
SY¥ = /1 —~2 cos(pn — wt + 6), (37b)
SE=x (37¢)
with the dispersion relation
w=2v(C — A cos p). (37d)

(d) Nonplanar static structures for XYZ and XYY models

In this case we have the periodic structures

SE=/1—~2k"2 sn(pn + 4, k), (38a)

S¥ =+/1—92% cn(pn + 6,k), (38b)
SZ =~ dn(pn + 0,k), (38¢)
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where

A? - B? B
A2 _ 2 dn(p,k) = —. (38d)

k2 =
A

In the limiting case k = 1, one can obtain the localized single soliton (solitary wave)
solution

Sy =tanh(pn+9), SY=+/1—~2sech(pn+9), S = sech(pn+79). (39)

(e) Planar (XY) Case:
Case(i): Sr=sn(pn+46,k), SY=cn(pn+4,k), SZ=0, (40)
where dn(p, k) = %. In the limiting case, k = 1, we have the solitary wave solution

Sy =tanh(pn+96,k), S¥ = sech(pn+4), SZ=0. (41)

Case(ii) :  SE=ksn(pn+46,k), SZ=dn(pn+4d,k), S!=0, (42)

n

where cn(p, k) = §. In the limit k = 1, we have

Sy =tanh(pn+9), SY =0, S = sech(pn—+9J). (43)

(f) Nonplanar XYY Structures:
We have

St =cn(pn+06,k), SY =~ sn(pn+0d,k), S:=+1-—~2sn(pn+46,k), (44)

where dn(p, k) = %. In the limiting case, we have the domain wall structure

S¥ =sech(pn+46), SY = tanh(pn+9), SZ=1+/1—72tanh(pn+0). (45)

In all the above cases one can evaluate the energies associated with the different
structures and their linear stability properties. For details, one may refer to (Lak-
shmanan & Saxena, 2008).

(g) Solutions in the presence of onsite anisotropy and constant external magnetic

field
(i) Onsite anisotropy, D #0, H=0, A,B,C #0:

All the three types of solutions (35), (36) and (37) exist here also, except that
the parameter C has to be replaced by (C' — D) in each of these equations on their
right hand sides.
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(ii) Constant external field case, H= (H;,0,0), B=C+# A, D=0.

An exact solution is

Sr =sn(pn+96,k), (46a)
SY = sin(wt + ) en(pn + 0, k), (46b)
Sz = cos(wt + ) en(pn + 0, k), (46¢)

where dn(p, k) = %, and w = H,.

One can study the linear stability of static solutions and investigate the existence
of the so called Peierls-Nabarro barrier, that is whether the total lattice energy
depends on the location of the soliton or not, for details see (Lakshmanan & Saxena,
2008).

(k) Integrability of the static case

Granovskii and Zhedanov(1986) have shown that the static case of the pure
anisotropic system

gn X [A(SEH +Sh_1) + B(S’ryz-‘,-l +Sp_q) + C(Sp1 + S’rzzfl)} =0 (47)

n

is equivalent to a discretized version of the Schrodinger equation with two level
Bargmann type potential or a discrete analog of Neumann system (Veselov, 1987)
and is integrable.

(i) Ishimori spin chain:

There exists a mathematically interesting spin chain which is completely inte-
grable and which was introduced by Ishimori (1982). Starting with a Hamiltonian
H = —log(1+35,.5,+1), the spin equation becomes

3R

S

S, =S, x il
145,51 1+

(48)

1
n-POn—1

95)

It admits a Lax pair and so is completely integrable. However, no other realistic spin
system is known to be completely integrable. It is interesting to note that Eq.(48)
also leads to an integrable reversible map. Assuming a simple time dependence,

S, (t) = (cosdpcoswt, cospnsinwt, singy,), (49)

Quispel, Robert and Thompson (1988) have shown that Eq.(48) reduces to the
integrable map

Tpy1 =203 +war? + 220, —w -z 1 (—2t —wad +wz, +1))

P wad fwr, +1—xp g (wak — 223 —wa? —22,)]7 (50)

X [~z

Finally, it is also of interest to note that one can prove the existence of localized
excitations, using implicit function theorem, of tilted magnetization or discrete
breathers (so called nonlinear localized modes) in a Heisenberg spin chain with easy-
plane anisotropy (Zolotaryuk et al. 2001). It is obvious that there is much scope
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for detailed study of the discrete spin system to understand magnetic properties,
particularly by including Gilbert damping term and also the spin current, see for
example a recent study on the existence of vortices and their switching of polarity
on the application of spin current (Sheka et al. 2007).

