
ar
X

iv
:1

00
4.

38
56

v1
  [

nl
in

.S
I]

  2
2 

A
pr

 2
01

0

Motion of Space Curves in Three-dimensional

Minkowski Space R3
1, SO(2,1) Spin Equation and

Defocusing Nonlinear Schrödinger Equation

GOPAL MUNIRAJA

Department of Mathematics, Bishop Cotton Women’s Christian College,

Bangalore-560027, India.

M LAKSHMANAN

Center for Nonlinear Dynamics, Bharathidasan University,Tiruchirapalli 620 024,

India

Abstract. We consider the dynamics of moving curves in three-dimensional

Minkowski space R
3

1
and deduce the evolution equations for the curvature and tor-

sion of the curve. Next by mapping a continuous SO(2,1) Heisenberg spin chain on the

space curve in R
3

1
, we show that the defocusing nonlinear Schrödinger equation(NLSE)

can be identified with the spin chain, thereby giving a geometrical interpretation of it.

The associated linear eigenvalue problem is also obtained in a geometrical way.
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1. INTRODUCTION

Modelling of physical systems by curves, surfaces and other differential geometric objects

is highly rewarding, see for example the pioneering work of Hasimoto [1] on vortex

filaments and the one-dimensional continuum Heisenberg ferromagnetic spin equation by

Lakshmanan, Ruijgork and Thompson [2,3]. In both cases the systems were shown to be

equivalent to the integrable nonlinear Schrödinger equation (NLSE) of the focusing type

[1-5]. In recent times the relation between differential geometry and certain dynamical

systems described by nonlinear evolution equations in (1+1) and (2+1) dimensions,

especially the integrable systems , has come into sharp focus [6-13].

Integrable nonlinear evolution equations occur in many branches of physics and

applied mathematics. Such equations possess a number of interesting properties such as

soliton solutions, infinite number of conservation laws, infinite number of symmetries,

Bäcklund and Darboux transformations, bi-Hamiltonian structures and so on, see [7, 8].

Now it is well known that a class of important soliton equations can be interpreted

in terms of moving space curves in R3 and the linear eigen value problems of the soliton

equations can be obtained from the defining Serret-Frenet equations of space curves [6,

9-13]. Extension to (2+1) dimensions is also possible. A brief survey of the developments

up to more recent times can be seen in [13].

Our focus in this Letter is on the defocusing NLSE, in which the sign of the nonlinear

term is negative, which is encountered in many physical problems. It was shown to

be integrable by the inverse scattering transform method[14] and admits dark soliton
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solutions. However, there does not seem to be available a simple differential geometric

model and its equivalent spin system for the defocusing case such as available for the

focusing NLSE as demonstrated in [1,2].

In this Letter we wish to address this problem. We have found the rich curve

theory available in three-dimensional Minkowski space is more suited to this problem.

Nakayama [16] has used the geometry of curves on a three-dimensional ellipsoid in a

four-dimensional Minkowski space to obtain a model for the defocusing NLSE. For other

related works see also [17,18]. But we feel our approach is simpler and more direct and

can be extended profitably to other nonlinear evolution equations also.

In the next section we give the basic equations of curves in R3
1and fix the notation

closely following [19] and [20]. Subsequent sections establish the curve model of the

solution of the defocusing NLSE with the tools and techniques similar to the ones found

in [3] and [20-23] and its connection to the SO (2,1) continuous Heisenberg spin chain.

We hope to extend similar treatment of integrable and nonintegrable systems to

surfaces in R3
1 and higher dimensional Minkowski geometries in our subsequent work.

2. Motion of curves in the Minkowski Space R3
1

The nature of the metric in a Minkowski space induces a rich geometry of curves and

surfaces. For instance the familiar Serret-Frenet equations in the Euclidean space R3

give way to four such systems in R3
1. In this section we give the basic curve geometry

apparatus in R3
1, see [19], and we closely follow [20] in writing down the curve evolution
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equations. The metric on the Minkowski space R3
1 is given by ds2 = -dx21 + dx22 + dx23.

We note here that the scalar and vector products of two vectors a = a1i + a2j + a3k,

b = b1i+ b2j+ b3k in R3
1, where i, j, k are unit vectors along the x, y, z axes respectively,

are given as follows:

Scalar Product: a.b = g(a, b) = −a1b1 + a2b2 + a3b3.

Vector Product: a ∧ b =

∣
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( Note: In Minkowski space a vector a is defined to be a unit vector if g(a, a) = ±1. A

vector a is said to be space like if g(a, a) > 0, time like if g(a, a) < 0 and light like or a

null vector if g(a, a) = 0 ).

Now, let(e1, e2, e3) be the Serret-Frenet frame of a unit speed (non-null) curve α(x)

in R3
1. Here e1 is the unit tangent vector field , e2 is the normal and e3 is the binormal

to α(x). Let g(e1, e1) = ǫ0 = ±1, g(e2,e2) = ǫ1 = ±1. Then g(e3,e3) = -ǫ0ǫ1. Then the

Serret-Frenet equations are given by [19]

e1x = ǫ1κ(x)e2,

e2x = −ǫ0κ(x)e1 − ǫ0ǫ1τ(x)e3,

e3x = −ǫ1τ(x)e2. (1)

Here τ and κ denote the torsion and curvature respectively of the given space curve α.
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Using the vector product relations

e1 ∧ e2 = e3,

e2 ∧ e3 = −ǫ1e1,

e3 ∧ e1 = −ǫ0e2, (2)

the Serret-Frenet equations (1) can be compactly written as

eix = D ∧ ei, i = 1, 2, 3, (3)

where D is the Darboux vector defined as

D = −ǫ0ǫ1τe1 − ǫ0ǫ1κe3. (4)

Now, let us consider the time evolution of the curve α(x, t). We define an angular

momentum like vector Ω = Σωiei, i = 1,2,3, which gives the time evolution of the

Serret-Frenet system as

eit = Ω ∧ ei, i = 1, 2, 3. (5)

From (2) and (5) we obtain

e1t = −ǫ0ω3e2 − ω2e3,

e2t = ǫ1ω3e1 + ω1e3,

e3t = −ǫ1ω2e1 + ǫ0ω1e2. (6)

In order that the above two definitions are compatible we require that

(ei)xt = (ei)tx, i = 1, 2, 3. (7)
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From (1), (6 ) and (7) we obtain

κt = τω2 − ǫ0ǫ1ω3x,

τt = ǫ1κω2 − ǫ0ǫ1ω1x,

ω2x = ǫ1τω3 − ǫ1κω1. (8)

The above equations constitute the evolution of the curvature and torsion associated

with an arbitrary curve moving in R3
1.

3. SO(2,1) Heisenberg Spin Equation and Mapping to a Space Curve in R3
1

Consider now the SO(2,1) Heisenberg spin equation given by

St = S × Sxx, (9)

where S is a unit vector in R3
1, that is −S

2
1 + S2

2 + S2
3 = ±1 . We identify S with the

unit tangent vector e1 of α(x). Then we obtain from the spin equation

e1t = e1 × e1xx = e1 × e(1x)x

= e1 × (ǫ1κe2)x = ǫ1e1 × (κxe2 + κe2x)

Hence from (1) and (2) and noting ǫ20 = ǫ21 = 1 we have

e1t = ǫ1κxe3 − κτe2. (10)

Next we have e2 = ǫ1
e1x

κ
from (1). Hence e2t = ǫ1

e1xt

κ
− e1x

κ2 κt. Using (1) and (10) we

obtain

e2t = [ǫ1ǫ0κ
2τe1 − ǫ1(2κxτ + κτx + ǫ1κt)e2 + (κxx + ǫ0κτ

2)e3]/κ. (11)
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Similarly we can deduce that

e3t = κxe1 + [(ǫ0κxx + κτ 2)e2 − ǫ1(2κxτ + κτx + ǫ1κt)e3]/κ. (12)

Comparing the above with (6) we immediately obtain the evolution equation for the

curvature as

κt = −ǫ1(2κxτ + κτx). (13)

The compatiblity condition(7) applied to e3 yields the evolution equation for torsion as

τt = −ǫ21κκx − ǫ0ǫ1(
κxx
κ

+ ǫ0τ
2)x. (14)

The above equations define the evolution of curvature and torsion of the curve associated

with an SO (2,1) continuum Heisenberg spin system in R3
1.

4. Mapping onto the Defocusing NLSE

Let us first consider the case where ǫ0 = −1 and ǫ1 = 1. Then equations (11) and (12)

reduce to

κt = −2κxτ − κτx (15)

and

τt = −κκx + (
κxx
κ

− τ 2)x. (16)

We now make the complex transformation

u =
κ

2
ei

∫
x

−∞
τdx. (17)

Then using (17) equations (15) and (16) are transformed into

iut + uxx − 2|u|2u = 0, (18)
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which is nothing but the defocusing nonlinear Schrödinger equation. Now we assume

the energy and current densities of the spin system to be related to the curvature and

torsion respectively as

ǫ(x, t) =
1

2

∂S

∂x
.
∂S

∂x
=

1

2
κ2, (19)

I(x, t) = S.Sx ∧ Sxx (20)

so that the continuity given by ǫt − Ix = 0 is satisfied. This continuity equation can be

easily shown to be compatible with (15). Finally we also observe that the case of ǫ0 = 1

and ǫ1 = −1 yields the solution of focusing NLSE under the condition that the curve

has a constant torsion. The other two cases of ǫ0 = −1 , ǫ1 = −1 and ǫ0 = 1 , ǫ1 = 1

do not reduce either to the defocusing or to the focusing NLSE for the transformation

given by (17).

5. Reduction to AKNS Eigenvalue Problem

Corresponding to the Serret-Frenet frame given by (1) (for ǫ0 = −1 and ǫ1 = 1) we

define a new scalar variable zl = e2l+ie3l

1−ie1l
, l=1,2,3, following [20, 21], from which we

obtain

zlx = −iτzl +
iκ

2
(1 + z2

l
). (21)

Now differentiating zl with respect to t and using (5), and after some detailed

calculations, we arrive at

zlt = −iω1zl +
ω2 + iω3

2
−

(ω2 − iω3)z
2
l

2
. (22)



9

Equations (21) and (22) are nothing but the Riccati equations. Again the compatibility

of (21) and (22) , that is (zl)xt = (zl)tx, leads to the correct equations for κ(x, t) and

τ(x, t) as in (15) and (16). Defining zl =
v2

v1
, equation (21) can be written as

v1x =
iτ

2
v1 −

iκ

2
v2,

v2x =
iκ

2
v1 −

iτ

2
v2. (23)

Similarly, from Eq.(22) we obtain

v1t =
iω1

2
v1 −

i

2
(ω3 + iω2)v2,

v2t = −
iω1

2
v2 +

i

2
(ω3 − iω2)v1. (24)

Using the compatibility conditions (vix)t = (vit)x, i = 1, 2, from (23), (24) above we once

again get back easily the original equations for κ(x, t) and τ(x, t) . Now introducing a

suitable Galilean transformation and a gauge transformation in to (23), (24) we obtain

the linear eigenvalue problem

ψ1x = uψ2 − iλψ1,

ψ2x = u∗ψ1 + iλψ2, (25)

and the time evolution of the eigenfunction as

ψ1t = Aψ1 +Bψ2,

ψ2t = Cψ1 +Dψ2, (26)
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where

A = −2iλ2 − iuu∗,

B = 2uλ+ iux,

C = 2u∗λ− iu∗
x
. (27)

and u is as defined in Eq. (17).

6. Conclusions

In this paper, we have shown how the dynamics of moving curves in three dimensional

Minkowski space R3
1 can be related to the dynamics of SO(2,1) spin equations and

soliton equations of defocusing NLS type. It is possible that more number of such

connections with soliton equations not related to moving curves in Euclidean space R3

may be related to present type of formulation. The analysis can also be extended higher

dimensional spaces. Analysis along these lines is in progress.
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