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Bifurcation and chaos in spin-valve pillars in a periodic applied magnetic field
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We study the bifurcation and chaos scenario of the macro-magnetization vector in a homogeneous
nanoscale-ferromagnetic thin film of the type used in spin-valve pillars. The underlying dynamics
is described by a generalized Landau-Lifshitz-Gilbert (LLG) equation. The LLG equation has
an especially appealing form under a complex stereographic projection, wherein the qualitative
equivalence of an applied field and a spin-current induced torque is transparent. Recently chaotic
behavior of such a spin vector has been identified by Zhang and Li using a spin polarized current
passing through the pillar of constant polarization direction and periodically varying magnitude,
owing to the spin-transfer torque effect. In this paper we show that the same dynamical behavior
can be achieved using a periodically varying applied magnetic field, in the presence of a constant
DC magnetic field and constant spin current, which is technically much more feasible, and demon-
strate numerically the chaotic dynamics in the system for an infinitely thin film. Further, it is
noted that in the presence of a nonzero crystal anisotropy field chaotic dynamics occurs at much
lower magnitudes of the spin-current and DC applied field.

Bolstered by the importance of Giant Magneto
Resistance (GMR), a sequence of experimental
and theoretical developments in the last few years
on current induced switching of magnetization in
nanoscale ferromagnets has thrown open several
prospects in next generation magnetic memory
devices. The direct role of spin polarized current,
as against the traditional applied field, in control-
ling spin dynamics has brought in the possibility
of new types of current-controlled memory de-
vices and microwave resonators. The system un-
der consideration is primarily a nanoscale spin-
valve pillar structure, with one free ferromagnetic
layer and another pinned layer separated by a non-
ferromagnetic conducting layer. The behavior of
the dynamical quantity of interest, the magneti-
zation field in the free layer, is well modeled by an
extended Landau-Lifshitz equation with Gilbert
damping, which is a fascinating nonlinear dynam-
ical system. The free layer is usually assumed
to be of single magnetic domain. Owing to the
highly nonlinear nature of the LLG equation it is
imperative to study the chaotic dynamical regime
of the magnetization field. Indeed, several recent
experiments have exclusively focused on chaos as-
pect of the system. In this article we have shown
that a small applied periodically varying (AC)
magnetic field, in the presence of a constant spin-
current and a steady applied magnetic field, can
induce parametric regimes displaying a broad va-
riety of dynamics and period doubling route to
chaos. A numerical study of the effects of a non-
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zero anisotropy field reveals chaotic dynamics at
much lower magnitudes of the spin-current and
applied DC field. This could be an important
factor to consider in microwave resonator appli-
cations of spin-valve pillars.

I. INTRODUCTION

Following the success of GMR, the next major devel-
opment in classical computer technology is expected to
be through MRAMs (1; 2; 3). Apart from a manifold
reduction in power consumption, being inherently non-
volatile in nature, they also bring in the prospect of
computers that need not be rebooted. Understandably,
fabrication of MRAMs has been a major thrust area of
research in the last two decades. Typically, the mem-
ory unit consists of two nanoscale magnetic films sepa-
rated by a spacer conductor/semiconductor medium and
works on the principle of GMR. The imminent prospects
in the recording media industry has prompted a breadth
of development in the field. Besides the eminent role
as a memory unit, the possibility of a single MRAM as
a logical unit has also been proposed (4; 5). One no-
table technological hiccup in fabricating large MRAM
grids is the extent to which the applied magnetic field
can be localized. This imposes limitations on the ef-
ficiency with which an individual unit can be manipu-
lated. The applied field required for the purpose is in
most cases the Oersted field generated through electrical
currents. A significant step forward, in bypassing the lim-
itation on field localization, occurred when Slonczewski
and Berger independently envisaged a more direct role for
(spin polarized) current on magnetization(6; 7). They
predicted that the angular momentum acquired by the
spin polarized current can interact with the magnetiza-
tion vector, and thus a suitable spin polarized current
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can possibly flip its direction. This phenomenon has
been well established in a series of experiments in the
last decade and referred to as the spin-torque effect in
the literature(8; 9; 10; 11; 12; 13; 14; 15). Interest-
ingly, the effect has a simple semiclassical description in
the form of an extended Landau-Lifshitz equation with
Gilbert damping (6; 7; 16). Several proposals have ap-
peared in the last few years suggesting an increased role
of the spin current and the associated torque in the even-
tually expected version of the MRAM.

One important assumption often made in most of these
studies is that the magnetization in the film is homoge-
neous, or at least enough well defined that one can con-
sider the film to be a mono-domain layer. This homo-
geneity assumption effectively nulls the Heisenberg in-
teraction between neighboring spins, and allows one to
treat the system as a single spin unit. As the size of
the magnetic film is increased, this approximation is ex-
pected to fail. Indeed, chaotic behavior has been ob-
served due to spin field inhomogeneity at lateral sizes of
order 60 − 130 nm (17; 18). Besides, it is well realized
experimentally that spin-transfer can induce microwave
oscillations(17; 19; 20; 21). The possible role of such
current controlled microwave oscillators in the nanoscale
has been well realized (17). For higher power levels that
are practically desired it is natural to look at a series of
such coupled spin-valve oscillators. Studies on synchro-
nization of networks of such coupled nano-spin trans-
fer oscillators, each one modeled on the extended LLG
equation have been carried out both experimentally and
numerically in an effort to enhance the emitted power
(22; 23; 24; 25).

Since the extended LLG equation is highly nonlinear in
nature, a detailed study of the underlying nonlinear dy-
namics in spin-valve structures becomes inevitable. The
stability diagram based on Melnikov theory in the space
of the external field along the direction of anisotropy and
the strength of spin torque due to a DC current was ob-
tained in detail by Bertotti et. al., in (26). Following
this, it was shown by Z. Li, Y. C. Li and S. Zhang that
an applied alternating current can induce three broad
types of dynamics, vis−a−vis Chaos, Multiply periodic
and Periodic (27). Qualitatively similar features are also
noted when the effects of nearest neighbor interactions
are included in a long one dimensional ferromagnet with
a spin torque term. Indeed the ferromagnetic chain ex-
hibits both periodic and chaotic behavior in the presence
of an applied AC spin current. (28). The multiply pe-
riodic behavior refers to the case where, with change in
parameter, the system moves from periodic to multiply
periodic behavior but not leading to chaos. It must be
mentioned at this point that the last two types ‘multiply
periodic’ and ‘periodic’ are also referred to in the litera-
ture as ‘modification’ and ‘synchronization’(27; 29). The
usage here is deliberate as the periods do not have a di-
rect relation to the period of the applied magnetic field.
It was also shown that in the space of the applied exter-
nal field and the strength of the spin current the system

exhibits chaotic behavior for a range of values within the
boundary predicted by Melnikov theory (29).

The possibility of chaotic oscillations in monodomain
single nanoscale spin-valve requires further in depth
study of underlying bifurcation and chaos scenarios, in-
cluding the detailed phase diagrams, at least for two rea-
sons: (i) Chaotic oscillations in spin transfer oscillators
may be unfavorable from a practical/technological point
of view and such oscillations need to be suppressed by
minimal intervention using one of the several control-
ling techniques developed in the field of chaotic dynam-
ics (30; 31), where already such a study has been made
(32). (ii) The previously mentioned possibility of syn-
chronization of coupled spin-valve oscillators raises com-
plex problems which are new in spintronics and is related
to the topic of chaos synchronization in dynamical sys-
tems (30; 31; 33), similar to synchronization of chaoti-
cally evolving networks of Josephson junctions, laser sys-
tems and nonlinear oscillators. As synchronization of
chaotic oscillators is considered as a potential technique
for secure communication including cryptography, there
exists possible applications of networks of nanoscale spin-
valve structures along these lines, although this may be
complicated due to the presence of several parameters in
the system. Consequently the study of the full nonlinear
dynamics of spin transfer oscillators will be of consider-
able significance. It may be noted that chaos in magnetic
systems, such as yttrium garnet, driven by external fields
have been extensively studied in the past (34; 35; 36).
Numerical experiments on a model of thin magnetic film
wherein spin wave excitations induced by spin-current
lead to chaos have also been studied in (37). However,
chaos in nano-spin valve geometry is reasonably new with
potential new applications as discussed above.

In this paper, we study the chaotic dynamics of the
magnetization vector in a single domain current driven
spin-valve pillar, induced by a periodically varying (AC)
applied magnetic field in the presence of a constant spin
current and steady (DC) magnetic field, using the ex-
tended LLG equation as the model for the system. Mak-
ing use of a complex stereographic variable, we observe
that the spin current induced torque is effectively equiv-
alent to an applied magnetic field. Following this ob-
servation, we show numerically that a periodically alter-
nating field can lead to chaotic behavior of the magne-
tization vector, which is similar to that of an alternat-
ing spin-current induced torque, studied in Li, Li, and
Zhang (27). It will be shown that the order of magni-
tude of the applied alternating field required for chaotic
motion is substantially lower, within practically achiev-
able limits, compared to the alternating current magni-
tudes shown in (27; 29). This is expected to be helpful
in applications such as resonators, as an AC magnetic
field is much more feasible practically than a AC spin-
polarized current (although, when it comes to DC fields,
the current induced DC Oersted fields are more cumber-
some to produce in spin valve geometries compared to
DC spin currents). We study the dynamics in an infi-



3

nite thin film, both with a vanishing and non-vanishing
anisotropy field. In the setup we shall consider the mon-
odomain spin layer influenced by a DC spin-current, and
both a DC and AC applied magnetic field. Although
the applied magnetic field is qualitatively equivalent to
a suitable spin-current(38), we employ both a DC spin-
current and applied magnetic field as the magnitudes at
which chaos is observed is quite high, and hence difficult
to achieve exclusively using either of the two. It may be
noted that the chaotic dynamics studied here is induced
by an AC applied magnetic field, and is phenomenologi-
cally different from the spin field inhomogeneity induced
chaotic behavior that is observed in (17). Periodic dy-
namics is possible even in the absence of an alternating
current, or field, as has been noticed in ferromagnetic
films induced by a spin-current (19). Futher it has been
reported therein that the current magnitudes at which
periodic behavior is seen share a linear relation of nega-
tive slope with the oscillation frequencies. Our numerical
results based on the extended LLG model are shown to
be in agrement with these observations. Interestingly,
in the presence of a non-zero in plane easy-axis crystal
anisotropy field (taken along the z direction), the chaotic
dynamical regime is observed at much lower magnitudes
of the DC applied field and spin-current. This could be
an aspect to factor in while designing spin-valve based
microwave resonators.

The paper is organized as follows. In Section 2, we
detail the various interactions, including spin-transfer
torque, that make up the extended LLG equation.
Further, we introduce a complex stereographic vari-
able equivalent to the macro-magnetization vector, and
rewrite the LLG equation in this variable. As will be
shown, this elucidates the role of the spin transfer torque
as equivalent to an applied magnetic field. In Section
3, we present our numerical results which demonstrate
chaotic dynamics of the magnetization vector in the pres-
ence of a periodic applied field. Here we shall consider
two cases, namely response in the presence and absence of
a crystal anisotropy field. As will be noticed, the chaotic
regimes in the two cases are significantly different. In
Section 4 we conclude with a discussion on our results.

II. THE EXTENDED LANDAU-LIFSHITZ EQUATION

AND COMPLEX REPRESENTATION

A typical spin-valve pillar used in most experiments is
schematically shown in FIG 1. A current passing through
this ferromagnet acquires a spin polarization in the ẑ di-
rection. The thickness of the spacer conductor medium
should be less than the spin diffusion length of the polar-
ized current. The polarized current then passing through
the free layer causes a change in the magnetization vec-
tor Ŝ, an effective torque referred to as the spin transfer
torque. Interestingly, it has been realized that semiclas-
sically the phenomenon can be described by an extension

j

Pinned layer Conductor Thin film Conductor

SS p

x

z

y

~100 nm 2−10 nm

FIG. 1 A schematic figure of a spin-valve pillar. The cross
section of the free layer is roughly 5000 nm2. Ŝ is the magne-
tization vector in the free layer, and is the dynamical quantity
of interest. ŜP is the direction of polarization of the spin cur-
rent.

to the LLG equation, (6; 7)

dŜ

dt
= −γŜ× ~Heff + λŜ ×

dŜ

dt
− γ aŜ× (Ŝ × Ŝp), (1)

Here, Ŝ = {S1, S2, S3} is the unit vector along the di-
rection of the magnetization vector in the ferromagnetic
film, which is the dynamical variable of interest, γ the gy-

romagnetic ratio, and λ the dissipation coefficient. ~Heff

in Eq. (1) is the effective field due to exchange inter-
action, anisotropy, demagnetization and an applied field
(see (38) for details):

~Heff = DS0∇
2Ŝ + κ(Ŝ · ê‖)ê‖ + ~Hdemag + ~Bapplied, (2)

ê‖ being the unit vector along the direction of the
anisotropy axis. The demagnetization field is obtained
as a solution of the differential equation

∇ · ~Hdemag = −4πS0∇ · Ŝ, (3)

and ~Bapplied is the applied magnetic field on the sample.
The last term in Eq. (1) is the additional term describing
the spin-transfer torque, and the parameter ‘a’ depends
linearly on the current density j. Ŝp is the direction of
magnetization of the polarizer, i.e., the polarization of
the spin current.

In this study we shall assume the magnetization to be
homogeneous. This effectively nulls the exchange inter-
action, while Eq. (3) can be immediately solved to give
the demagnetization field as

~Hdemagnetization = −4πS0(N1S1x̂ + N2S2ŷ + N3S3ẑ),
(4)

where Ni, i = 1, 2, 3 are conveniently chosen such that
N1 + N2 + N3 = 1 (after suitable rescaling of the magni-
tude of the spin). For a spherical sample N1 = N2 = N3,
and the demagnetization term is effectively null in Eq.
(1). In the next sections we study chaotic dynamics
shown by the system when an alternating magnetic field
is applied.

Rewriting Eq. (1) using the complex stereographic
variable (39; 40)

Ω ≡
S1 + iS2

1 + S3

, (5)
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provides a more comprehensible picture of the role of spin
transfer torque. For the spin valve system, the direction
of polarization of the spin-polarized current Ŝp remains
a constant, and lies in the plane of the film. Without loss
of generality, we call this the direction ẑ in the internal
spin space, i.e., Ŝp = ẑ. As mentioned in Sec. 2, we disre-
gard the exchange term. We choose the applied external

field also in the ẑ direction, i.e., ~Bapplied = {0, 0, ha3}.
Defining

ê‖ = {sin θ‖ cosφ‖, sin θ‖ sinφ‖, cos θ‖} (6)

and upon using Eq. (5) in Eq. (1), we get

(1 − iλ)Ω̇ = −γ(a − iha3)Ω + iS‖κγ
[

cos θ‖Ω −
1

2
sin θ‖(e

iφ‖ − Ω2e−iφ‖)
]

−
iγ4π S0

(1 + |Ω|2)

[

N3(1 − |Ω|2)Ω

−
N1

2
(1 − Ω2 − |Ω|2)Ω −

N2

2
(1 + Ω2 − |Ω|2)Ω −

(N1 − N2)

2
Ω̄

]

, (7)

where S‖ = Ŝ · ê‖. Using Eq. (5) and Eq. (6), S‖, and
thus Eq. (7), can be written entirely in terms of Ω. For
further details of derivation of Eq. (7) see Ref. (38).

It is interesting to note that in this representation the
spin-transfer torque, proportional to the parameter a, ap-
pears only in the first term in the right hand side of Eq.
(7) as an addition to the applied magnetic field ha3 but
with a prefactor i. Thus the spin torque term can be
considered as an effective applied magnetic field (38). It
was further explicitly shown in (38), in the absence of the
crystal anisotropy field, that the switching time due to
the spin-torque will be shorter by a factor λ, compared
to that of magnetic field induced switching. Further, the
spin-torque produced the dual effect of precession and
dissipation even in the presence of the external applied
field. The nature of switching of magnetization for other
types of materials can be investigated by analyzing Eq.
(7), and for typical materials this has been carried out in
(38).

III. CHAOTIC DYNAMICS

Magnetization reversal in a spin mono-domain layer in
the presence of both a steady applied magnetic field and a
steady polarized current corresponds to a rather compli-
cated phase diagram, as revealed in (26). Using Melnikov
theory, it was also shown therein that the magnetization
vector also has limit cycles for a range of values of the
parameters, with frequency in the microwave range. The
dynamical quantity in question, the magnetization vec-
tor Ŝ, is two dimensional, owing to its constant (unit)
magnitude. Hence, chaotic behavior is ruled out. How-
ever, making the applied field, or current, time depen-
dent is one way of increasing the effective dimensionality
of the system to three and hence introduce a possibility
of chaotic dynamics. Following (26) it has been shown in
(27) that a small alternating current can produce a vari-
ety of dynamics, namely, Multiply periodic, Periodic and
Chaos. It is also noticed that, along with a steady spin

current of order 250 Oe and a steady applied magnetic
field of the same order, inclusion of a small alternating

spin polarized current leads to chaotic dynamics (29).
The dynamical similarity of the applied field and the

spin-torque was noted in Section II. In this section we
show numerically that an applied AC field can also pro-
duce diverse dynamical scenarios and point out the ad-
vantages in using a periodically varying applied magnetic
field instead of an alternating current. i.e., in Eq. (1) (or
equivalently Eq. (7)) we take

~Bapplied = {0, 0, ha3 + hac cosωt}. (8)

It will be noted that chaotic dynamics is possible at much
lower DC applied field strengths and spin current in the
presence of an anisotropy field.

For the film geometry, the film is taken to be in the
y− z plane, and the demagnetization field perpendicular
to the film, the x̂ direction, i.e.,

Hdemagnetization = −4πS0S1x̂. (9)

The saturation magnetization is taken to be that of
permalloy, so that 4πS0 = 8400Oe. Two different scenar-
ios, one without anisotropy, and another with an in-plane
easy axis anisotropy of strength κ = 45 Oe along the z
direction, are investigated. All the numerical results that
follow have been obtained by directly simulating Eq. (1)

for the vector Ŝ. The same results were confirmed using
Eq. (7) as well.

A. Regions of Chaos in the presence of an applied

alternating field

As a first step we show below (FIG 2) the regions
of chaos, or regions of positive Lyapunov exponent, in
the space of the DC magnetic field and the DC current
for an alternating applied magnetic field of magnitude
10 Oe and frequency 15 ns−1, first without an anisotropy
field, κ = 0, (FIG 2a), and then with anisotropy field,
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FIG. 2 Regions of chaos in the a − ha3 space, for an applied
alternating magnetic field of amplitude hac = 10 Oe and fre-
quency ω = 15 ns−1, a) without anisotropy field, κ = 0,
and b) with anisotropy field of strength κ = 45 Oe along the
z direction. The dark regions indicate values for which the
dynamics is chaotic, i.e, regions where the largest Lyapunov
exponent is positive. In a) chaos is rarely noticed for lower val-
ues of ha3. The other parameters are N1 = 1, N2 = N3 = 0,
4πS0 = 8400Oe. The points are plotted at intervals of 5 Oe

along both axes, and hence the figure offers only limited res-
olution in the dark(chaotic) regions.

κ = 45 Oe, (FIG 2b). The regions are obtained by di-
rect numerical simulation using the model in Eq. (1), or
equivalently Eq. (7). The dark regions in FIG 2 represent
parameter values when the largest Lyapunov exponent is
positive.

1. Case a: No anisotropy (κ = 0)

The similarity of FIG 2a with that of regions of chaos
for an alternating spin current must be noted (see FIG 1
in (29)). The figure is a demonstration of the qualitative
equivalence of the applied field and current induced spin-
torque in describing the gross dynamical scenario. From
FIG 2a, chaotic behavior of spins is observed for spin-
current magnitudes in the range of a = 200−300 Oe, and
DC magnetic fields above 100 Oe. These values of ‘a’ cor-
respond to spin-current magnitudes of over 1012A/cm2,
which is at the higher end of the presently achievable
levels.

In FIG 3 we present the bifurcation diagram showing

the period doubling route to chaos as the DC current
is varied. These diagrams are obtained by plotting the
minimum values for one of the components of the spin,
in this case S1, over several periods of time for each value
of a in the given range. From the data in FIG 3a, the
first five period doubling bifurcations are seen to occur
at an = 268.4845, 267.7723, 267.6055, 267.5685, 267.5605.
Consequently, the ratio δn = (an − an−1)/(an−1 − an+1)
takes values 4.2698, 4.5081, 4.625, clearly approaching the
Feigenbaum constant. The Lyapunov spectrum for this
range of ‘a′ is shown as inset. On comparison, we notice
the largest Lyapunov exponent is positive for values of
a where the dynamics is chaotic in FIG 3a. A similar
check has been made for FIG 3b, which again shows the
period doubling route in the presence of an anisotropy
field. Period doubling route to chaos is also noticed as
the strength of the steady applied magnetic field is var-
ied(keeping the current and frequency fixed), and when
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-12
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FIG. 3 Period doubling route to chaos as a is varied. The
figure is a plot of the minimum values of S1 over several pe-
riods for the given parameter values a) without anisotropy,
and b) with anisotropy of κ = 45 Oe along the z direction.
The applied DC field ha3 = 200 Oe. All the other parameters
remain the same as in FIG 2. The corresponding Lyapunov
spectrum is shown as an inset.
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the frequency of the applied field is varied (keeping cur-
rent and magnetic field strength steady), respectively.

(a)
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600550500450400350300250

45

40

35

30

25

20

15

10

5

(b)

a (Oe)

ω (ns
−1)

600550500450400350300250

45

40

35

30

25

20

15

10

5

FIG. 4 Regions of chaos(red dots) and periodicity (blue
wings) in the parameter space of DC current ‘a′ and frequency
‘ω′, a) without anisotropy and b) with anisotropy (κ = 45 Oe)
along the z direction. The left over regions show multiply pe-

riodic behavior. All other parameters remain the same as in
FIG 3. The power spectrum at the two dark points in (a)
(255, 25) and (280, 25) are shown in FIG 5 (a) and (b), re-
spectively.

2. Case b: Non-zero anisotropy(κ = 45 Oe)

Contrary to the observation in FIG 2a, in the pres-
ence of a non-zero easy axis anisotropy, chaos is noted
at much lower values of the spin current and DC applied
field (FIG 2b). FIGs 3b shows period doubling bifur-
cation scenario in the presence of anisotropy. In FIG
3b the current magnitude is varied, keeping the mag-
netic field strength and frequency of the AC component
fixed. Similar period doubling route to chaos is also no-
ticed as a) the magnitude of the steady magnetic field is
varied (keeping current and frequency fixed), and when
the frequency of the AC component of the applied mag-

netic field is changed (keeping the current and magnetic
field strengths constant). In either case, an easy axis
anisotropy of magnitude κ = 45 Oe is chosen along the z
direction, which is also the polarization direction of the
spin current. The figures corresponding to these results
are, however, not presented in here.

B. Periodic, Multiply periodic and Chaotic dynamics

In the presence of an AC spin-current induced torque,
it is known that as the frequency of the spin-current is
varied the system exhibits three distinct phases wherein
the dynamics is predominantly either - Periodic, Multiply

periodic or Chaotic(27). Herein we show that an applied
AC magnetic field of magnitude 10 Oe, instead of a AC
current, results in the three dynamical phases as the fre-
quency of the applied field is varied for a constant value
of the applied DC field.