5. Continuum Spin Systems in (1+1) Dimensions

The continuum case of the LLG equation is a fascinating nonlinear dynamical
system. It has close connection with several integrable soliton systems in the absence
of damping in (1+1) dimensions and possesses interesting geometric connections.
Then damping can be treated as a perturbation. In the (2+1) dimensional case novel
structures like line soliton, instanton, dromion, spatiotemporal patterns, vortices,
etc. can arise. They have both interesting mathematical and physical significance.
We will briefly review some of these features and indicate a few of the challenging
tasks needing attention.

(a) Isotropic Heisenberg Spin System in (1+1) Dimensions

Considering the (1+1) dimensional Heisenberg ferromagnetic spin system with
nearest neighbour interaction, the spin evolution equation without damping can be
written as (after suitable scaling)

—

S, =8 x8,., S=(575Y9%), S*>=1. (51)

In Eq.(51) and in the following suffix stands for differentiation with respect to that
variable.

We now map the spin system (Lakshmanan et al. 1976) onto a space curve (in
spin space) defined by the Serret-Frenet equations,

€w=Dx¢&, D=1&+rés, &.6;=1 i=123, (52)

where the triad of orthonormal unit vectors €7, €a, €3 are the tangent, normal and
binormal vectors, respectively, and z is the arclength. Here x and 7 are the curvature
and torsion of the curve, respectively, so that k? = €1,.€1, (energy density), xk?7 =
€1.(€1z X €142) 1s the current density.

Identifying the spin vector g(z, t) of Eq.(51) with the unit tangent vector é7,
from (51) and (52), one can write down the evolution of the trihedral as

Gt =0xé&, Q= (w,w,ws) = (ﬁm — 7% —Kg, —HT) ) (53)
K
Then the compatibility (€;)zt = (€i)tz, ¢ = 1,2,3, leads to the evolution equation
Kt = —2KoT — KTy, (54a)

T = (K—:Z — %) + Kkg, (54b)

which can be rewritten equivalently (Lakshmanan, 1977) as the ubiquitous nonlin-
ear Schrodinger (NLS) equation,

it + Qoo + 2|q/?q =0, (55)
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through the complex transformation

1 e
qinezp[i/ Td:c], (56)

and thereby proving the complete integrability of Eq.(51).

Zakharow and Takhtajan (1979) have also shown that this equivalence between
the (14+1) dimensional isotropic spin chain and the NLS equation is a gauge equiv-
alence. To realize this, one can write down the Lax representation of the isotropic
system (51) as (Takhtajan, 1977)

¢12 = Ui(z, t, N1, o1 = Va(z,t, A, (57)

where the (2 x 2) matrices Uy = i\S, Vi = ASS, +2i\2S, S = (:SS: fSZ) ,
S* = §%4iSY. Then considering the Lax representation of the NLS equation (55),
G20 = U292, ¢t = Voo, (58)

where UQ = AO + >\A1>, ‘/2 = (BO + ABl + AQBQ)7

(
* 2 *
A0<0 q>7 Ay = ios, Bol-<|Q| qmz),
—q 0 ¢ qx _|q|

By =24y, By =2A;, o0;’s are the Pauli matrices, one can show that with
the gauge transformation

$1=9g "¢z, S=g o3y, (59)
(57) follows from (58) and so the systems (51) and (55) are gauge equivalent.

The one soliton solution of the S* component can be written down as

2
2752 sech?¢(x — 2nt — 2%), &, n,2° : constants (60)
£+
Similarly the other components S* and SY can be written down and the N-soliton
solution deduced.

S*(z,t) =1

(b) Isotropic chain with Gilbert damping

The LLG equation for the isotropic case is

=

Sy =S x Spp + A[See — (5.5.2)9). (61)

The unit spin vector S (x,t) can be again mapped onto the unit tangent vector &;
of the space curve and proceeding as before (Daniel & Lakshmanan, 1983) one can
obtain the equivalent damped nonlinear Schrédinger equation,

x

i + Qoo + 2001*q = i\[qoa — 2q/ (99 — q"q,)dz ], (62)

— 00

where again ¢ is defined by Eq.(55) with curvature and torsion defined as before.
Treating the damping terms proportional to A as a perturbation, one can analyse
the effect of damping on the soliton structure.
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(¢) Inhomogeneous Heisenberg Spin System
Considering the inhomogeneous spin system, corresponding to spatially depen-
dent exchange interaction,

S = (v2 + p2x)S x Sy + p2S x Sy — (11 + 1) Ss,s (63)

where 71, 72, w1 and po are constants, again using the space curve formalism,
the present author and Robin Bullough (Lakshmanan & Robin Bullough, 1980)
showed the geometrical/gauge equivalence of Eq.(63) with the linearly z-dependent
nonlocal NLS equation,

iqe = ipng +i(y1 + p1r)ge

+ (2 + p22) (qua + 2|q|*q) + 2p2(q0 + q/ lg|*dx’) = 0. (64)

— 00

It was also shown in (Lakshmanan & Bullough, 1980) that the both the systems
(63) and (64) are completely integrable and the eigenvalues of the associated linear
problems are time dependent.

(d) n-dimensional Spherically Symmetric (radial) Spin System

The spherically symmetric n -dimensional Heisenberg spin system (Daniel et al.
1994)

(n—1)

r

Sirt) = § x [s + s] o (65)
o al 2

So(r,t) =1, S=(87,8Y,8%), r=ridtry+.+72, 0<r<oo,

can be also mapped onto the space curve and can be shown to be equivalent to the
generalized radial nonlinear Schrodinger equation,

(n—1)

' n—1 T 2
1qt + Grr + qr = ( D) _2|q|2 —4(71— 1)/ |q|
T T 0

’
r

dr’) ¢  (66)

It has been shown that only the cases n = 1 and n = 2 are completely integrable
soliton systems (Mikhailov & Yaremchuk, 1982; Porsezian & Lakshmanan, 1991)
with associated Lax pairs.

(e) Anisotropic Heisenberg spin systems

It is not only the isotropic spin system which is integrable, even certain anisotropic
cases are integrable. Particularly the uniaxial anisotropic chain

S, = § % [Spx + 24 S%ii, + H], 7, =(0,0,1) (67)

is gauge equivalent to the NLS equation (Nakamura & Sasada, 1982) in the case
of longitudinal field H = (0,0, H*) and is completely integrable. Similarly the
bianisotropic system

Sy = S X JSuu, J=diag(Jy, J2,J3), Ji#Jy % Js, (68)
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possesses a Lax pair and is integrable (Sklyanin, 1979). On the other hand the
anisotropic spin chain in the case of transverse magnetic field, H = (H¥*,0,0),
is nonintegrable and can exhibit spatiotemporal chaotic structures (Daniel et al.
1992).

Apart from the above spin systems in (1+1) dimensions, there exists a few other
interesting cases which are also completely integrable. For example, the isotropic
biquadratic Heisenberg spin system,

—

8= 8 [Sex b2 { S = 3858 - ESSY| 00

is an integrable soliton system (Porsezian et al. 1992) and is equivalent to a fourth
order generalized nonlinear Schrodinger equation,

it + Gaz + 2|01* + 7 [Gazee + 84/ Goa + 2¢°C, + 44lq: | + 64742 + 6]g|*q] = 0.
(70)

Similarly the SO(3) invariant deformed Heisenberg spin equation,
S; = § x Syy + a8, (S,)?, (71)

is geometrically and gauge equivalent to a derivative NLS equation (Porsezian et al.
1987),

) 1 )
it + Quw + §|ql2q —ia(|ql’q). = 0. (72)

There also exist several studies which maps the LLG equation in different limits
to sine-Gordon equation (planar system), Korteweg-de Vries (KdV), mKdV and
other equations, depending upon the nature of the interactions. For details see for
example (Mikeska & Steiner, 1991; Daniel & Kavitha, 2002).

6. Continuum Spin Systems in Higher Dimensions

The LLG equation in higher spatial dimensions, though physically most important,
is mathematically highly challenging. Unlike the (141) dimensional case, even in
the absence of damping, very few exact results are available in (2+1) or (3+1)
dimensions. We briefly point out the progress and challenges.

(a) Nonintegrability of the Isotropic Heisenberg Spin Systems

The (2+1) dimensional isotropic spin system
S =85 (Suw+8y), §=(57,87,5%), $2=1, (73)
under stereographic projection, see Eq.(25), becomes (Lakshmanan & Daniel, 1981)

(1 + ww*) [iws + Wep + wyy] — 2w* (w2 + wi) =0. (74)
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It has been shown (Senthilkumar et al. 2006) to be of non-Painleve nature. The
solutions admit logarithmic type singular manifolds and so the system (73) is non-
integrable. It can admit special types of spin wave solutions, plane solitons, ax-
isymmetric solutions, etc. (Lakshmanan & Daniel, 1981). Interestingly, the static
case

*

2w

oo @iTed) (75)

Wz + Wyy =

admits instanton solutions of the form

1— (af +a3)™

w=(x1 +ixe)", S =-———2—
(1 +dz2) L+ (a3 +a3)m

m=0,1,2,.. (76)
with a finite energy (Belavin & Polyakov, 1975; Daniel & Lakshmanan, 1983). Fi-
nally, very little information is available to date on the (3+1) dimensional isotropic
spin systems (Guo & Ding, 2008)

(b) Integrable (2+1) Dimensional Spin Models

While the LLG equation even in the isotropic case is nonintegrable in higher
dimensions, there exists a couple of integrable spin models of generalized LLG
equation without damping in (241) dimensions. These include the Ishimori equa-
tion (Ishimori, 1984) and Myrzakulov equation (Lakshmanan et al. 1998), where
interaction with an additional scalar field is included.

(i) Ishimori equation:

Si =8 x (Spu + S, )Jrqu + uy S, (77a)
xS

2 o? = +1. (77b)

Ugy — 02Uy = —20°5.(S,

Eq.(77) admits a Lax pair and is solvable by inverse scattering transform (d-bar)
method (Konopelchenko & Matkarimov, 1989). It is geometrically and gauge equiv-
alent to Davey-Stewartson equation and admits exponentially localized dromion so-
lutions, besides the line solitons and algebraically decaying lump soliton solutions.
It is interesting to note that here one can map the spin onto a moving surface
instead of a moving curve (Lakshmanan et al. 1998).

(ii) Myszakulov equation I(Lakshmanan et al. 1998)

The modified spin equation
S, = (§ xS, + u§) up=—5.(8, x §,) (78)

can be shown to be geometrically and gauge equivalent to the Calogero-Zakharov-
Strachan equation

1q; = Qzy + VQa Ve = 2(|q|2)y (79)
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and is integrable. It again admits line solitons, dromions and lumps.

However from a physical point of view it will be extremely valuable if exact
analytic structures of the LLG equation in higher spatial dimensions are obtained
and the so called wave collapse problem (Sulem & Sulem, 1999) is investigated in
fuller detail.

(¢) Spin Wave Instabilities and Spatio-temporal Patterns

As pointed out in the beginning, the nonlinear dynamics underlying the evolu-
tion of nanoscale ferromagnets is essentially described by the LLG equation. Con-
sidering a 2D nanoscale ferromagnetic film with uniaxial anisotropy in the presence
of perpendicular pumping, the LLG equation can be written in the form (Kosaka
et al. 2005)

L. o . 08
StZSXFeff—)\SX—, (80&)
ot
where
ﬁeff = JV2S + EG+HSII‘§]\ +ﬁm7 (80b)
By = hay (coswt i+ sinwt ;) + ha)€) (80c¢)

Here Z,; are unit orthonormal vectors in the plane transverse to the anisotropy
axis in the direction & = (0,0,1), s is the anisotropy parameter, J is the exchange
parameter, I;Tm is the demagnetizing field. Again rewriting in stereographic coordi-
nates, Eq.(80) can be rewritten (Kosaka et al. 2005) as

i(1—iNwe = J (v% - %) - (ha” —v+iav+ n%) w

1 1 ) )
—|—§h,u(1 —w?) — hajw + 3 (Hme_“’t — V2H;e“’t) w. (81)

