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Abstract
In this paper, we have studied the integrability nature of a system of three coupled Gross-
Pitaevskii type nonlinear evolution equations arising in the context of spinor Bose-Einstein con-
densates by applying the Painlevé singularity structure analysis. We show that only for two sets
of parametric choices, corresponding to the known integrable cases, the system passes the Painlevé

test.
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I. INTRODUCTION

Integrable multicomponent nonlinear Schrodinger type equations have attracted con-
siderable current interest in soliton research. Much focus has been paid to identify new
integrable multicomponent type equations due to their many faceted applications in
different fields of science such as nonlinear optics, Bose-Einstein condensates, biophysics,

1-5

plasma physics, etc. Painlevé singularity structure analysis is one of the powerful

tools to isolate and identify integrable dynamical systems®~'0.

This procedure nicely
complements other integrability tools like inverse scattering transform (IST), infinite
number of involutive integrals of motion, symmetries, Backlund transformations, Hirota’s
bilinearization method, etc., to study the integrability properties of nonlinear systems!?2.
By applying the Painlevé test for integrability a class of integrable coupled nonlinear

Schrédinger (CNLS) type equations, which arise in different physical contexts, has been

identified!1—16.

In this connection, the system of CNLS equations in the presence of confining potential
becomes the coupled Gross-Pitaevskii (GP) equations, governing the dynamics of two

17-19

component Bose-Einstein condensates . This kind of multicomponent condensates can

also be created with the mixture of two different atomic species or by considering the

20—22

hyperfine spin of atoms in the presence of optical dipole traps . The latter entities are

the so-called spinor Bose-Einstein condensates (BECs).

Spinor Bose-Einstein condensates of ultra cold atoms can be created by liberating the
hyperfine states by means of optical trapping. Two component condensates have been
realized in 87 Rb (see Ref. 23) and also optically trapped three component condensates were

studied in Refs. 24-27. The evolution of the spinor condensate wave functions is governed



by the following set of three-coupled nonlinear Schrodinger type equations®,

i = eyt (e ea) (o + ol
+(co — )|t [*r + et 145, (1a)
i = o+ (co ) (e + Boa )i
seolyul’do -+ 2extibrnts (1)
o = o+ (ot ea)(aal
+(eo — o) |1 + ety 5, (1c)

where 11, ¢’s are the wave functions of the three spin components, 7" is the time and X
denotes the spatial co-ordinate. The effective one-dimensional coupling constants ¢q and
co representing the mean field and spin exchange interactions, respectively, are given by
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scattering lengths in the total hyperfine spin channel f, a, is the size of the transverse
ground state, m is the atomic mass and the constant C' = —((1/2) ~ 1.46, where ( is
the Reimann zeta-function. With the redefinition of T' = ht, X = \/%x and transforming
(1,10, %—1) — (1, vV2¢0,1_1), we can rewrite Eq. (@) in the standard form as

Wiy = —Vi1ge + (co+ ) (|sa]” + 200 i

+(co = ) [ [Py + 209007 105, (2a)
Wor = Yoz + (co+ ca) ([ + [ )t
+2¢o|10|* Yo + ¢t 111, (2b)
Wory = —P1e + (co+ ) (|01 ]* + 20h0] )y
+(co = eo) [Py + 2e99,95 (2¢)

We refer to Eq. (2) as the three-component GP type equations. The above system of
equations has been solved by the IST method and multicomponent bright and dark solitons

29-31 - Now it is of interest to isolate all

have been reported for specific choices of ¢y and ¢y
the possible integrable models arising from Eq. (2]) for arbitrary choices of ¢y and ¢y, which
can be tuned suitably through Feshbach resonance. For this purpose, we perform a Painlevé
singularity structure analysis to the above fairly generalized system. It is also expected that

besides BECs the analysis will have wider ramifications in nonlinear optics.