FIG 4a shows regions of periodic (blue wings), and
chaotic (red stem) dynamics in the parameter space of
the spin current magnitude and the frequency of the ap-
plied magnetic field. Multiply periodic behavior is seen in
the unshaded regions. Here again the similarity with that
of FIG 1 in (27) may be noted. This further illustrates the
qualitative similarity of the spin current induced torque
with that of the applied field. Our numerical results fur-
ther show a number of wing like bands in the ω−a space
where periodic behavior is noticed. This is clearly ab-
sent with a periodic spin-current as seen in (27). The
power spectrum corresponding to two specific points, one
chaotic and the other periodic (indicated with dark dots
in FIG 4a), are shown in FIG 5. Periodic behavior is no-
ticed even in the limit ω → 0 for certain values of a, while
multiply periodic behavior is noticed for the other inter-
mediate values. The power spectrum corresponding to

a = 280 Oe

2001000

8
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-8
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g(
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ow

er
)

250200150100500

8
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FIG. 5 The power spectrum distribution corresponding to pe-
riodic, a = 280 Oe (inset), and chaotic, a = 255 Oe, scenarios
in FIG 4a. The first peak in the inset is seen at ω = 25 ns−1.
The anisotropy is taken zero, and all other parameters are the
same as in FIG 4a.
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these current values are shown in FIG. 6. Such a behav-
ior, induced by a spin-current of constant magnitude, has
been noticed in (19). Indeed, the current magnitudes, a,
where periodic behavior is seen to vary linearly (with a
negative slope) with the corresponding periods (see FIG.
6 inset), in further agreement with (19).

However, in the presence of the anisotropy field chaotic
regime is much more pronounced and wider, as seen in
FIG 4b. For a much lower value of the DC applied field
(ha3 = 20 Oe) there appear wide bands in the ω−a space
where periodic behavior is exclusively noted at low fre-
quencies (FIG 7). As the frequency is increased multiple

periodicity islands appear in between periodic bands, and
for even higher frequencies the dynamics is largely one of
multiply periodic type. No chaotic dynamics is noted
in the parameter range chosen. These thick periodicity
bands present better regions to choose in applications
such as the microwave resonator discussed earlier, while
chaos synchronization studies can be carried out in the
chaos regimes.

IV. DISCUSSION AND CONCLUSION

Using the complex stereographic variable to represent
the spin vector, and rewriting the modified Landau-
Lifshitz-Gilbert equation, we have shown that the spin-
current induced torque is qualitatively equivalent to an
applied field. Using this equivalence we have shown that
an applied AC magnetic field in the presence of con-
stant spin current and DC applied magnetic field can
lead to varied dynamical scenarios including chaos. We
have explicitly demonstrated numerically the chaotic be-
havior for a range of values of the parameters. The sys-
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FIG. 6 The power spectrum distribution in the limit ω = 0,
at certain values of a (indicated on each spectrum) where
periodic behavior is noted. Multiply periodic behavior is no-
ticed for other values of a in the range shown. The current
magnitudes vary linearly and decrease with the frequency of
oscillation (inset). hac = 0, while all other parameters are the
same as in FIG. 3.

a (Oe)

ω (GHz)

40035030025020015010050

45

40

35

30

25

20

15

10

5

FIG. 7 Regions of multiply periodic dynamics for the system
with the DC applied field fixed at ha3 = 20 Oe, and non-zero
anisotropy. All the other parameters remain the same as in
FIG 4b. Synchronization is noted in the unshaded regions,
while chaotic dynamics is not noticed in the parameter range
shown in the figure. Islands of multiply periodic behavior ap-
pear between regions of periodic behavior for low frequencies.
For higher frequencies, the dynamics is exclusively multiply
periodic.

tem also exhibits regular periodic behavior for a different
range of values. It is now realized that such nanoscale
monodomain layers can find application as resonators,
through periodic oscillations induced by an alternating
spin-current. The results presented here provide an alter-
native method through oscillations induced by an applied
magnetic field. It is further noticed that the range of
the chaotic regime strongly depends on the presence of a
crystal anisotropy field. In the presence of an anisotropy
field chaotic behavior is noticed for much lower values
of the DC field and spin-current, which are more suited
for chaos synchronization studies. However, there are re-
gions in the ω− a space where regular periodic motion is
more robust and presents a better alternative in applica-
tions. In a future study we will present the possibility of
chaos synchronization in spin-valve structures.
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