Then four explicit physically important fixed points (equatorial and related
ones) of the spin vector in the plane transverse to the anisotropy axis when the
pumping frequency v coincides with the amplitude of the static parallel field can be
identified. Analyzing the linear stability of these novel fixed points under homoge-
neous spin wave perturbations, one can obtain a generalized Suhl’s instability cri-
terion, giving the condition for exponential growth of P-modes (fixed points) under
spin wave perturbations. One can also study the onset of different spatiotemporal
magnetic patterns therefrom. These results differ qualitatively from conventional
ferromagnetic resonance near thermal equilibrium and are amenable to experimen-
tal tests. It is clear that much work remains to be done along these lines.

7. Conclusions

In this article while trying to provide a bird’s eye view on the rather large world of
LLG equation, the main aim was to provide a glimpse of why it is fascinating both
from physical as well as mathematical points of view. It should be clear that the
challenges are many and it will be highly rewarding to pursue them. What is known
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at present about different aspects of LLG equation is barely minimal, whether it
is the single spin case, or the discrete lattice case or the continuum limit cases
even in one spatial dimension, while little progress has been made in higher spatial
dimensions. But even in those special cases where exact or approximate solutions are
known, the LLG equation exhibits a very rich variety of nonlinear structures: fixed
points, spin waves, solitary waves, solitons, dromions, vortices, bifurcations, chaos,
instabilities and spatiotemporal patterns, etc. Applications are many, starting from
the standard magnetic properties including hysterisis, resonances, structure factors
to applications in nanoferromagnets, magnetic films and spintronics. But at every
stage the understanding is quite imcomplete, whether it is bifurcations and routes
to chaos in single spin LLG equation with different interactions or coupled spin
dynamics or spin lattices of different types or continuum system in different spatial
dimensions, excluding or including damping. Combined analytical and numerical
works can bring out a variety of new information with great potential applications.
Robin Bullough should be extremely pleased to see such advances in the topic.

8. Acknowledgements:

I thank Mr. R. Arun for help in the preparation of this article. The work forms part
of a Department of Science and Technology(DST), Government of India, IRHPA
project and is also supported by a DST Ramanna Fellowship.

References

Bazaliy, Y. B., Jones, B. A. & Zhang, S. C. 2004 Current induced magnetization switching
in small domains of different anisotropies, Phys. Rev. B 69, 094421 (pp 19).

Belavin, A. A. & Polyakov, A. M. 1975 Metastable states of two-dimensional isotropic
ferromagnets. JETP Lett. 22, 245.

Berger, L. 1996 Emission of spin waves by a magnetic multilayer traversed by a current.
Phys. Rev. B 54, 9353-58.

Bertotti, G., Mayergoyz, I. & Serpico, C. 2009 Nonlinear Magnetization Dynamics in
Nanosystems. Amsterdam: Elsevier.

Daniel, M. & Lakshmanan, M. 1983 Perturbation of solitons in the classical continuum
isotropic Heisenberg spin system. Physica A 120, 125-52.

Daniel, M., Kruskal, M. D., Lakshmanan, M. & Nakamura, K. 1992 Singularity strucutre
analysis of the continuum Heisenberg spin chain with anisotropy and transverse field:
Nonintegrability and chaos, J. Math. Phys. 33, 771-76.

Daniel, M., Porsezian, K. & Lakshmanan, M. 1994 On the integrability of the inhomoge-
neous spherically symmetric Heisenberg ferromagnet in arbitrary dimensions, J. Math.
Phys. 35, 6498-6510.

Daniel, M. & Kavitha, L. 2002 Magnetization reversal through soliton flipping in a bi-
quadratic ferromagnet with varying exchange interaction. Phys. Rev. B 66, 184433 (pp
6).

Gilbert, T. L. 2004 A phenomenological theory of damping in ferromagnetic materi-
als.IEEE Trans. Magn. 40, 3443-49.

Granovskii Ya, I., Zhedanov, A. S. 1986 Integrability of a classical XY chain JETP Lett.
44, 304-07.

Grollier, J. ,Cross, V. & Fert, A. 2006 Synchronization of spin-transfer oscillators driven
by stimulated microwave currents Phys. Rev. B 73, 060409(R) (pp 4).

Article submitted to Royal Society



20 Lakshmanan

Guo, B. & Ding, S. 2008 Landau Lifshitz Equations. Singapore: World Scientific.

Hillebrands, B. & Ounadjela, K. 2002 Spin Dynamics in Confined Magnetic Structures,
Vols. I and II, Berlin: Springer.

Ishimori, Y. 1982 An integrable classical spin chain, J. Phys. Soc. Jpn. 51, 3417-18 .

Ishimori, Y. 1984 Multi-vortex solutions of a two-dimensional nonlinear wave equation
Prog. Theor. Phys. 72, 33.

Konopelchenko, B. G. & Matkarimov, B. T. 1989 Inverse spectral transform for the Ishi-
mori equation: I. Initial value problem. J. Math. Phys. 31, 2737-46.

Kosaka, C., Nakumara, K., Murugesh, S. & Lakshmanan, M. 2005 Equatiorial and related
non-equilibrium states in magnetization dynamics of ferromagnets: Generalization of
Suhl’s spin-wave instabilities. Physica D 203, 233-48.

Lakshmanan, M., Ruijgrok, Th. W. & Thompson, C. J. 1976 On the dynamics of contin-
uum spin system. Physica 84A, 577-90.

Lakshmanan, M. 1977 Continuum spin system as an exactly solvable dynamical system.
Phys. Lett. 61 A, 53-54.

Lakshmanan, M. & Bullough, R. K. 1980 Geometry of generalized nonlinear Schridinger
equation and Heisenberg’s ferromagnetic spin system with linearly x-dependent coeffi-
cients. Phys. Lett. 80A, 287-92.

Lakshmanan, M. & Daniel, M. 1981 On the evolution of higher dimensional Heisenberg
ferromagnetic spin systems. Physica A 107, 533-52.

Lakshmanan, M. & Nakumara, K. 1984 Landau-Lifshitz equation of ferromagnetism: Ex-
act treatment of the Gilbert damping. Phys. Rev. Lett. 53, 2497-99.

Lakshmanan, M., Myrzakulov, R., Vijayalakshmi, S. & Danlybaeva, A. K. 1998 Motion
of curves and surfaces and nonlinear evolution equations in (241) dimensions, J. Math.
Phys. 39, 3765-71.

Lakshmanan, M. and Avadh Saxena 2008 Dynamic and static excitations of a classical
discrete anisotropic Heisenberg ferromagnetic spin chain. Physica D 237, 885-97.

Landau, L. D. & Lifshitz, L. M. 1935 On the theory of the dispersion of magnetic perme-
ability in ferromagnetic bodies. Physik. Zeits. Sowjetunion 8, 153-169.

Mattis, D. C. 1988 Theory of Magnetism I: Statics and Dynamics Berlin: Springer.

Mikhailov, A. V. and Yaremchuk, A. I. 1982 Axially symmetrical solutions of the two-
dimensional Heisenberg model JETP Lett. 36, 78-81.

Mikeska, H. J. & Steiner, M. 1991 Solitary excitations in one dimensional magnets. Ad-
vances in Physics 40, 191.

Murugesh, S. & Lakshmanan, M. 2009a Spin-transfer torque induced reversal in magnetic
domains. Chaos, Solitons & Fractals 41, 2773-81.

Murugesh, S. & Lakshmanan, M. 2009b Bifurcations and chaos in spin-valve pillars in a
periodic applied magnetic field. Chaos 043111(1-7).

Nakamura, K and Sasada, T. 1982 Gauge equivalence between one-dimensional Heisenberg
ferromagnets with single-site anisotropy and nonlinear Schrodinger equations J. Phys.C
15, L915-18.

Porsezian, K., Tamizhmani, K. M. & Lakshmanan, M. 1987 Geometrical equivalence of a
deformed Heisenberg spin equation and the generalized nonlinear Schrédinger equation.
Phys. Lett. 124A, 159-60.