This paper is arranged in the following manner. In section II, the three steps involved in
the Painlevé singularity structure analysis, namely the leading order analysis of the Laurent
expansion in the neighbourhood of a non-characteristic singular manifold, determination of
the resonances (that is, the powers at which arbitrary functions can occur in the Laurent
expansion) and analysis of the Laurent expansion for sufficient number of arbitrary functions
are carried out. It is shown that only for the two specific parametric choices, namely (i)
c2 = 0 and (ii) ¢y = ¢ the system (2) passes the Painlevé integrability test. The results are

analyzed in the final section.

II. PAINLEVE SINGULARITY STRUCTURE ANALYSIS

In order to perform the Painlevé singularity structure analysis of Eq. (2]) the dependent

variables 111, 19 and their complex conjugates are denoted as

¢+1 = a, wil = b> w—l =m, ¢i1 =n, wo =D, wf)k =4q. (3)

Then Egs. (2) become

iy = —Qge + (co+ c2) (ab+ 2pq)a + (co — c2) mna + 2cynp?, (4a)
—iby = —bye + (co+ c2) (ab+ 2pq)b + (co — co) mnb + 2comq?, (4b)
imy = —Mgy + (co + c2) (mn + 2pg)m + (co — c2) abm + 2c3bp?, (4c)
—iny = —Ngy + (co + c2) (mn 4+ 2pg)n + (co — ¢2) abn + 2coaq?, (4d)
iDr = —Pae + 2c0p°q + (co + ¢2) (ab+ mn)p + 2coqam, (de)
—iq = —quo + 2000°p + (co + ¢2) (ab + mn)q + 2copbn. (4f)



The Painlevé singularity structure analysis (of an analytic polynomial differential equation)

is carried out by seeking a generalized Laurent expansion? for the dependent variables

Zaj 1) ag # 0, (5a)
b—¢ﬁ2b (z,t)¢ by # 0, (5b)
m = wzm] T, 1), mg # 0, (5¢)
n—¢52n]xt no # 0, (5d)
p=9¢° Zopj z,t)¢’,  po#0, (5e)
q= ¢“J_ZO gz, )¢, @ #0, (5f)

p=

in the neighbourhood of the non-characteristic singular manifold ¢(z,t) = 0, with nonvan-

ishing derivatives ¢, (z,t) # 0 and ¢;(x,t) # 0.

A. Leading order analysis

The leading order behaviour of the solution is analyzed by assuming the forms

a= a'0¢a> b~ bO¢6> m= m0¢’y> n= n0¢67 p= p0¢67 q~ q0¢w (6)

for the dependent variables, where «, (3, 7, d, € and w are integers to be determined. After
substituting these forms into Eq. (4) and by balancing the most dominant terms, at the

leading order one obtains

a=0=y=0=e=w=—1, (7)
with a set of relations
2 2
Py = CLomm 75 = bono, (8a)
co+c
07 = 70 - (\/ aoby + /m 0n0> (8b)

Note that there are six functions ag, by, Mg, no, po and gy (besides the arbitrary manifold
¢(z,t)) and the above three conditions mean that three of them are arbitrary at this stage

of the analysis.



B. Resonances

The second step in the singularity structure analysis is to determine the resonances (pow-

ers) at which arbitrary functions can enter into the Laurent series (B). To obtain the reso-

nance values, we substitute the following expressions into Eqs. (4)

a

m

p

e . L
Mo+t m

pod e+ pj¢j_17

b=Dbyp '+
n:n0¢_1_|_...
¢=q¢ "+

+ b,
-+ nj¢j_1,

+q0 "

(9)

and determine the possible values of j. By collecting the coefficients of ¢’~3, one can obtain

a system of six algebraic equations which can be casted as

D X' = o,

(10a)

where the superscript “I” denotes the transpose of the matrix and the matrices X and D

are given by

T1 a% T92MpAQo
2

1 bo Ql r1bong

robomog r1apMo Qo

D=

1 bono T2QpT0 Tln%

r1bopo T1apPo T1MoPo
+2C2Q0m0 +2C2a0q0
r1b0qo T1a0q0 r1Moqo
"‘202]90710

X= (%’ bj m; n; p; qj>=

(10Db)
riMmoay  2ria0Go  2T1Poao
+4027’L0p0
romoby  2r1gobo  2ripobo
"‘40277’10(]0
rmg  2rigomo  2ripomo
+4cob
200P0 7 (10(:)
Q2 2rigono  2ripono
—l—4cza0q0
T1MoPo Q3 2ryapmyg
T1Moqo 2r1bong Q3
+202p0b0




in which

L = CotC2, T2 =Co— Cy,

Q1 = —(j —1)(j — 2)¢3 + 2r1 (aoho + pogo) + 2 Mona,
Q2 = —(j = 1)(j — 2)¢7 + 2r1 (mono + pogo) + 2 aobo,
Qs = —(j —1)(j — 2)¢% + r1 (aohy + mgng) + 4copodo

and 0 is a (6 x 1) null matrix. By requiring the determinant of the matrix D to be zero the

following resonance equation is obtained.
.3/ . . 3/ - . -2 2 _
PG+ =3 —4) (4ex = 3j(co + e2) + j2(co + ¢2)) " = 0. (11)

From Eq. (11) the values of j are obtained as

j = _1707070737373747N17N17N27N27 (12&)
where
N, — 1 (3(00 + ¢2) + /92 + 2coea — 7C§> ’ (12D)
2 Co + C2
N, — 1 (3(00 + ¢3) — /9 + 2cocy — 7c§> ' (12¢)
2 Co + C2

All the resonances should be integers for the system (2) to satisfy the Painlevé property
so that movable algebraic branching type critical singular manifolds are avoided. Hence by

requiring N; and N, to be integers we find the following two cases:

4

C&SG(I)Z Cop = —(1+m)02, m:1,2,4,5,6,(m7£3)

Case(il) : ¢ = 0, m=0,3.
Then the integer resonances for both the cases can be written as
j=-1,0,0,0,3,3,3,4,m,m,3—m,3—m, m=0,1,2,... (13)

Note that in the above, j = —1 corresponds to the arbitrariness of the non-characteristic

manifold ¢(z,t).



Case (i):
In this case for the choices m =1 and m = 2, we get ¢y = ¢y = ¢ (say), where ¢ is a real

constant, all the resonances are positive integers (except for j = —1) and are given below.
j = -10,0,0,1,1,2,2,3,3,3,4. (14)

However for m > 4, the presence of more negative resonances indicates that there may
exist only particular solutions with lesser number of arbitrary functions in the Laurent ex-
pansion. For example, the choice m = 4 corresponding to ¢y = —2co, has the resonances
7 =-1,—-1,-1,0,0,0,3,3,3,4,4,4. This may be an indication that the Laurent expansion
(5) does not correspond to a general solution with required number of arbitrary functions,
but represents only a particular solution. We feel that these choices with m > 4 are the
candidates for further deeper analysis mathematically on Laurent expansions in the negative
powers. We do not pursue this problem further here. However, one can perform for example
a study on the modulation instability of system (2) for these choices of m(> 4) and look for
solitary wave type solutions which could be of specific physical interest. So, hereafter we
will consider only the case having resonances (14) with ¢y = ¢y = c.

Case (ii):

For the values m = 0 and m = 3, we require ¢o = 0 and the system (2) re-
duces to a set of three coupled nonlinear Schrodinger equations with resonances j =
—1,0,0,0,0,0,3,3,3,3,3,4, whose integrability and Painlevé analysis have already been

studied in detail in Ref. 12. So we will not consider this case any further.

C. Analysis for arbitrary functions

The next step in the Painlevé singularity structure analysis is to show that there exist
sufficient number of arbitrary functions in the Laurent expansion (5) which can arise at
the resonance values given by (14) without the introduction of movable critical singular

manifolds. To prove this, we expand the dependent variables in Eqs. (4) (upto the highest



resonance value in (14)) as below:

a = % +ay + azd + a3’ + as9’, (15a)

b = % + by + by + b3® + byd?, (15b)

m = ?0 + My + mad + mad® + mad?, (15c¢)

n = 30 + 01+ nad + nad? + g, (15d)

p = % + p1+ pad + p3d” + pad’, (15e)

q = ¢ © 1+ b+ 46 + 010, (15f)

where a;, bj, mj, nj, pj, ¢;, j = 0,1,...,4, are functions of (z,t) to be determined. Then

by collecting various powers of ¢, we explicitly show that there exist sufficient number of
arbitrary functions at each index of the resonance values given in (14). As noted above, the

resonance at j = —1 corresponds to the arbitrariness of the non-characteristic manifold ¢.

1. Coefficients of ¢~3 :
The set of algebraic equations resulting at this order is

— 2¢2 + 2c(agbo + 2poqo) + 2cnopy /a0 =

—2¢§ + 26(&0[)0 + QPQQQ) + 2cm0q3/b0 =

—2(;5520 + 2¢(mono + 2poqo) + QCbOpg/mo =

—2¢7 + 2¢(mono + 2pogo) + 2cangy/no =

—2(;5926 + 2¢epoqo + 2¢(agby + mong) + 2caggomo/po =

o o o o o o

—2@26 + 2¢epoqo + 2¢(agby + mong) + 2cbopono/qo = (16a)

Solving Eqs. (I6a)) again results in the already deduced relations (8),

Py = agma, g5 = bono, (16b)

¢§=c(@+m>2. (16¢)

This clearly shows that three out of the six functions (ag, by, Mg, 10, po and qp) are

arbitrary at the triple resonance j = 0,0, 0.



2. Coefficients of ¢—2 :

At the power ¢~2, we obtain the following set of algebraic equations expressed in the

matrix form,

D; X;7 = (—igy) Y17, (17a)
where
4ely 2cagby 0 2cmono 4cl, 4depoqo
2capby  4cly  2emong 0 4depoqo 4ely
0  2cagd 4cl 2emon, 4cl 4c
D, — 0Y0 2 070 1 Poq0 ’ (17b)
20@0()0 O QCm()’n,O 4012 40p0Q0 4011
2012 20@0[)0 2Cl2 2cm0n0 20([1 + ZQ) 40p0Q0

2capby  2cly  2cmgng  2cly depoqo 2¢(ly + 1o)

_ a1 b mi1 n
X; = (ohomomon ), (17¢)
Y, = (1 -1 1-11 —1>. (17d)

In the above matrix D; we have introduced the quantities [; and [5, which are defined as
Iy = agbo + pogo  and Iy = mgno + pogo- (17e)

In order to make the calculations simpler here and in the subsequent analysis, we use
the Kruskal ansatz” by assuming the singular manifold function ¢(z,t) in the form ¢(x,t) =
x + p(t), with p an arbitrary analytic function and the a;, b;, m;, n;, pj, g; are functions of

t only. One can solve the above six algebraic equations (17) given in the matrix form and

obtain
o = (a5 ) o
o= o (35 -
Z—; - % (% —l%). (18d)

From equations (18), we observe that the two functions (p; and ¢;) out of the six functions
ai, by, my, ny, p; and ¢ are arbitrary. Naturally, these are associated with the double

resonance at j =1, 1.

10



3. Coefficients of =1 :

At this order we obtain

D; X, =Y,",

where the matrix D; being defined in Eq. (I7h) and

— b
Xz_(a_z_zm@&q_z>7

ap bo mo mo pPo qo

1 2 3 4 5 6
Y2 = (yé) s s sty yé))-

Here the elements of Y5 are given by

tage  2¢ , o 9
— — — (pyno + aiby) ,
a0 a0 ( 1740 1 0)
4c
T (a1p1go + a1brag + nip1po + a1q1po + Prqaao)
0
ibo 2c
——% — = (g}my + bay)
by bo
4e
N (b1g1po + a1b1bg + miqiqo + bipigo + P1gabo)
0
m 2c
- = (mfno +P%bo)
mo mo

4c
- (m1gipo + minimo + mipiqo + bipipo + P1gimo) ,
0
1Ny 2c
-t = (”?mo + Q%ao)
Un o
4c
- (a1q190 + mining + nagipo + p1gino + Mapido)
0
1Po 2c
p—t o (2p1q1p0 + arqimo + manipo + arbipo + pPigo)
0 0

c
_p_ (a1p1bo + biprag + nipimo + a1miqgo + miqrag + miping)
0

o @ (2p1¢190 + nagimo + minigo + arbigo + ¢ po)

2c
“n (b1p1ng + binapo + a1qibo + miqing + bigrag + nipiby) .
0

(19a)

(19b)

(19¢)

(20a)

(20b)

(20¢)

(20d)

(20e)

(20f)

Proceeding further as in the case of j = 1 and by incorporating the results of j = 0 and

7 =1, we express the four functions as, by, my and ny in terms of the remaining two unknown

11



functions py and ¢o:

Qg 1 yél) — yé?’) e my (l I )pz (21 )
== = — (I, — )= a
Qg ll 4c 2 myo 2 ! Po ’
by 1 [y — oy N2 2
= = = lo — — (Il —1])= 21b
b I < 1 + l2 - (Lo 1)q0 ) (21b)
where
my  my L(pe @ w — s abo(ys? — i —utY + ")
— =22 (224 + , (21c)
mo  ng 2 \po Qo 2cly 4 clyly
ne b (@) |, aobo(3ys” + 8 — 2u8) + 2poq0(25” — 45Y)
—=——(=)+ : (21d)
o l2 qo 12 Clllg

with [y and [y being defined in Eq. (17e) and yéj)’s, j =1,2,...,6, are given in Eqs. (20).

From the above equations (21), we can easily see that two (py and g2) out of the six functions

as, by, Mo, Ny, P and go are arbitrary, as required by the existence of arbitrary functions at

the double resonance j = 2, 2.

4. Zeroth order in ¢ :

Collecting now the coefficients at the zeroth order, that is ¢°, we obtain

where the matrix D3 = D, — 21,

X3

Ds X537 = Y57, (22a)
Iis a (6 x 6) identity matrix and
(Bpmaoa) (22
(yél) OO ORI y§6>) _ (22¢)

12



Here

fanta 4c
gV = (”aizpt) -— (a9p1qo + arazby + asbiag + paqiag
0 0

+naop1po + nipapo + ai1Gapo + aipaqo + arbaag + arpiqa

2c
+a2¢1P0 + P12 + pipano) = — (aiby +nipf) (22d)
0
(b +0b 4c
yéz) = —3 <1t672pt) . (b1p2go + bap1go + biprg1 + P2qibo
0 0
+azbi1by + p1gabo + ai1baby + maqiqo + Mmi1qaqo + q1g2mo
2c
+b1baag + bigapo + baqipo) — " (aﬂﬁ + le%) ) (22e)
0

3) . [ M+ mapy
Yys ' =\ ————

4c
) — — (p1p2bo + mimang + minamg + manymyg
mo m

0
+mupigr + paqimo + bipapo + bapipo + P1gamo + MiP2qo

2c
+map1go + M1gapo + MaqiPo) — o (blp% + mfm) ; (22f)
0
. N + nap 4c
y§4) = <u) — — (n1p2go + n2p1go + n1g2po + a1G2qo
) )
+maning + N2q1Po + 19200 + q10290 + M1N2No + P1G2no
2c
+p2qino + ningmo + nipiqi) — . (arqf +nimi), (22g)
0

[ P1t + D2p 4e 2c

®) — ? <¥) - (P1Q2p0 +P2Q1p0) -
Po Po Po

+a,b1p1 + a2bipo + minepy + manipy + ai1bapy + bipaag + mipang

(p1p2go + maping + manip

+nap1mg + nipamo + baprag 4+ aip2bo 4 aspiby + migaay

+maqiag + armaqo + a1rmiqy + azmiqo + axqimo + ai1gamg) (22h)

gt +q 4c 2c
yd) = —i (M) — — (P1®q + P21q0) — — (q1G2p0 + M2qino + Min1qy
qo qo Po
+a1biqr + bigaag + migang + naqimg + n1gamo + baqrag + minaqo
+azbi1qo + maniqo + a1baqo + binapy + a1g2by + azqiby
+banypo + nap1by + binapr + nipa2bo + baping + bipang) - (22i)
After a straightforward but lengthy algebra one can solve the above Egs. (22) and deduce

the following three expressions:

as <(4Cl2 - 2)2_3 — (de(ly = 1h) — 2)2—3 + yél) — y§3)> ’3

a (4cly — 2) ) (23a)
b3 ((4012 - 2)2—3 — (4e(ly = ) — 2)’;—2 + y§2) — y§4)) -
b (dcl, — 2) ) (23b)



where

2 q (3)
ms_ s <4Cl1 <1’_2 + ‘1_2> L ) aobo(ys? — y3")

mg no 2¢(ly — ) 2c(ly = 1p)?

(23c)

The above expressions (23) indicate the arbitrariness of three functions (ns, ps and ¢3) out
of the six functions as, b3, mg, ng, ps and gz. Thus system (2) with ¢y = ¢3 = ¢, satisfies the
requirement of the presence of three arbitrary functions corresponding to the triple resonance

at j =3,3,3.

5. Coefficients of ¢* :

In a similar manner, after a lengthy algebra carried out using Maple we have verified that
the resulting six algebraic equations at the coefficient of ¢, which we do not present here for
want of space, reduce to five equations with six unknown functions. Thus we observe that
there exists one arbitrary function corresponding to the resonance j = 4, as required.

Our preceding analysis shows that for the choice ¢y = co = ¢, there exist sufficient number
of arbitrary functions at the resonance values given by Eq. (14). One can proceed further
to obtain the higher order coefficient functions for all 7 > 4 in terms of the previous coef-
ficients without the introduction of any movable critical singular manifold into the Laurent
expansion for the case ¢g = ¢ = ¢. So we conclude that the system of three component
Gross-Pitaevskii (GP) type equation (2) passes the Painlevé test only for the two cases (i)
ca = 0 and (ii) ¢ = co = ¢ and is expected to be integrable. Of course, this fact has
already been shown for the case ¢, = 0 through the Painlevé analysis'? and the second case
co = ¢y = ¢ can be reduced to the (2 x 2) matrix NLS equation® which is integrable through

the IST method?3:34.

III. CONCLUSION

In this paper, we have studied the integrability property of the three component Gross-
Pitaevskii (GP) type equations arising as the evolution equations for spinor condensates by
applying the Painlevé singularity structure analysis. We have identified that only for the
following two choices of the effective one dimensional coupling constants, (i) co = 0 and (ii)

cop = Co = ¢, the system (2) passes the Painlevé test and possesses Laurent expansion with

14



full complement of arbitrary functions without the introduction of movable critical singular
manifolds. The integrability of the first choice (c; = 0) has been discussed already'?. For
the second choice (¢ = ¢ = ¢) by applying the IST method the multi-bright solitons under

28,29

vanishing?®2?Y as well as non-vanishing boundary conditions®** and multi-dark solitons®® have

been obtained by reducing the system (2) to the known IST integrable (2 X 2) matrix

3331 Our present analysis also shows that the system (2)

nonlinear Schrédinger equation
passes the Painlevé test for integrability when ¢y and ¢, are equal and non-zero, in addition
to the choice ¢; = 0. Apart from finding the choices for which the system (2) can be
integrable, one can also obtain information regarding the Hirota’s bilinearization for such
cases from the above analysis. This has already been exploited for the case co = 0 to obtain
multi-soliton solutions®>3¢. Work is now in progress to make a similar analysis for the case
co = co = c¢. Also it is of future interest to identify multicomponent integrable systems with
higher degree of hyperfine spin (F' > 1), see for example the coupled evolution equations

given in®", for which also the above type of Painlevé singularity structure analysis can be

carried out.
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