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the former unaffected after collision, thereby showing a different mechanism from that

of the Manakov system.
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1. Introduction

Recently there has been considerable interest in studying the dynamics of

multicomponent solitons/solitary waves in view of their wide range of applications

encompassing science and engineering [1, 2]. In the context of nonlinear optics,

simultaneous propagation of multiple optical pulses or beams in nonlinear media is

governed by a class of multicomponent nonlinear Schrödinger (NLS) type equations

which is non-integrable in general. These multicomponent NLS equations fall into

two categories, namely incoherently coupled NLS equations and coherently coupled

NLS equations [1]. The integrable as well as non-integrable incoherently coupled NLS

equations have been well studied in the literature [1, 3]. Particularly, the studies on

integrable Manakov system [4], a two component nonlinear system with incoherent

coupling, and also its integrable N-component generalization [4–7], have revealed the

fact that the bright solitons of these systems exhibit interesting collision scenario which

is not possible in their single component counterparts. This collision behaviour has been

exploited in the construction of logic gates based on optical soliton collisions [8, 9] and

also such collisions lead to the possibility of multi-state logic [7, 10].

The set of coherently coupled NLS systems is another interesting class of nonlinear

evolution equations for which much attention is yet to be paid. The term coherent

coupling here stands for the dependence of coupling on relative phases of the interacting

fields. A fairly general governing equation for coherently coupled orthogonally polarized

waveguide modes in the Kerr medium (see for example, Sec. 9.4.1 in ref. [1]) is

iq1,Z + δq1,TT − µq1 + (|q1|2 + σ|q2|2)q1 + λq22q
∗
1 = 0,

iq2,Z + δq2,TT + µq2 + (σ|q1|2 + |q2|2)q2 + λq21q
∗
2 = 0, (1)

where Z and T are the propagation direction and the transverse direction, respectively,

q1 and q2 are slowly varying complex amplitudes in each polarization mode, µ is

the degree of birefringence, σ is the incoherent coupling parameter and λ is the

coherent coupling parameter. Similar equations also arise in the context of short

pulse propagation in weakly birefringent Kerr type nonlinear media [1, 2], where the

co-ordinate T corresponds to retarded time. In general the system (1) is non-integrable.

An integrable non-dimensional coherently coupled NLS equation closely associated with

equation (1) can be written as

iq1z − q1tt − γ(|q1|2 + 2|q2|2)q1 − γq22q
∗
1 = 0,

iq2z − q2tt − γ(2|q1|2 + |q2|2)q2 − γq21q
∗
2 = 0. (2)

The above set of equations results from equation (1) for the choice µ = 0 (low

birefringence limit), σ = 2, λ = 1, a choice which is possible in a cubic anisotropic

nonlinear medium where the parameters λ and σ can be chosen separately but their ratio

is fixed as σ
λ
= 2 [1,2] and by performing the transformations T →

√
γδ t and Z → −γz,

where γ > 0. Although the physical conditions for the above choice are stringent to

obtain, we hope the exact results reported in this paper will serve as potential candidates

in further analysis of the non-integrable coherently coupled NLS equations (1), which
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have received attention recently [11–14].

Motivated by the above considerations, in this paper we have obtained general

soliton solutions of system (2) by applying a non-conventional form of Hirota’s

bilinearization method [15]. Another integrable equation which can also be obtained

from equation (1), having a form similar to equation (2) but with the replacement of

the ‘−’ sign appearing before the coherent coupling term by a ‘+’ sign with γ = 1,

has been studied in refs. [11, 12] and special one- and two-soliton solutions with less

number of parameters have been obtained by applying the Hirota’s direct method. In

fact, while obtaining the two-soliton solution by a linear superposition as reported in

ref. [12], following the lines of ref. [11], the governing equation gets decoupled into

two independent NLS equations and so the information regarding the coherent and

incoherent coupling terms gets lost. This system can also be studied by applying a

similar method as developed here and the results will be published separately. The

main objective of this paper is to obtain an appropriate bilinear form of equation (2)

resulting in more general soliton solutions as done in ref. [16] for the Sasa-Satsuma higher

order NLS system. We also wish to investigate the soliton formation and propagation

due to the combined effects of self phase modulation (SPM), cross phase modulation

(XPM) and coherent coupling between the copropagating fields. Our study shows that

there exist two distinct type of solitons, namely degenerate and non-degenerate solitons,

where the non-degenerate solitons can have single and double hump profiles. Their

collision behaviour is also fascinating. Particularly, the collision between degenerate

and non-degenerate solitons shows a different kind of switching mechanism in the two

component system (2) from that of the shape changing collisions occurring in the

Manakov system [5, 7].

This paper is organized in the following manner. The non-standard way of obtaining

the bilinear equations of the integrable system (2) by introducing an auxiliary function

is discussed in section 2. The general one-soliton solution is obtained in section 3 and

the degenerate and non-degenerate solitons are discussed. In section 4, the more general

two-soliton solution reflecting the effects of coherent coupling terms during collision is

obtained. The collisions of degenerate solitons and non-degenerate solitons are discussed

separately in section 5 and we have also analysed the collision of a degenerate soliton with

a non-degenerate soliton in the same section. Final section 6 is allotted for conclusion.

2. A non-standard bilinearization method for the coherently coupled NLS

system

The soliton solutions of system (2) can be obtained by applying the Hirota’s

bilinearization method [15], which is a powerful tool for integrable nonlinear partial

differential equations. To obtain the correct bilinear equations, resulting in more general

soliton solutions displaying the effects of SPM, XPM, and coherent coupling, we adopt

a non-standard method by introducing an auxiliary function, similar to the technique

followed by Gilson et al [16] for the higher order NLS system. By performing the
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bilinearizing transformation

q1 =
g

f
and q2 =

h

f
, (3)

to equation (2) and introducing an auxiliary function s, we obtain the following set of

bilinear equations,

D1 g · f = −γsg∗, D1 h · f = γsh∗, (4a)

D2 f · f = 2γ
(

|g|2 + |h|2
)

, sf = g2 − h2, (4b)

where D1 = iDz − D2
t , D2 = D2

t , g and h are complex functions, while f is a real

function, ∗ denotes the complex conjugate and the Hirota’s bilinear operators Dz and

Dt are defined as [15]

Dp
zD

q
t (a · b) =

( ∂

∂z
− ∂

∂z′

)p( ∂

∂t
− ∂

∂t′

)q

a(z, t)b(z′, t′)|(z = z′, t = t′). (5)

Note that the necessity for the introduction of an auxiliary function s(z, t) becomes

crucial as otherwise in the absence of s in equation (4), only special cases of even one-

soliton solution reported below will be obtained and for higher order solitons severe

constraints on the soliton parameters will arise. The above set of equations (4) can be

solved by introducing the following power series expansions for g, h, f , and s:

g = χg1 + χ3g3 + . . . , h = χh1 + χ3h3 + . . . , (6a)

f = 1 + χ2f2 + χ4f4 + . . . , s = χ2s2 + χ4s4 + . . . , (6b)

where χ is the formal power series expansion parameter. The resulting set of linear

partial differential equations, after collecting the terms with the same powers in χ, can

be solved recursively to obtain the forms of g, h, f , and s.

3. Bright one-soliton solutions

In order to obtain the one-soliton solution, unlike in the Manakov case [5, 6], here

we restrict the power series expansion (6) as g = χg1 + χ3g3, h = χh1 + χ3h3,

f = 1 + χ2f2 + χ4f4, s = χ2s2. After introducing this series expansion in equation

(4) and by solving the resulting set of linear partial differential equations recursively,

one can obtain the explicit one-soliton solution as

q1 =
α1e

η1 + e2η1+η
∗

1+δ11

1 + eη1+η
∗

1+R1 + e2η1+2η∗1+ǫ11
, (7a)

q2 =
β1e

η1 + e2η1+η
∗

1+ρ11

1 + eη1+η
∗

1+R1 + e2η1+2η∗1+ǫ11
, (7b)

where the auxiliary function takes the form

s = (α2
1 − β2

1)e
2η1 . (7c)

Here

η1 = k1(t− ik1z), eδ11 =
γα∗

1(α
2
1 − β2

1)

2(k1 + k∗
1)

2
, eρ11 =

−γβ∗
1(α

2
1 − β2

1)

2(k1 + k∗
1)

2
, (7d)

eR1 =
γ(|α1|2 + |β1|2)

(k1 + k∗
1)

2
, eǫ11 =

γ2(α2
1 − β2

1)(α
∗2
1 − β∗2

1 )

4(k1 + k∗
1)

4
. (7e)
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Case(i): α2
1 − β2

1 = 0

This choice α2
1 − β2

1 = 0 always results in the standard “sech” profile for the bright

soliton solution (7). It can be expressed as

q1 =
(α1

2
e−

R1
2

)

sech

(

η1R +
R1

2

)

eiη1I ≡ A1sech

(

η1R +
R1

2

)

eiη1I , (8)

and q2 = ±q1 corresponding to β1 = ±α1 so that |q1|2 = |q2|2. Here A1 =
(

α1

2
e−

R1
2

)

,

R1 = log
(

2γ|α1|2

(k1+k∗1)
2

)

, and η1 = η1R + iη1I , where η1R = k1R(t + 2k1Iz) and η1I =

k1It+(k2
1I−k2

1R)z. Throughout this paper the subscripts R and I represent the real and

imaginary parts, respectively. We call the solitons arising for the choice α2
1 − β2

1 = 0 as

degenerate solitons, owing to the fact that such solitons posses the same intensity profile

in both the components q1 and q2 and are characterized by two complex parameters

α1 and k1 or four real parameters, instead of the six real parameters in the Manakov

case [7]. Here A1, −2k1I , and
R1

2k1R
are the amplitude, velocity, and central position of the

soliton, respectively. Note that A1

k1R
is related to the polarization of the pulse/beam. The

degenerate soliton having a single hump profile is depicted in figure 1 for the parameters

γ = 2, k1 = 1 + i, and α1 = β1 = 1 at t = 0.

Figure 1. Degenerate one-soliton at t = 0 (parameters are as given in the text).

Note that in the present case, since α2
1 − β2

1 = 0, the auxiliary function s vanishes,

see equation (7c), and so from the bilinear equations (4) one can easily infer that the

effect of coherent coupling vanishes.

Case(ii): α2
1 − β2

1 6= 0

The nature of soliton for the other choice α2
1 − β2

1 6= 0, can be understood by

rewriting q1 and q2 in the expression (7) as

qj =
2Aj

[

cos(Pj)cosh
(

η1R + ǫ11
4

)

+ i sin(Pj)sinh
(

η1R + ǫ11
4

)]

eiη1I

4cosh2
(

η1R + ǫ11
4

)

+ L
, j = 1, 2, (9)

where A1 = e(
l1+δ11−ǫ11

2 ), A2 = e(
l2+ρ11−ǫ11

2 ), P1 = (δ11I−l1I )
2

, P2 = (ρ11I−l2I )
2

, L =

e(R1−
ǫ11
2 ) − 2, η1R = k1R(t + 2k1Iz), η1I = k1It + (k2

1I − k2
1R)z, l1 = ln(α1), and
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l2 = ln(β1). Also, the quantities δ11, ρ11, R1, and ǫ11 are as defined in equation (7). Here

Aj represents the amplitude of the soliton in the j-th component and for this case by the

term amplitude we mean the peak value of the soliton profile. The speed of the soliton

is given by 2k1I and its central position is ǫ11
4k1R

. It can be noticed that by rewriting

the expression (9) for the choice α1 = β1, it reduces to equation (8). The general form

presented here will be of use in the asymptotic analysis of the two-soliton and multi-

soliton solutions. We refer to the above soliton as non-degenerate due to their distinct

intensity profiles in the q1 and q2 components. In contrast to the degenerate solitons

these solitons can vary their profile from a single hump to a double hump through a flat-

top profile as the parameters are varied. A double hump soliton and a flat-top soliton

appearing in the q1 and q2 components, respectively, at t = 0 are shown in figure 2 for

the parameters γ = 2, k1 = 1 + i, α1 = 0.7114, and β1 = 1. Similar kind of flat-top

Figure 2. A non-degenerate soliton at t = 0: (a) Double hump non-degenerate

soliton in the q1 component. (b) Flat-top non-degenerate soliton in the q2 component

(parameters are as given in the text).

structures have been reported in complex Ginzburg-Landau equation [2]. Note that in

equation (9) also the standard sech type soliton occurs for a particular choice of the

parameters, namely α1β
∗
1 + α∗

1β1 = 0, for which P1, P2, and L become zero in equation
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(9). However, in the present case, the effect of coherent coupling does not vanish unlike

the case of degenerate solitons.

It can be noticed that equation (2) is embedded into the matrix NLS equation which

is integrable via Inverse Scattering Transform (IST) method [17, 18]. Cases (i) and (ii)

have also been reported in refs. [17, 18] for a three component version of the equation

considered in this paper by applying the results of the IST method for the matrix

NLS equation and the corresponding solutions were referred as ferromagnetic and polar

solitons, respectively, in the context of multicomponent spinor condensates. Here we

have obtained similar kind of more general soliton solutions for the two component case

itself by applying a non-standard type of Hirota’s bilinearization method.

4. Bright two-soliton solution

The two-soliton solution of the system (2) can be obtained after terminating the

power series (6) as g = χg1 + χ3g3 + χ5g5 + χ7g7, h = χh1 + χ3h3 + χ5h5 + χ7h7,

f = 1 + χ2f2 + χ4f4 + χ6f6 + χ8f8, s = χ2s2 + χ4s4 + χ6s6 and again by solving the

resultant linear partial differential equations recursively. Then the explicit form of the

two-soliton solution can be written as

qj =
N (j)

D
, j = 1, 2. (10a)

The functions N (1), N (2) and D in (10a) are given by the expressions

N (1) = α1e
η1 + α2e

η2 + e2η1+η
∗

1+δ11 + e2η1+η
∗

2+δ12 + e2η2+η
∗

1+δ21 + e2η2+η
∗

2+δ22

+ eη1+η
∗

1+η2+δ1 + eη2+η
∗

2+η1+δ2 + e2η1+2η∗1+η2+µ11 + e2η1+2η∗2+η2+µ12

+ e2η2+2η∗1+η1+µ21 + e2η2+2η∗2+η1+µ22 + e2η1+η
∗

1+η2+η
∗

2+µ1

+ e2η2+η
∗

2+η1+η
∗

1+µ2 + e2η1+2η∗1+2η2+η∗2+φ1 + e2η1+2η2+2η∗2+η
∗

1+φ2 , (10b)

N (2) = β1e
η1 + β2e

η2 + e2η1+η
∗

1+ρ11 + e2η1+η
∗

2+ρ12 + e2η2+η
∗

1+ρ21 + e2η2+η
∗

2+ρ22

+ eη1+η
∗

1+η2+ρ1 + eη2+η
∗

2+η1+ρ2 + e2η1+2η∗1+η2+ν11 + e2η1+2η∗2+η2+ν12

+ e2η2+2η∗1+η1+ν21 + e2η2+2η∗2+η1+ν22 + e2η1+η
∗

1+η2+η
∗

2+ν1

+ e2η2+η
∗

2+η1+η
∗

1+ν2 + e2η1+2η∗1+2η2+η∗2+ψ1 + e2η1+2η2+2η∗2+η
∗

1+ψ2, (10c)

D = 1 + eη1+η
∗

1+R1 + eη1+η
∗

2+δ0 + eη2+η
∗

1+δ
∗

0 + eη2+η
∗

2+R2 + e2η1+2η∗1+ǫ11

+ e2η1+2η∗2+ǫ12 + e2η2+2η∗1+ǫ21 + e2η2+2η∗2+ǫ22 + e2η1+η
∗

1+η
∗

2+τ1

+ e2η
∗

1+η1+η2+τ
∗

1 + e2η2+η
∗

1+η
∗

2+τ2 + e2η
∗

2+η1+η2+τ
∗

2 + eη1+η
∗

1+η2+η
∗

2+R3

+ e2η1+2η∗1+η2+η
∗

2+θ11 + e2η1+2η∗2+η2+η
∗

1+θ12 + e2η2+2η∗1+η1+η
∗

2+θ21

+ e2η2+2η∗2+η1+η
∗

1+θ22 + e2(η1+η
∗

1+η2+η
∗

2)+R4 , (10d)

and the auxiliary function s is determined as

s = (α2
1 − β2

1)e
2η1 + (α2

2 − β2
2)e

2η2 + 2(α1α2 − β1β2)e
η1+η2 + eη1+η

∗

1+2η2+λ11

+ eη1+η
∗

2+2η2+λ12 + eη2+η
∗

1+2η1+λ21 + eη2+η
∗

2+2η1+λ22 + e2η1+2η∗1+2η2+λ1

+ e2η1+2η2+2η∗2+λ2 + e2η1+η
∗

1+2η2+η∗2+λ3. (10e)
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Here ηi = ki(t − ikiz), i = 1, 2. The real and imaginary parts of ηj are given by

ηjR = kjR(t+2kjIz) and ηjI = kjIt+(k2
jI−k2

jR)z, j = 1, 2. Various quantities appearing

in equation (10) are given in the Appendix, as they are rather lengthy expressions. In

order to understand the structure of the above two-soliton solution, we now perform

an asymptotic analysis and analyse the nature of the soliton collisions in the present

system.

5. Collision of solitons

The two-soliton solution obtained in the previous section represents the interaction of

two solitons. It is of interest to consider the collision among non-degenerate solitons and

degenerate solitons, and also the collision between the non-degenerate and degenerate

solitons. For this purpose we perform the asymptotic analysis of the two-soliton solution

(10) by considering the case where k1R, k2R > 0 and k1I > k2I , without loss of generality.

The analysis is straightforward for the other choices of kjR and kjI , j = 1, 2.

5.1. Collision of non-degenerate solitons (α2
j 6= β2

j , j = 1, 2)

The asymptotic forms of S1 and S2 before collision (z → −∞) and after collision

(z → +∞) can be deduced from equation (10) as follows. The quantities ηjR and ηjI ,

j = 1, 2, appearing in the following asymptotic expressions are defined below equation

(10).

1. Before Collision (z → −∞)

Soliton S1 (η1R ≃ 0, η2R → −∞):
(

q1−1
q1−2

)

≃ 1

D1

(

A1−
1 0

0 A1−
2

)(

cos(P1) i sin(P1)

cos(P2) i sin(P2)

)(

cosh(η−1R)

sinh(η−1R)

)

eiη1I , (11a)

where
(

A1−
1

A1−
2

)

= 2e−
(R4+ǫ22)

2

(

e
(µ22+φ2)

2

e
(ν22+ψ2)

2

)

, (11b)

D1 = 4 cosh2(η−1R) + e

(

θ22−
(R4+ǫ22)

2

)

− 2. (11c)

In the above, P1 = φ2I−µ22I
2

, P2 = ψ2I−ν22I
2

, and η−1R = η1R + R4−ǫ22
4

. Here and in the

following the superscript denotes the soliton and the subscript denotes the component

and - (+) sign appearing in the superscript represents the asymptotic form of the soliton

before (after) interaction.

Soliton S2 (η2R ≃ 0, η1R → ∞):
(

q2−1
q2−2

)

≃ 1

D2

(

A2−
1 0

0 A2−
2

)(

cos(Q1) i sin(Q1)

cos(Q2) i sin(Q2)

)(

cosh(η−2R)

sinh(η−2R)

)

eiη2I , (12a)

where
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(

A2−
1

A2−
2

)

= 2e−
ǫ22
2





e
l
−

1 +δ22
2

e
l
−

2
+ρ22
2



 , (12b)

D2 = 4 cosh2(η−2R) + e(R2−
ǫ22
2 ) − 2. (12c)

Here, Q1 =
δ22I−l

−

1I

2
, Q2 =

ρ22I−l
−

2I

2
, l−1 = ln(α2), l

−
2 = ln(β2), and η−2R = η2R + ǫ22

4
. All the

quantities appearing in the above asymptotic expressions (11) and (12) are defined in

the Appendix.

2. After Collision:

The asymptotic expressions after collision are similar to those of before collision

expressions with the replacement of Aj−
l and η−jR by A

j+
l and η+jR, respectively for the

soliton Sj, j = 1, 2, where A1+
l =

(k1+k∗2)(k
∗

1−k
∗

2)

(k∗1+k2)(k1−k2)
A1−
l , A2+

l =
(k1+k∗2)(k1−k2)

(k∗1+k2)(k
∗

1−k
∗

2)
A2−
l , l = 1, 2,

η+1R = η1R + ǫ11
4
, and η+2R = η2R + (R4−ǫ11)

4
. The quantities ǫ11 and R4 are given in

the Appendix. One can easily check that the intensities before and after interaction

Figure 3. Elastic collision of non-degenerate solitons (parameters are as given in the

text).
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are same, that is, |Aj−
l |2 = |Aj+

l |2, j, l = 1, 2. Also, the velocities of the two colliding

solitons S1 and S2 are exactly the same before and after collision except for a phase

shift which is found to be Φ1 =
ǫ11+ǫ22−R4

4k1R
≡ 1

k1R
ln
[

(k2+k∗1)(k1+k
∗

2)

(k1−k2)(k∗1−k
∗

2)

]

, for the soliton S1 and

the soliton S2 experiences a phase shift Φ2 = −Φ1

(

k1R
k2R

)

. Thus our analysis on the non-

degenerate solitons arising for the general choice α2
j − β2

j 6= 0 shows that these type of

solitons always undergo standard elastic collision in the coherently coupled NLS system

(2) and one such collision is depicted in figure 3 for the parameters, γ = 3, k1 = 1.5+ i,

k2 = 2− i, α1 = 1, β1 = 1.7, α2 = 1, and β2 = 2. In figure 3, the double hump solitons

undergo elastic collision in the q1 component and in the q2 component the single hump

solitons exhibit elastic collision. One can also have the double hump solitons in both

the components, for suitable choices of parameters.

5.2. Collision of degenerate solitons

The degenerate solitons arise for the choice α2
j − β2

j = 0, j = 1, 2. This happens when

α1 = ±β1 and α2 = ±β2. In the following, we perform the analysis for the case α1 = β1

and α2 = β2. For the other choices, that is, α1 = β1 and α2 = −β2 or α1 = −β1 and

α2 = β2, also the collision scenario is similar to the choice discussed in this subsection.

1. Before Collision (z → −∞)

Soliton S1:

q1−1 = q1−2 = A1−sech(η−1R)e
iη1I , (13)

where A1− = e
δ2−(R2+R3

2 )
2

and η−1R = η1R + R3−R2

2
.

Soliton S2:

q2−1 = q2−2 = A2−sech(η−2R)e
iη2I , (14)

where A2− = α2

2
e−

R2
2 and η−2R = η2R + R2

2
.

2. After Collision (z → +∞)

Soliton S1:

q1+1 = q1+2 = A1+sech(η+1R)e
iη1I , (15)

where A1+ = α1

2
e−

R1
2 and η+1R = η1R + R1

2
.

Soliton S2:

q2+1 = q2+2 = A2+ sech(η+2R)e
iη2I , (16)

where A2+ = e
δ1−(R1+R3

2 )
2

and η+2R = η2R + R3−R1

2
.

All the quantities appearing in the above expressions (13-16) can be obtained from

the corresponding quantities defined in the Appendix with the substitution βj = αj ,

j = 1, 2, and the real and imaginary parts of ηj-s are defined below equation (10).

From the above expressions, one can show that the amplitudes Aj-s before and after the

interaction are related through the expressions A1+ =
[

(k∗1−k
∗

2)(k1+k
∗

2)

(k1−k2)(k∗1+k2)

]

A1− and A2+ =
[

(k1−k2)(k1+k∗2)

(k∗1−k
∗

2)(k
∗

1+k2)

]

A2−, which shows that the intensities before and after interactions are
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the same, that is |Aj+|2 = |Aj−|2, j = 1, 2. Also the soliton S1 undergoes a phase shift

Φ1 =
R1+R2−R3

2k1R
, whereas the soliton S2 experiences a phase shift Φ2 = −Φ1

(

k1R
k2R

)

during

collision. Thus the degenerate solitons always undergo standard elastic collision as that

of the NLS solitons.

5.3. Collision between degenerate and non-degenerate solitons

The collision of a degenerate soliton (α2
j − β2

j = 0) with a non-degenerate soliton

(α2
j−β2

j 6= 0) exhibits very interesting collision properties. Here we consider the collision

of a non-degenerate soliton S1 (α1 6= β1) with a degenerate soliton S2 (α2 = β2). Note

that the analysis can also be performed for the other possible choices like α2 = −β2,

but here also one can infer the same kind of collision scenario as for the present choice

α2 = β2. The asymptotic forms of the solitons S1 and S2 are presented below.

1. Before Collision

Soliton S1:
(

q1−1
q1−2

)

=
1

D1−

(

A1−
1 0

0 A1−
2

)(

cos(P−
1 ) i sin(P−

1 )

cos(Q−
1 ) i sin(Q−

1 )

)(

cosh(η−1R)

sinh(η−1R)

)

eiη1I , (17)

where

(

A1−
1

A1−
2

)

= 2

(

e
δ2+µ1−θ11−R2

2

e
ρ2+ν1−θ11−R2

2

)

, D1− = 4cosh2(η−1R) + L1−, P−
1 = δ2I−µ1I

2
,

Q−
1 = ρ2I−ν1I

2
, η−1R = η1R+

θ11−R2

4
, and L1− = e

(

R3−
(θ11+R2)

2

)

−2. Note that the expressions

for various quantities appearing in equation (17) and in the equations (18-20) given below

can be obtained from the corresponding quantities defined in the Appendix by putting

β2 = α2.

Soliton S2:

q2−1 = q2−2 = A2−sech(η−2R)e
iη2I , (18)

where A2− = α2

2
e−

R2
2 and η−2R = η2R + R2

2
.

2. After Collision

Soliton S1:
(

q1+1
q1+2

)

=
1

D1+

(

A1+
1 0

0 A1+
2

)(

cos(P+
1 ) i sin(P+

1 )

cos(Q+
1 ) i sin(Q+

1 )

)(

cosh(η+1R)

sinh(η+1R)

)

eiη1I , (19)

where P+
1 =

δ11I−l
+
1I

2
, Q+

1 =
ρ11I−l

+
2I

2
, D1+ = 4cosh2(η+1R) +L1+, l+1I = ln(α1), l

+
2I = ln(β1),

η+1R = η1R + ǫ11
4
, and L1+ = eR1−

ǫ11
2 − 2. The amplitudes A1+

1 and A1+
2 are given by the

relations A1+
1 = T1 A1−

1 and A1+
2 = T2 A1−

2 . Here the transition amplitude

T1 =

√

4(k∗
1 − k∗

2)
2(k1 + k∗

2)
2α1α

∗
1

|[(k1 − k2)2 + (k1 + k∗
2)

2]α1 + (k2 − k∗
2 − 2k1)(k2 + k∗

2)β1|2
(20)

and the expression for T2 can be obtained by replacing α1 ↔ β1 and α∗
1 ↔ β∗

1 in the

expression for T1.

Soliton S2:

q2+1 ≡ q2+2 = A2+sech(η+2R)e
iη2I , (21)
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where A2+ =
(k1−k2)(k1+k∗2)

(k∗1−k
∗

2)(k
∗

1+k2)
A2− and η+2R = η2R+ θ11−ǫ11

2
. The real and imaginary parts of

ηj-s appearing in the above expressions are already defined below equation (10).

From the asymptotic analysis we observe that the amplitudes and hence the

intensities before and after collision are not same for the non-degenerate soliton S1,

while it is so for S2. It should be noticed that the arguments of the circular functions are

also different before and after collision and also L1− 6= L1+. Additionally, there occurs

a phase shift, Φ1 =
ǫ11+R2−θ11

4k1R
, for soliton S1. Thus, during its collision with soliton S2,

the soliton S1 experiences an intensity switching among its two components resulting

in a redistribution of the amplitude and phase. But the amplitude of the other soliton

S2 remains unaltered as |A2+|2 = |A2−|2 and hence it undergoes the standard elastic

collision only along with a phase shift Φ2 =
θ11−ǫ11−R2

2k1R
. However, S2 induces the collision

with shape changes (intensity redistribution) in soliton S1 during collision. This collision

Figure 4. Shape changing collision of a non-degenerate soliton S1 with a degenerate

soliton S2 (parameters are as given in the text).

scenario is quite different from the shape changing collision occurring in the Manakov

system [5–7], where there is an intensity redistribution among the solitons in both the
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components but in the present system it happens only among the two components of

the non-degenerate soliton S1. Note that though the total energy of both the solitons

is conserved independently due to the conservation law,
∫ +∞

−∞
(|q1|2 + |q2|2)dt=constant,

the energy of the soliton in the individual modes that is
∫ +∞

−∞
|q1|2dt and

∫ +∞

−∞
|q2|2dt

are not conserved independently as the soliton S1 only experiences intensity switching

in both the components. It could be an interesting future study to check whether |Tj|,
j = 1, 2, can be unimodular, if so, for what choices of α-s and β-s this will happen.

For illustrative purpose, the above collision scenario is shown in figure 4 for the

parameters γ = 2, k1 = 2.3 + i, k2 = 2.5 − i, α1 = 0.75, β1 = 1.9, and α2 = β2 = 3 + i.

The figure shows that in the q1 component the single hump soliton S1 changes its profile

to a double hump soliton and also experiences significant suppression in its intensity

whereas the soliton S2 undergoes elastic collision. The reverse scenario takes place for

the soliton S1 in the q2 component and here also the soliton S2 remains unaltered after

collision.

In the collision of non-degenerate solitons alone the coherent coupling modifies

uniformly both the solitons before and after collision, thereby resulting in an elastic

collision. But in the present case the effect of coherent coupling is switched off in the

degenerate soliton S2 (since α2
2 = β2

2), however the coupling still persists in the non-

degenerate soliton S1. Hence, along with the XPM term the coherent coupling influences

the non-degenerate soliton S1 resulting in an intensity switching during collision. From

a mathematical point of view, one finds that the asymptotically dominant terms of the

non-degenerate soliton collision case become insignificant and the less dominant terms

in that case become significant in the two-soliton solution expression corresponding

to the collision of a degenerate soliton with a non-degenerate one. This yields different

asymptotic expressions for these two collision processes as seen in the present subsection

and in section 5.1, which ultimately makes their collision scenario completely different.

6. Conclusion

Explicit forms of one- and two-soliton solutions of the coherently coupled NLS equations

have been obtained using a non-standard type of Hirota’s bilinearization method.

Analysing the nature of the bright one-soliton solution we have reported degenerate

solitons (solitons possessing same intensity in the q1 and q2 components) and non-

degenerate solitons (solitons with different intensities in the q1 and q2 components).

Particularly, for non-degenerate solitons the density profile can vary from single hump

to double hump profile including flat-top solitons. Our analysis on the collision dynamics

revealed the fact that separate collisions among degenerate solitons alone or among non-

degenerate solitons alone are elastic. On the other hand, collision of a degenerate soliton

with a non-degenerate soliton exhibits nontrivial behaviour resulting in an intensity

switching of the non-degenerate soliton spread up in the two components leaving the

other soliton unaltered. This property will have immediate applications in soliton

collision based computing. Apart from the switching, we have also observed that this
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collision transforms the soliton profile from single hump to double hump including flat-

top profile or vice versa. We expect that this property can find application in pulse

shaping in the context of nonlinear optics.

The above analysis can be extended to the study of three and higher order soliton

solutions. The details of multi-soliton collisions and the multicomponent cases will be

published separately.
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Appendix

The various quantities occurring in equation (10) and in section 5 have the following

forms:

eδij =
α∗
j (α

2
i − β2

i )γ

2(ki + k∗
j )

2
, eδj =

(α∗
j (α1α2 − β1β2)γ + (k1 − k2)(α1κ2j − α2κ1j))

(kj + k∗
j )(k3−j + k∗

j )
,
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eρij = −
β∗
j

α∗
j

eδij , eρj =
(β∗

j (−α1α2 + β1β2)γ + (k1 − k2)(β1κ2j − β2κ1j))

(kj + k∗
j )(k3−j + k∗

j )
,

eµij =
(k1 − k2)

2α3−i(α
2
i − β2

i )(α
∗2
j − β∗2

j )γ2

4(ki + k∗
j )

4(k∗
3−i + kj)2

, eνij =
β3−i

α3−i

eµij

eRj =
κjj

(kj + k∗
j )
, eδ0 =

κ12

(k1 + k∗
2)
, eδ

∗

0 =
κ21

(k2 + k∗
1)
,

eφj =

(

γ3(k1 − k2)
4(k∗

1 − k∗
2)

2(α2
1 − β2

1)(α
2
2 − β2

2)

8(kj + k∗
j )

4(k3−j + k∗
j )

4(kj + k∗
3−j)

2(k3−j + k∗
3−j)

2

)

α∗
3−j(α

∗2
j − β∗2

j ),

eψj = −
β∗
3−j

α∗
3−j

eφj , eǫij =
γ2(α2

i − β2
i )(α

∗2
j − β∗2

j )

4(ki + k∗
j )

4
,

eτj =
γ2(α2

j − β2
j )(α

∗
1α

∗
2 − β∗

1β
∗
2)

2(kj + k∗
j )

2(kj + k∗
3−j)

2
, eτ

∗

j =
γ2(α∗2

j − β∗2
j )(α1α2 − β1β2)

2(kj + k∗
j )

2(k∗
j + k3−j)2

,

eµ1 =
(k1 − k2)

2γ2(α2
1 − β2

1)

D̃

([

(k2 + k∗
1)

2 + (k∗
2 − k∗

1)(k
∗
2 + k2)

]

α2α
∗
1α

∗
2

−(k∗
1 − k∗

2)(k2 + k∗
2)α

∗
2β2β

∗
1 + (k2 + k∗

1)(k
∗
1 − k∗

2)α
∗
1β2β

∗
2 − (k2 + k∗

1)(k2 + k∗
2)α2β

∗
1β

∗
2) ,

eµ2 =
(k1 − k2)

2γ2(α2
2 − β2

2)

D̃

(

[(k1 + k∗
1)

2 + (k∗
2 − k∗

1)(k
∗
2 + k1)]α1α

∗
1α

∗
2

−(k∗
1 − k∗

2)(k1 + k∗
2)α

∗
2β1β

∗
1 + (k1 + k∗

1)(k
∗
1 − k∗

2)α
∗
1β1β

∗
2 − (k1 + k∗

1)(k1 + k∗
2)α1β

∗
1β

∗
2) ,

eν1 =
−(k1 − k2)

2γ2(α2
1 − β2

1)

D̃

(

[(k2 + k∗
1)

2 + (k∗
2 − k∗

1)(k
∗
2 + k2)]β2β

∗
1β

∗
2

−(k∗
1 − k∗

2)(k2 + k∗
2)β

∗
2α2α

∗
1 + (k2 + k∗

1)(k
∗
1 − k∗

2)β
∗
1α2α

∗
2 − (k2 + k∗

1)(k2 + k∗
2)β2α

∗
1α

∗
2) ,

eν2 = − (k1 − k2)
2γ2(α2

2 − β2
2)

D̃

(

[(k1 + k∗
1)

2 + (k∗
2 − k∗

1)(k
∗
2 + k1)]β1β

∗
1β

∗
2

−(k∗
1 − k∗

2)(k1 + k∗
2)β

∗
2α1α

∗
1 + (k1 + k∗

1)(k
∗
1 − k∗

2)β
∗
1α1α

∗
2 − (k1 + k∗

1)(k1 + k∗
2)β1α

∗
1α

∗
2) ,

eR3 = γ2
[

(

(k∗
1 + k2)

2(k1 + k∗
2)

2 − (k1 + k∗
1)(k

∗
1 + k2)(k1 + k∗

2)(k2 + k∗
2) + (k1 + k∗

1)
2(k2 + k∗

2)
2

(k1 + k∗
1)

2(k∗
1 + k2)2(k1 + k∗

2)
2(k2 + k∗

2)
2

)

(α1α
∗
1α2α

∗
2 + β1β

∗
1β2β

∗
2) +

(

(k1 − k2)(k
∗
1 − k∗

2)(α2α
∗
2β1β

∗
1 + α1α

∗
1β2β

∗
2)

(k1 + k∗
1)

2(k∗
1 + k2)(k1 + k∗

2)(k2 + k∗
2)

2

)

−
(

(α∗
1α

∗
2β1β2 + α1α2β

∗
1β

∗
2)

(k1 + k∗
1)(k

∗
1 + k2)(k1 + k∗

2)(k2 + k∗
2)

)

−
(

(k1 − k2)(k
∗
1 − k∗

2)(α1α
∗
2β2β

∗
1 + α2α

∗
1β1β

∗
2)

(k1 + k∗
1)(k

∗
1 + k2)2(k1 + k∗

2)
2(k2 + k∗

2)

)

]

,

eθij =
(k1 − k2)

2(k∗
1 − k∗

2)
2(α2

i − β2
i )(α

∗2
j − β∗2

j )(α3−iα
∗
3−j + β3−iβ

∗
3−j)γ

3

2D̃(ki + k∗
j )

2
,

eR4 =
1

4D̃2
(k1 − k2)

4(k∗
1 − k∗

2)
4(α2

1 − β2
1)(α

∗2
1 − β∗2

1 )(α2
2 − β2

2)(α
∗2
2 − β∗2

2 )γ4,

eλij =
(k1 − k2)

2(α2
3−i − β2

3−i)κijγ

(k3−i + k∗
j )

2(ki + k∗
j )

, eλj =
γ2(k1 − k2)

4(α2
1 − β2

1)(α
2
2 − β2

2)(α
∗2
j − β∗2

j )γ2

4(kj + k∗
j )

4(k∗
j + k3−j)4

,

eλ3 =
1

D̃
(k1 − k2)

4(α2
1 − β2

1)(α
2
2 − β2

2)(α
∗
1α

∗
2 − β∗

1β
∗
2)γ

2,

where

D̃ = 2(k1 + k∗
1)

2(k∗
1 + k2)

2(k1 + k∗
2)

2(k2 + k∗
2)

2



Coherently coupled bright optical solitons and their collisions 16

and

κij =
γ(αiα

∗
j + βiβ

∗
j )

(ki + k∗
j )

, i, j = 1, 2.
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