Porsezian, K. & Lakshmanan, M. 1991 On the dynamics of the radially symmetric Heisen-
berg spin chain. J. Math. Phys. 32, 2923-28.

Porsezian, K., Daniel, M. & Lakshmanan, M. 1992. On the integrability of the one dimen-
sional classical continuum isotropic biquadratic Heisenberg spin chain, J. Math. Phys.
33, 1607-16.

Quispel, G. R. W., Roberts, J. A. G. & Thompson, C. J. 1988 Integrable mappings and
soliton equations. Phys. Lett. A 126, 419-21.

Article submitted to Royal Society



Landau-Lifshitz-Gilbert Equation 21

Roberts, J. A. G. & Thompson, C. J. 1988 Dynamics of the classical Heisenberg spin
chain, J. Phys. A 21, 1769-80.

Senthilkumar, C., Lakshmanan, M., Grammaticos, B. and Ramani, A. 2006 Nonintegrabil-
ity of (241) dimensional continuum isotropic Heisenberg spin system: Painleve analysis
Phys. Lett. A 356, 339-45.

Sheka, D. D, Gaididei, Y. & Mertens, F. G. 2007 Current induced switching of vortex
polarity in magnetic nanodisks. Appl. Phys. Lett. 91 082509(1-4).

Sklyanin, E. K. 1979 On the complete integrability of the Landau-Lifschitz equation LOMI
Preprint E-3-79, 1979.

Slonczewski, J. C. 1996 Current-driven excitation of magnetic multilayers. J. Magn. Magn.
Mater. 159, 1.261-68.

Stiles, M. D. & Miltat, J. 2006 Spin-transfer torque and dynamics. Topics in Appl. Physics.
101, 225.

Sulem, C. and Sulem, P.L. 1999 Nonlinear Schréidinger Equation, Berlin: Springer

Takhtajan, L.A. 1977 Integration of the continuous Heisenberg spin chain through the
inverse scattering method, Phys. Lett A 64, 235-38.

Veselov, A.P. 1987 Theoret. Math. Phys. 71,446-49.

Yang, Z., Zhang, S. & Li, Y. C. 2007 Chaotic dynamics of spin-valve oscillators Phys.
Rev. Lett. 99, 134101 (pp 4).

Zakharov, V. E. & Takhtajan, L. A. 1979 Equivalence of the nonlinear Schridinger equa-
tion and the equation of a Heisenberg ferromagnet. Theor. Math. Phys. 38, 17-20.

Zolotaryuk, Y., Flach, S. & Fleurov, V. 2001 Discrete breathers in classical spin lattices.
Phys. Rev. B 63, 214422 (pp 12).

Article submitted to Royal Society



	1 Introduction
	2 Macroscopic Dynamics of Spin Systems and LLG Equation
	a Single Spin Dynamics
	b Dynamics of Lattice of Spins and Continuum Case
	c Hamiltonian Structure of the LLG Equation in the Absence of Damping

	3 Spin Torque Effect and the Generalized LLG Equation
	4 Anisotropic Heisenberg Spin Lattice
	a Spatially homogeneous time dependent solution:
	b Spatially oscillatory time periodic solutions
	c Linear magnon solutions
	d Nonplanar static structures for XYZ and XYY models
	e Planar (XY) Case:
	f Nonplanar XYY Structures:
	g Solutions in the presence of onsite anisotropy and constant external magnetic field
	h Integrability of the static case 
	i Ishimori spin chain:

	5 Continuum Spin Systems in (1+1) Dimensions
	a Isotropic Heisenberg Spin System in (1+1) Dimensions
	b Isotropic chain with Gilbert damping
	c Inhomogeneous Heisenberg Spin System
	d n-dimensional Spherically Symmetric (radial) Spin System
	e Anisotropic Heisenberg spin systems

	6 Continuum Spin Systems in Higher Dimensions
	a Nonintegrability of the Isotropic Heisenberg Spin Systems
	b Integrable (2+1) Dimensional Spin Models
	c Spin Wave Instabilities and Spatio-temporal Patterns

	7 Conclusions
	8 Acknowledgements:

