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Abstract

The dynamics of nonlinear reaction-diffusion systems is dominated by the onset of patterns
and Fisher equation is considered to be a prototype of such diffusive equations. Here we inves-
tigate the integrability properties of a generalized Fisher equation in both (14+1) and (2+1)
dimensions. A Painlevé singularity structure analysis singles out a special case (m = 2) as
integrable. More interestingly, a Backlund transformation is shown to give rise to a linearizing
transformation for the integrable case. A Lie symmetry analysis again separates out the same
m = 2 case as the integrable one and hence we report several physically interesting solutions
via similarity reductions. Thus we give a group theoretical interpretation for the system under
study. Explicit and numerical solutions for specific cases of nonintegrable systems are also
given. In particular, the system is found to exhibit different types of travelling wave solutions
and patterns, static structures and localized structures. Besides the Lie symmetry analysis,
nonclassical and generalized conditional symmetry analysis are also carried out.

1 Introduction

Integrable systems play the role of prototypical examples to identify and understand the vari-
ous phenomena underlying nonlinear dispersive systems such as Korteweg-de Vries, sine-Gordon,
Heisenberg spin, nonlinear Schrédinger, Davey-Stewartson, Kadomtsev-Petviashivili, etc. equa-
tions [Ablowitz & Clarkson, 1991; Lakshmanan & Rajasekar, 2003]. Nonintegrable perturbations
can be analysed in terms of the basic excitations of such integrable models [Scott, 1999]. These
integrable systems are often shown to be linearizable in the sense that they can be associated
with two linear differential equations (of which one is a linear eigenvalue problem), namely the
so called Lax pairs. In (141) dimensions, the exponentially localized stable entity, namely the
soliton, turns out to be the basic structure exhibiting elastic collision property. The soliton excita-
tion has remarkable physical and mathematical properties. In particular, the underlying nonlinear
evolution equations exhibit infinite number of Lie-Bécklund symmetries [Bluman & Kumei, 1989].
The Lie point symmetries lead to similarity reductions which are related to Painlevé type ordinary
differential equations (ODEs) which are free from movable critical singular points. More generally,
the integrable soliton equations satisfy the Painlevé property and the solutions are in general free
from movable critical singular manifolds.

In the case of nonlinear reaction diffusion equations, the dynamics is dominated by the onset
of patterns [Murray, 1989; Walgraef, 1996; Lakshmanan & Rajasekar, 2003]. Out of all possible
modes available to the system, they tend to select the most stable structures which give rise to
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various patterns. These patterns range from simple to chaotic, depending on the nature of diffu-

sion, nonlinear reaction terms and external forces as well as the spatial dimension. Some of the

dominant patterns are

(1) homogeneous or uniform states

(2) travelling waves

(3) wavefronts and pulses

(4) Turing structures: a) stripes b) spirals c¢) scrolls, etc.

(5) spatiotemporal chaos

and so on. Thus mode selection and stability dominates the study of such systems. Some of

the well known nonlinear diffusion and reaction-diffusion systems[Murray, 1989; Walgraef, 1996;

Whitham, 1974] include Burgers’ equation, Fisher equation, Kuromoto-Sivashinsky equation,

Gierer-Meinhardt equation, FitzHugh-Nagumo equation, Belousov-Zhabotinsky reaction equation,

Brusselator model equation and so on. A large amount of literature on such systems is available.
In view of the complexity involved in analysing nonlinear diffusion equations, it will be very

valuable to identify integrable nonlinear diffusive systems and to build on them the study of

nonintegrable cases. Burgers’ equation is a standing example of such an integrable case [Sachdev,

1987]. Tt is linearizable in the sense that the Burgers’ equation

U = Dugy — ully, (1)
under the Cole-Hopf transformation
Uy
=-2D— 2
u=-2D" )

gets transformed into the linear heat equation

vy = Dvgy. (3)
Similarly the Fokas-Yortsos-Rosen equation [Fokas & Yortsos; 1982 & Rosen, 1982]
uy = u*(Dugy — uy) (4)
under the variable transformations [Rosen, 1982]
x:—Dlnv,u:—va, (5)

gets again transformed into the linear heat equation Eq. @). Thus both the above systems are
linearizable and they may be considered to be C-integrable in the Calogero [1991] sense. Also both
the Burgers’ equation and Fokas-Yortsos-Rosen equation possess interesting Lie point symmetry
structures and infinite number of Lie-Backlund symmetries. So, it will be of interest to investigate
whether other integrable and linearizable nonlinear reaction-diffusion equations exist and if so
what is the role of symmetry therein and what kind of solution structures and patterns exist in
them.

Considering nonlinear reaction-diffusion equations, Fisher equation is considered to be proto-
typical [Murray, 1989]. Typically, its form reads as

g — Au—u+u® =0, (6)

where A is the Laplacian operator. In one dimension it admits travelling wavefronts with velocities
¢ > Cmin = 2, depending on the initial condition [Murray, 1989] and in two dimensions interesting
spatiotemporal patterns arise; however it is not integrable in any dimensions. In one dimension,
however it is known to have an exact propagating wavefront solution of the form [Ablowitz &

Zeppetella, 1979]
5 -2
k xr — 7€t
1+ 2 exp | —2/6 , 7
N < 7 )] (7)

where k is an arbitrary constant, corresponding to the wave speed ¢ = \/5/ 6. No other exact
solutions are known for Eq. (@).

u(z,t) =1-—




2 Generalized Fisher (GF) Equation

In this connection, it has been pointed out [Grimson & Barker, 1994] that there arises interest-
ing generalization of the Fisher equation in the description of bacterial growth in multicolony
environment, in chemical kinetics and in various living phenomena. Its general form is

du(r,t)
ot

where D is the diffusion coefficient, V and A are gradient and Laplacian operators respectively.
To be specific, Eq. @) represents the spatiotemporal growth of bacterial colonies with both local
and nonlocal modes of growth. The third term on the right-hand side of Eq. ) represents the
local growth characterised by the local growth rate A and a local growth function G(u). Suppose
the colony is unable to add cells locally due to packing constraints, the nonlocal addition of cells
on the surface of the colony occurs to account for the amount of growth required by the global
growth law. Such an addition occurs as a consequence of the expansion and reorganization of the
colony and is represented by the second term while the first term represents diffusion.
An important special case of Eq. () is the generalized Fisher type equation

= DAu(r,t) + A(u)[Vu(r, )]* + Mu(r, ) G(u), (8)

ur — Au — %(VUF —u(l—u)=0, (9)

where the subscript denotes partial differentiation with respect to time. In the study of population
dynamics, u(r, t) refers to the population density at the point r at time ¢. In Eq. ([@), the nondiffu-
sive linear term modelling the birth rate gives rise to an exponential growth of u(r,¢) in time while
the quadratic term that models competition between individuals for food, etc. leads to a stable,
homogeneous value v = 1 at long times and the diffusion term represents the spatial variation of
the population. Further the third term represents the nonlocal growth of cells while the fourth
term corresponds to the local growth. This introduces the possibility of spatial pattern formation
between the homogeneous regions with © = 1 and u = 0 for appropriate initial conditions. Note
that for m = 0, Eq. @) reduces to the standard Fisher equation (). Again Eq. [@) is in general
nonintegrable, except for the special case m = 2. It is linearizable under the transformation
1

u=1 5y’ (10)
as pointed out by Wang et al. [1996] for the one dimensional case (see also Brazhnik and Tyson
[1999a,b]). Under this transformation the generalized Fisher equation (@) can be shown to reduce
to the form

xt —Ax —x =0, (11)

which is nothing but the linear heat equation in arbitrary dimensions. Thus every solution of ([[II)
corresponds to a solution of Eq. (@) via the transformation () subject to boundary and initial
conditions. Note that the transformation holds good irrespective of the spatial dimensionality
of the generalized Fisher system (@) as long as the parameter takes the value m = 2. Such a
linearization in any dimensions is a rare situation indeed. Even in soliton theory, straightforward
extensions of integrable equations lose their integrability as soon as the dimension is increased. In
fact Wang et al. [1996] and Brazhnik and Tyson [1999a,b] make use of this linearizability property
to obtain several interesting wave solutions, spatiotemporal patterns and static structures.

The very special nature of the m = 2 case prompts us to investigate the integrability nature
of the generalized Fisher equation @) from different points of view, particularly from singularity
structure and symmetry points of view in order to understand why the case m = 2 alone is
integrable. For the nonintegrable case (m # 2) we investigate special solutions.

In Sec. Bl we show that the PDE (@) in one dimension is free from movable critical singular
manifolds only for the special case m = 2. Further we point out that a Backlund transformation
gives rise to the linearizing transformation in a natural way for the integrable case. In Sec.



A we derive certain explicit and numerical solutions for the GF equation in one dimension via
symmetry analysis and similarity reductions. In Sec. [, we present the associated Lie algebra for
the (2+1) dimensional GF equation. Then we report different types of propagating structures,
static solutions and localized structures through Lie symmetry analysis in Secs. and [@ In
addition, exact solutions for special cases of the nonintegrable GF equation are also given. We
give the nonclassical and generalized conditional reductions in Secs. § and [ respectively. Finally,
we summarise our results in Sec. [0

3 Singularity Structure Property of the GF Equation

It has been argued for sometime that the Painlevé property (P-property) as proposed by Weiss
et al. [1983] is a working test to identify whether a given nonlinear partial differential equation
(PDE) is integrable or not. The Painlevé property demands that the solution of the given non-
linear PDE is free from movable critical singular manifolds (branching types, both algebraic and
logarithmic as well as essential singular), so that the solution is single valued in the neighbourhood
of a noncharacteristic movable singular manifold, ¢(r,t) = 0, ¢z, @y, ¢: # 0. The Weiss Tabor
Carnevale (WTC) procedure then demands that the solution wu(r,¢) for Eq. {@) can be expanded
around the noncharacteristic movable singular manifold as a Laurent expansion,

w=Y u;(r, )¢’ (12)

J=0

where u;’s are functions of r and ¢ and p is the leading order exponent of the Laurent expansion.
For single valuedness of the solution, one requires that p is an integer and that there exist sufficient
number of arbitrary functions, u;(r,t),j = 1,2,..., N (for Eq. @) it is two), so that the Laurent
expansion ([[A) can be considered as the general solution of the nonlinear PDE (@) without the
introduction of movable critical singular manifolds. Following the standard algorithm we can
proceed as follows. As an example, we demonstrate the analysis for the one-dimensional case,
which can be then extended to the higher dimensional case without difficulty.

3.1 P-property of eq. (3)

In the one-dimensional case, the generalized Fisher equation can be written as

u? —u+u® =0, (13)

m
Ut — Ugx —

1—u
The WTC algorithm then identifies the following results. Starting with the leading order behaviour
u & up@? as suggested by the form (), one can identify three possibilities:

@ p = -2
(i) p = ﬁ, m#1
(i) p = 0. (14)

One can easily check that for all the above three leading orders, only for the value m = 2, the
solution is free from movable critical singular manifolds. Actually one finds that for m = 2 and
p = —1, the leading order coeflicient u is an arbitrary function in addition to the arbitrary nature
of the singular manifold so that the Laurent series contains the required number of arbitrary
functions in terms of which all the other coefficient functions wu;(z,t),7 > 1, can be uniquely
found. For the other two leading orders with m = 2, one identifies only one arbitrary function but
without the introduction of any movable critical singular manifolds and so they may be considered

as corresponding to special solutions. The above analysis also holds good in higher dimensions of
@) as well.



Consequently one finds that the P-property is satisfied only for the special choice of parameter,
m = 2 for Eq. @) and for all other values of m(# 2) it fails to satisfy the P-property and the
system is expected to be nonintegrable. Note however that there may exist certain special singular
manifolds ¢; — ¢, = 0, for which the P-property may be satisfied in special situations. However
in general for the special choice of the parameter m = 2 of Eq. {@)) the P-property is satisfied for
general singular manifolds and the system is expected to be integrable in this case.

3.2 Backlund transformation
Now we consider the Laurent series ([2) applicable to Eq. (I3) and truncate it at constant level

term, by making all other coefficient functions u;(r, ) to vanish for ¢ > 1 consistently:

We demand that if uq is a solution of (3, so also w is a solution. Then, from Eq. ([[H), we have
Uty — Utze — 1 (1 — 1) + (U0t — Uoze — to(1 — 2u1))d ™" + (2uorde
—1
—uo(Pr — Puz — u0)P ™% — 2uore~ > — 2¢ [(1 —u1)¢ — uo] {ufm
+ 2u0,u120 "+ (Udy — 2u0U1ede ) — 2UoUoxPad C + U%Qﬁéf’_ﬂ =0. (16)

Consequently one finds that ug and ¢ satisfy a set of coupled PDEs arising from Eq. ([H).
Starting from the trivial solution, u; = 0, of Eq. (I3), we find that the choice

u = ¢ (17)

solves Eq. ([[H)). As a result, we find the new solution

U
u:é)—kul:l (18)

which is indeed a solution to Eq. (3).
Taking the solution ([[8) as u; now, we find that the system (@) satisfies the equations

uyg = —1,

Now defining the new function x as ¢ = 1+ x one obtains the linear heat equation

Xt = Xaz — X = 0. (20)
Thus the transformation [Bindu et al., 2001; Bindu & Lakshmanan, 2002]

1

- 21
1+x (21)

u=1

is the linearizing transformation for Eq. ([[3), where the function x satisfies the linear heat equation

@0). We note that this is exactly the transformation given by Wang et al. [1996] in an adhoc

way. Here the transformation is given an interpretation in terms of the Bdacklund transformation.

Thus the application of Painlevé singularity structure analysis selects not only the integrable case
associated with Eq. ([[3), but also helps to identify the associated linearizing transformation.

One can generalize the above analysis to higher dimensional case of the Eq. ([@) for the choice

m = 2 and arrive at the same general conclusion that the transformation {II) can be interpreted
as a Béacklund transformation.



4 Lie Point Symmetries of the (1+1) Dimensional GF Equa-
tion and Integrability

In this Sec., we investigate group invariance properties of the generalized Fisher equation in its
(141) dimensional form given in Eq. ([[3) and discuss different underlying patterns via similarity
reductions. First we consider the invariance of Eq. (I3)) under the one-parameter Lie group of
infinitesimal transformations and derive the similarity reduced ODEs for integrable (m = 2) and
nonintegrable (m # 2) cases separately. We solve the ODEs and provide explicit solutions. We
show that the earlier reported solutions are sub-cases of our results. We construct the linearizing
transformation from the infinitesimal symmetries and provide a group theoretical interpretation
for it.

4.1 Lie symmetries

An invariance analysis of Eq. (I3) under the one-parameter Lie group of infinitesimal transforma-
tions

t—T=t+er(t,z,u), =— X =2a+cl(t,z,u),
u—U=u+eg(t,z,u), <1, (22)
singles out a special value of m, namely m = 2, to have nontrivial infinite-dimensional Lie algebra

of symmetries
T=a, £=b ¢=clt,x)1-u)? (23)

where a, b are arbitrary constants and c(t, ) is any solution of the linear heat equation ¢; — ¢, —c =
0. The infinitesimal symmetries ([23]) are obtained by following the usual procedure of solving the
determining equations for the infinitesimal symmetries [Bluman & Kumei, 1989]. Throughout this
paper we use the computer program MUMATH [Head, 1993] to determine infinitesimal symmetries
and symmetry algebra.

The Lie algebra of infinitesimal symmetries of the Fisher equation is spanned by two commuting
vector fields and a vector field associated with an infinite-dimensional subalgebra,

X1 = at; Xo = azv Xe= C(t,I)(l - u)Qaua (24)

respectively. In the above, the vector fields X; and X5 reflect the time and spatial invariance of
Eq. (). The commutation relations between these vector fields are given by

[Xl, XZ] = 07 [XlaXc] = Xcta [X27 Xc] = Xcma (25)

where X, = ¢;(1 —u)?0,, and X,, = c;(1 — u)?0,. For all other values of the parameter m(# 2),
Eq. (@) admits only the trivial translational symmetries

T=a, §=0, ¢=0, (26)
with the corresponding symmetry algebra
[X1, Xo] =0, (27)

where X1 = 0; and X5 = 0,.

4.2  Similarity reductions

We solve the characteristic equation associated with the symmetries [Z3) and E8) and obtain
similarity variables in terms of which Eq. ([3) can be reduced to an ODE. From the general
solution of the ODE we construct explicit solutions for the GF equation ([I3)).



4.2(A) Integrable case (m = 2)

Solving the characteristic equation

dt dx du
- = = = — 28
a b e(t, z)(1 —u)? (28)
associated with the symmetries ([Z3]), we obtain the similarity reduced variables
a
z=ax—bt, u=1- (29)

a+v(z)+ [c(t,z)dt

In Eq. 9) we can consider the quantity

é(v(z) + /c(t,x)dt) =X, (30)

and verify that x satisfies the linear heat equation ([20l). