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Abstract

In this paper, we have studied the integrability nature of a system of three coupled Gross-

Pitaevskii type nonlinear evolution equations arising in the context of spinor Bose-Einstein con-

densates by applying the Painlevé singularity structure analysis. We show that only for two sets

of parametric choices, corresponding to the known integrable cases, the system passes the Painlevé

test.
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I. INTRODUCTION

Integrable multicomponent nonlinear Schrödinger type equations have attracted con-

siderable current interest in soliton research. Much focus has been paid to identify new

integrable multicomponent type equations due to their many faceted applications in

different fields of science such as nonlinear optics, Bose-Einstein condensates, biophysics,

plasma physics, etc.1−5. Painlevé singularity structure analysis is one of the powerful

tools to isolate and identify integrable dynamical systems6−10. This procedure nicely

complements other integrability tools like inverse scattering transform (IST), infinite

number of involutive integrals of motion, symmetries, Bäcklund transformations, Hirota’s

bilinearization method, etc., to study the integrability properties of nonlinear systems1,2.

By applying the Painlevé test for integrability a class of integrable coupled nonlinear

Schrödinger (CNLS) type equations, which arise in different physical contexts, has been

identified11−16.

In this connection, the system of CNLS equations in the presence of confining potential

becomes the coupled Gross-Pitaevskii (GP) equations, governing the dynamics of two

component Bose-Einstein condensates17−19. This kind of multicomponent condensates can

also be created with the mixture of two different atomic species or by considering the

hyperfine spin of atoms in the presence of optical dipole traps20−22. The latter entities are

the so-called spinor Bose-Einstein condensates (BECs).

Spinor Bose-Einstein condensates of ultra cold atoms can be created by liberating the

hyperfine states by means of optical trapping. Two component condensates have been

realized in 87Rb (see Ref. 23) and also optically trapped three component condensates were

studied in Refs. 24-27. The evolution of the spinor condensate wave functions is governed
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by the following set of three-coupled nonlinear Schrödinger type equations28,

i~ψ+1,T = − ~
2

2m
ψ+1,XX + (c0 + c2)(|ψ+1|2 + |ψ0|2)ψ+1

+(c0 − c2)|ψ−1|2ψ+1 + c2ψ
∗
−1ψ

2
0, (1a)

i~ψ0,T = − ~
2

2m
ψ0,XX + (c0 + c2)(|ψ+1|2 + |ψ−1|2)ψ0

+c0|ψ0|2ψ0 + 2c2ψ
∗
0ψ+1ψ−1, (1b)

i~ψ−1,T = − ~
2

2m
ψ−1,XX + (c0 + c2)(|ψ−1|2 + |ψ0|2)ψ−1

+(c0 − c2)|ψ+1|2ψ−1 + c2ψ
∗
+1ψ

2
0, (1c)

where ψ±1,0’s are the wave functions of the three spin components, T is the time and X

denotes the spatial co-ordinate. The effective one-dimensional coupling constants c0 and

c2 representing the mean field and spin exchange interactions, respectively, are given by

c0 = g0+2g2

3
, c2 = g2−g0

3
, where gf =

4~
2af

ma2

⊥

(

1

1−C
af

a⊥

)

, f = 0, 2. Here af ’s are the s-wave

scattering lengths in the total hyperfine spin channel f , a⊥ is the size of the transverse

ground state, m is the atomic mass and the constant C = −ζ(1/2) ≃ 1.46, where ζ is

the Reimann zeta-function. With the redefinition of T = ~t, X = ~√
2m
x and transforming

(ψ1, ψ0, ψ−1) → (ψ1,
√

2ψ0, ψ−1), we can rewrite Eq. (1) in the standard form as

iψ+1,t = −ψ+1,xx + (c0 + c2)(|ψ+1|2 + 2|ψ0|2)ψ+1

+(c0 − c2)|ψ−1|2ψ+1 + 2c2ψ
∗
−1ψ

2
0 , (2a)

iψ0,t = −ψ0,xx + (c0 + c2)(|ψ+1|2 + |ψ−1|2)ψ0

+2c0|ψ0|2ψ0 + 2c2ψ
∗
0ψ+1ψ−1, (2b)

iψ−1,t = −ψ−1,xx + (c0 + c2)(|ψ−1|2 + 2|ψ0|2)ψ−1

+(c0 − c2)|ψ+1|2ψ−1 + 2c2ψ
∗
+1ψ

2
0 . (2c)

We refer to Eq. (2) as the three-component GP type equations. The above system of

equations has been solved by the IST method and multicomponent bright and dark solitons

have been reported for specific choices of c0 and c2
29−31. Now it is of interest to isolate all

the possible integrable models arising from Eq. (2) for arbitrary choices of c0 and c2, which

can be tuned suitably through Feshbach resonance. For this purpose, we perform a Painlevé

singularity structure analysis to the above fairly generalized system. It is also expected that

besides BECs the analysis will have wider ramifications in nonlinear optics.
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This paper is arranged in the following manner. In section II, the three steps involved in

the Painlevé singularity structure analysis, namely the leading order analysis of the Laurent

expansion in the neighbourhood of a non-characteristic singular manifold, determination of

the resonances (that is, the powers at which arbitrary functions can occur in the Laurent

expansion) and analysis of the Laurent expansion for sufficient number of arbitrary functions

are carried out. It is shown that only for the two specific parametric choices, namely (i)

c2 = 0 and (ii) c0 = c2 the system (2) passes the Painlevé integrability test. The results are

analyzed in the final section.

II. PAINLEVÉ SINGULARITY STRUCTURE ANALYSIS

In order to perform the Painlevé singularity structure analysis of Eq. (2) the dependent

variables ψ±1, ψ0 and their complex conjugates are denoted as

ψ+1 = a, ψ∗
+1 = b, ψ−1 = m, ψ∗

−1 = n, ψ0 = p, ψ∗
0 = q. (3)

Then Eqs. (2) become

iat = −axx + (c0 + c2) (ab+ 2pq)a+ (c0 − c2)mna+ 2c2np
2, (4a)

−ibt = −bxx + (c0 + c2) (ab+ 2pq)b+ (c0 − c2)mnb+ 2c2mq
2, (4b)

imt = −mxx + (c0 + c2) (mn+ 2pq)m+ (c0 − c2) abm+ 2c2bp
2, (4c)

−int = −nxx + (c0 + c2) (mn+ 2pq)n+ (c0 − c2) abn + 2c2aq
2, (4d)

ipt = −pxx + 2c0p
2q + (c0 + c2) (ab+mn)p + 2c2qam, (4e)

−iqt = −qxx + 2c0q
2p+ (c0 + c2) (ab+mn)q + 2c2pbn. (4f)

4



The Painlevé singularity structure analysis (of an analytic polynomial differential equation)

is carried out by seeking a generalized Laurent expansion32 for the dependent variables

a = φα
∑

j=0

aj(x, t)φ
j , a0 6= 0, (5a)

b = φβ
∑

j=0

bj(x, t)φ
j , b0 6= 0, (5b)

m = φγ
∑

j=0

mj(x, t)φ
j , m0 6= 0, (5c)

n = φδ
∑

j=0

nj(x, t)φ
j, n0 6= 0, (5d)

p = φǫ
∑

j=0

pj(x, t)φ
j, p0 6= 0, (5e)

q = φω
∑

j=0

qj(x, t)φ
j, q0 6= 0, (5f)

in the neighbourhood of the non-characteristic singular manifold φ(x, t) = 0, with nonvan-

ishing derivatives φx(x, t) 6= 0 and φt(x, t) 6= 0.

A. Leading order analysis

The leading order behaviour of the solution is analyzed by assuming the forms

a ≈ a0φ
α, b ≈ b0φ

β, m ≈ m0φ
γ, n ≈ n0φ

δ, p ≈ p0φ
ǫ, q ≈ q0φ

ω (6)

for the dependent variables, where α, β, γ, δ, ǫ and ω are integers to be determined. After

substituting these forms into Eq. (4) and by balancing the most dominant terms, at the

leading order one obtains

α = β = γ = δ = ǫ = ω = −1, (7)

with a set of relations

p2
0 = a0m0, q2

0 = b0n0, (8a)

φ2
x =

(c0 + c2)

2

(

√

a0b0 +
√
m0n0

)2

. (8b)

Note that there are six functions a0, b0, m0, n0, p0 and q0 (besides the arbitrary manifold

φ(x, t)) and the above three conditions mean that three of them are arbitrary at this stage

of the analysis.
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B. Resonances

The second step in the singularity structure analysis is to determine the resonances (pow-

ers) at which arbitrary functions can enter into the Laurent series (5). To obtain the reso-

nance values, we substitute the following expressions into Eqs. (4)

a = a0φ
−1 + · · ·+ ajφ

j−1, b = b0φ
−1 + · · · + bjφ

j−1,

m = m0φ
−1 + · · · +mjφ

j−1, n = n0φ
−1 + · · · + njφ

j−1,

p = p0φ
−1 + · · ·+ pjφ

j−1, q = q0φ
−1 + · · ·+ qjφ

j−1. (9)

and determine the possible values of j. By collecting the coefficients of φj−3, one can obtain

a system of six algebraic equations which can be casted as

D XT = 0, (10a)

where the superscript ‘T ’ denotes the transpose of the matrix and the matrices X and D

are given by

X =
(

aj bj mj nj pj qj

)

, (10b)

D =































































Q1 r1 a
2
0 r2n0a0 r1m0a0 2r1a0q0 2r1p0a0

+4c2n0p0

r1 b
2
0 Q1 r1b0n0 r2m0b0 2r1q0b0 2r1p0b0

+4c2m0q0

r2b0m0 r1a0m0 Q2 r1m
2
0 2r1q0m0 2r1p0m0

+4c2b0p0

r1b0n0 r2a0n0 r1n
2
0 Q2 2r1q0n0 2r1p0n0

+4c2a0q0

r1b0p0 r1a0p0 r1n0p0 r1m0p0 Q3 2r1a0m0

+2c2q0m0 +2c2a0q0

r1b0q0 r1a0q0 r1n0q0 r1m0q0 2r1b0n0 Q3

+2c2p0n0 +2c2p0b0































































, (10c)
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in which

r1 = c0 + c2, r2 = c0 − c2,

Q1 = −(j − 1)(j − 2)φ2
x + 2r1 (a0b0 + p0q0) + r2 m0n0,

Q2 = −(j − 1)(j − 2)φ2
x + 2r1 (m0n0 + p0q0) + r2 a0b0,

Q3 = −(j − 1)(j − 2)φ2
x + r1 (a0b0 +m0n0) + 4c0p0q0

and 0 is a (6× 1) null matrix. By requiring the determinant of the matrix D to be zero the

following resonance equation is obtained.

j3(j + 1)(j − 3)3(j − 4)
(

4c2 − 3j(c0 + c2) + j2(c0 + c2)
)2

= 0. (11)

From Eq. (11) the values of j are obtained as

j = −1, 0, 0, 0, 3, 3, 3, 4, N1, N1, N2, N2, (12a)

where

N1 =
1

2

(

3(c0 + c2) +
√

9c20 + 2c0c2 − 7c22
c0 + c2

)

, (12b)

N2 =
1

2

(

3(c0 + c2) −
√

9c20 + 2c0c2 − 7c22
c0 + c2

)

. (12c)

All the resonances should be integers for the system (2) to satisfy the Painlevé property

so that movable algebraic branching type critical singular manifolds are avoided. Hence by

requiring N1 and N2 to be integers we find the following two cases:

Case(i) : c0 = −
(

1 +
4

m(m− 3)

)

c2, m = 1, 2, 4, 5, 6, . . . (m 6= 3)

Case(ii) : c2 = 0, m = 0, 3.

Then the integer resonances for both the cases can be written as

j = −1, 0, 0, 0, 3, 3, 3, 4, m,m, 3−m, 3 −m, m = 0, 1, 2, . . . (13)

Note that in the above, j = −1 corresponds to the arbitrariness of the non-characteristic

manifold φ(x, t).
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Case (i):

In this case for the choices m = 1 and m = 2, we get c0 = c2 = c (say), where c is a real

constant, all the resonances are positive integers (except for j = −1) and are given below.

j = −1, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 4. (14)

However for m ≥ 4, the presence of more negative resonances indicates that there may

exist only particular solutions with lesser number of arbitrary functions in the Laurent ex-

pansion. For example, the choice m = 4 corresponding to c0 = −2c2, has the resonances

j = −1,−1,−1, 0, 0, 0, 3, 3, 3, 4, 4, 4. This may be an indication that the Laurent expansion

(5) does not correspond to a general solution with required number of arbitrary functions,

but represents only a particular solution. We feel that these choices with m ≥ 4 are the

candidates for further deeper analysis mathematically on Laurent expansions in the negative

powers. We do not pursue this problem further here. However, one can perform for example

a study on the modulation instability of system (2) for these choices of m(≥ 4) and look for

solitary wave type solutions which could be of specific physical interest. So, hereafter we

will consider only the case having resonances (14) with c0 = c2 = c.

Case (ii):

For the values m = 0 and m = 3, we require c2 = 0 and the system (2) re-

duces to a set of three coupled nonlinear Schrödinger equations with resonances j =

−1, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 4, whose integrability and Painlevé analysis have already been

studied in detail in Ref. 12. So we will not consider this case any further.

C. Analysis for arbitrary functions

The next step in the Painlevé singularity structure analysis is to show that there exist

sufficient number of arbitrary functions in the Laurent expansion (5) which can arise at

the resonance values given by (14) without the introduction of movable critical singular

manifolds. To prove this, we expand the dependent variables in Eqs. (4) (upto the highest
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resonance value in (14)) as below:

a =
a0

φ
+ a1 + a2φ+ a3φ

2 + a4φ
3, (15a)

b =
b0
φ

+ b1 + b2φ+ b3φ
2 + b4φ

3, (15b)

m =
m0

φ
+m1 +m2φ+m3φ

2 +m4φ
3, (15c)

n =
n0

φ
+ n1 + n2φ+ n3φ

2 + n4φ
3, (15d)

p =
p0

φ
+ p1 + p2φ+ p3φ

2 + p4φ
3, (15e)

q =
q0
φ

+ q1 + q2φ+ q3φ
2 + q4φ

3, (15f)

where aj , bj , mj , nj , pj , qj, j = 0, 1, . . . , 4, are functions of (x, t) to be determined. Then

by collecting various powers of φ, we explicitly show that there exist sufficient number of

arbitrary functions at each index of the resonance values given in (14). As noted above, the

resonance at j = −1 corresponds to the arbitrariness of the non-characteristic manifold φ.

1. Coefficients of φ−3 :

The set of algebraic equations resulting at this order is

− 2φ2
x + 2c(a0b0 + 2p0q0) + 2cn0p

2
0/a0 = 0,

−2φ2
x + 2c(a0b0 + 2p0q0) + 2cm0q

2
0/b0 = 0,

−2φ2
x + 2c(m0n0 + 2p0q0) + 2cb0p

2
0/m0 = 0,

−2φ2
x + 2c(m0n0 + 2p0q0) + 2ca0q

2
0/n0 = 0,

−2φ2
x + 2cp0q0 + 2c(a0b0 +m0n0) + 2ca0q0m0/p0 = 0,

−2φ2
x + 2cp0q0 + 2c(a0b0 +m0n0) + 2cb0p0n0/q0 = 0. (16a)

Solving Eqs. (16a) again results in the already deduced relations (8),

p2
0 = a0m0, q2

0 = b0n0, (16b)

φ2
x = c

(

√

a0b0 +
√
m0n0

)2

. (16c)

This clearly shows that three out of the six functions (a0, b0, m0, n0, p0 and q0) are

arbitrary at the triple resonance j = 0, 0, 0.
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2. Coefficients of φ−2 :

At the power φ−2, we obtain the following set of algebraic equations expressed in the

matrix form,

D1 X1

T = (−iφt) Y1

T , (17a)

where

D1 =



























4cl1 2ca0b0 0 2cm0n0 4cl2 4cp0q0

2ca0b0 4cl1 2cm0n0 0 4cp0q0 4cl2

0 2ca0b0 4cl2 2cm0n0 4cl1 4cp0q0

2ca0b0 0 2cm0n0 4cl2 4cp0q0 4cl1

2cl2 2ca0b0 2cl2 2cm0n0 2c(l1 + l2) 4cp0q0

2ca0b0 2cl1 2cm0n0 2cl2 4cp0q0 2c(l1 + l2)



























, (17b)

X1 =
(

a1

a0

b1
b0

m1

m0

n1

n0

p1

p0

q1

q0

)

, (17c)

Y1 =
(

1 −1 1 −1 1 −1
)

. (17d)

In the above matrix D1 we have introduced the quantities l1 and l2, which are defined as

l1 = a0b0 + p0q0 and l2 = m0n0 + p0q0. (17e)

In order to make the calculations simpler here and in the subsequent analysis, we use

the Kruskal ansatz7 by assuming the singular manifold function φ(x, t) in the form φ(x, t) =

x+ ρ(t), with ρ an arbitrary analytic function and the aj, bj , mj , nj , pj, qj are functions of

t only. One can solve the above six algebraic equations (17) given in the matrix form and

obtain

a1

a0

= −p0q0
a0b0

(

iρt

2c l2
+
p1

p0

)

, (18a)

b1
b0

=
p0q0
a0b0

(

iρt

2c l2
− q1
q0

)

, (18b)

m1

m0
= − 1

l2

(

iρt

2c
+ l1

p1

p0

)

, (18c)

n1

n0

=
1

l2

(

iρt

2c
− l1

q1
q0

)

. (18d)

From equations (18), we observe that the two functions (p1 and q1) out of the six functions

a1, b1, m1, n1, p1 and q1 are arbitrary. Naturally, these are associated with the double

resonance at j = 1, 1.
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3. Coefficients of φ−1 :

At this order we obtain

D1 X2

T = Y2

T , (19a)

where the matrix D1 being defined in Eq. (17b) and

X2 =
(

a2

a0

b2
b0

m2

m0

n2

n0

p2

p0

q2

q0

)

, (19b)

Y2 =
(

y
(1)
2 y

(2)
2 y

(3)
2 y

(4)
2 y

(5)
2 y

(6)
2

)

. (19c)

Here the elements of Y2 are given by

y
(1)
2 =

ia0t

a0
− 2c

a0

(

p2
1n0 + a2

1b0
)

,

−4c

a0
(a1p1q0 + a1b1a0 + n1p1p0 + a1q1p0 + p1q1a0) , (20a)

y
(2)
2 = −ib0t

b0
− 2c

b0

(

q2
1m0 + b21a0

)

−4c

b0
(b1q1p0 + a1b1b0 +m1q1q0 + b1p1q0 + p1q1b0) , (20b)

y
(3)
2 =

im0t

m0

− 2c

m0

(

m2
1n0 + p2

1b0
)

− 4c

m0

(m1q1p0 +m1n1m0 +m1p1q0 + b1p1p0 + p1q1m0) , (20c)

y
(4)
2 = −in0t

n0
− 2c

n0

(

n2
1m0 + q2

1a0

)

−4c

n0
(a1q1q0 +m1n1n0 + n1q1p0 + p1q1n0 + n1p1q0) , (20d)

y
(5)
2 =

ip0t

p0
− 2c

p0

(

2p1q1p0 + a1q1m0 +m1n1p0 + a1b1p0 + p2
1q0
)

−2c

p0

(a1p1b0 + b1p1a0 + n1p1m0 + a1m1q0 +m1q1a0 +m1p1n0) , (20e)

y
(6)
2 = −iq0t

q0
− 2c

q0

(

2p1q1q0 + n1q1m0 +m1n1q0 + a1b1q0 + q2
1p0

)

−2c

q0
(b1p1n0 + b1n1p0 + a1q1b0 +m1q1n0 + b1q1a0 + n1p1b0) . (20f)

Proceeding further as in the case of j = 1 and by incorporating the results of j = 0 and

j = 1, we express the four functions a2, b2, m2 and n2 in terms of the remaining two unknown

11



functions p2 and q2:

a2

a0
=

1

l1

(

y
(1)
2 − y

(3)
2

4c
+ l2

m2

m0
− (l2 − l1)

p2

p0

)

, (21a)

b2
b0

=
1

l1

(

y
(2)
2 − y

(4)
2

4c
+ l2

n2

n0
− (l2 − l1)

q2
q0

)

, (21b)

where

m2

m0

=
n2

n0

− l1
l2

(

p2

p0

− q2
q0

)

+
y

(3)
2 − y

(4)
2

2c l2
+
a0b0(y

(1)
2 − y

(2)
2 − y

(3)
2 + y

(4)
2 )

4 cl1l2
, (21c)

n2

n0

= − l1
l2

(

q2
q0

)

+
a0b0(3y

(4)
2 + y

(2)
2 − 2y

(1)
2 ) + 2p0q0(2y

(4)
2 − y

(3)
2 )

12 cl1l2
, (21d)

with l1 and l2 being defined in Eq. (17e) and y
(j)
2 ’s, j = 1, 2, ..., 6, are given in Eqs. (20).

From the above equations (21), we can easily see that two (p2 and q2) out of the six functions

a2, b2, m2, n2, p2 and q2 are arbitrary, as required by the existence of arbitrary functions at

the double resonance j = 2, 2.

4. Zeroth order in φ :

Collecting now the coefficients at the zeroth order, that is φ0, we obtain

D3 X3

T = Y3

T , (22a)

where the matrix D3 = D1 − 2I, I is a (6 × 6) identity matrix and

X3 =
(

a3

a0

b3
b0

m3

m0

n3

n0

p3

p0

q3

q0

)

, (22b)

Y3 =
(

y
(1)
3 y

(2)
3 y

(3)
3 y

(4)
3 y

(5)
3 y

(6)
3

)

. (22c)
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Here

y
(1)
3 = i

(

a1t + a2ρt

a0

)

− 4c

a0
(a2p1q0 + a1a2b0 + a2b1a0 + p2q1a0

+n2p1p0 + n1p2p0 + a1q2p0 + a1p2q0 + a1b2a0 + a1p1q1

+a2q1p0 + p1q2a0 + p1p2n0) −
2c

a0

(

a2
1b1 + n1p

2
1

)

, (22d)

y
(2)
3 = −i

(

b1t + b2ρt

b0

)

− 4c

b0
(b1p2q0 + b2p1q0 + b1p1q1 + p2q1b0

+a2b1b0 + p1q2b0 + a1b2b0 +m2q1q0 +m1q2q0 + q1q2m0

+b1b2a0 + b1q2p0 + b2q1p0) −
2c

b0

(

a1b
2
1 +m1q

2
1

)

, (22e)

y
(3)
3 = i

(

m1t +m2ρt

m0

)

− 4c

m0

(p1p2b0 +m1m2n0 +m1n2m0 +m2n1m0

+m1p1q1 + p2q1m0 + b1p2p0 + b2p1p0 + p1q2m0 +m1p2q0

+m2p1q0 +m1q2p0 +m2q1p0) −
2c

m0

(

b1p
2
1 +m2

1n1

)

, (22f)

y
(4)
3 = −i

(

n1t + n2ρt

n0

)

− 4c

n0
(n1p2q0 + n2p1q0 + n1q2p0 + a1q2q0

+m2n1n0 + n2q1p0 + q1q2a0 + q1a2q0 +m1n2n0 + p1q2n0

+p2q1n0 + n1n2m0 + n1p1q1) −
2c

n0

(

a1q
2
1 + n2

1m1

)

, (22g)

y
(5)
3 = i

(

p1t + p2ρt

p0

)

− 4c

p0

(p1q2p0 + p2q1p0) −
2c

p0

(p1p2q0 +m2p1n0 +m1n1p1

+a1b1p1 + a2b1p0 +m1n2p0 +m2n1p0 + a1b2p0 + b1p2a0 +m1p2n0

+n2p1m0 + n1p2m0 + b2p1a0 + a1p2b0 + a2p1b0 +m1q2a0

+m2q1a0 + a1m2q0 + a1m1q1 + a2m1q0 + a2q1m0 + a1q2m0) , (22h)

y
(6)
3 = −i

(

q1t + q2ρt

q0

)

− 4c

q0
(p1q2q0 + p2q1q0) −

2c

p0
(q1q2p0 +m2q1n0 +m1n1q1

+a1b1q1 + b1q2a0 +m1q2n0 + n2q1m0 + n1q2m0 + b2q1a0 +m1n2q0

+a2b1q0 +m2n1q0 + a1b2q0 + b1n2p0 + a1q2b0 + a2q1b0

+b2n1p0 + n2p1b0 + b1n1p1 + n1p2b0 + b2p1n0 + b1p2n0) . (22i)

After a straightforward but lengthy algebra one can solve the above Eqs. (22) and deduce

the following three expressions:

a3

a0

=

(

(4cl2 − 2)m3

m0

− (4c(l2 − l1) − 2)p3

p0

+ y
(1)
3 − y

(3)
3

)

(4cl1 − 2)
, (23a)

b3
b0

=

(

(4cl2 − 2)n3

n0

− (4c(l2 − l1) − 2) q3

q0

+ y
(2)
3 − y

(4)
3

)

(4cl1 − 2)
, (23b)
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where

m3

m0
= −n3

n0
+

(

4cl1

(

p3

p0

+ q3

q0

)

− y
(3)
3

)

2c(l1 − l2)
+
a0b0(y

(2)
3 − y

(4)
3 )

2c(l1 − l2)2
. (23c)

The above expressions (23) indicate the arbitrariness of three functions (n3, p3 and q3) out

of the six functions a3, b3, m3, n3, p3 and q3. Thus system (2) with c0 = c2 = c, satisfies the

requirement of the presence of three arbitrary functions corresponding to the triple resonance

at j = 3, 3, 3.

5. Coefficients of φ1 :

In a similar manner, after a lengthy algebra carried out using Maple we have verified that

the resulting six algebraic equations at the coefficient of φ, which we do not present here for

want of space, reduce to five equations with six unknown functions. Thus we observe that

there exists one arbitrary function corresponding to the resonance j = 4, as required.

Our preceding analysis shows that for the choice c0 = c2 = c, there exist sufficient number

of arbitrary functions at the resonance values given by Eq. (14). One can proceed further

to obtain the higher order coefficient functions for all j > 4 in terms of the previous coef-

ficients without the introduction of any movable critical singular manifold into the Laurent

expansion for the case c0 = c2 = c. So we conclude that the system of three component

Gross-Pitaevskii (GP) type equation (2) passes the Painlevé test only for the two cases (i)

c2 = 0 and (ii) c0 = c2 = c and is expected to be integrable. Of course, this fact has

already been shown for the case c2 = 0 through the Painlevé analysis12 and the second case

c0 = c2 = c can be reduced to the (2×2) matrix NLS equation28 which is integrable through

the IST method33,34.

III. CONCLUSION

In this paper, we have studied the integrability property of the three component Gross-

Pitaevskii (GP) type equations arising as the evolution equations for spinor condensates by

applying the Painlevé singularity structure analysis. We have identified that only for the

following two choices of the effective one dimensional coupling constants, (i) c2 = 0 and (ii)

c0 = c2 = c, the system (2) passes the Painlevé test and possesses Laurent expansion with

14



full complement of arbitrary functions without the introduction of movable critical singular

manifolds. The integrability of the first choice (c2 = 0) has been discussed already12. For

the second choice (c0 = c2 = c) by applying the IST method the multi-bright solitons under

vanishing28,29 as well as non-vanishing boundary conditions31 and multi-dark solitons30 have

been obtained by reducing the system (2) to the known IST integrable (2 × 2) matrix

nonlinear Schrödinger equation33,34. Our present analysis also shows that the system (2)

passes the Painlevé test for integrability when c0 and c2 are equal and non-zero, in addition

to the choice c2 = 0. Apart from finding the choices for which the system (2) can be

integrable, one can also obtain information regarding the Hirota’s bilinearization for such

cases from the above analysis. This has already been exploited for the case c2 = 0 to obtain

multi-soliton solutions35,36. Work is now in progress to make a similar analysis for the case

c0 = c2 = c. Also it is of future interest to identify multicomponent integrable systems with

higher degree of hyperfine spin (F > 1), see for example the coupled evolution equations

given in37, for which also the above type of Painlevé singularity structure analysis can be

carried out.
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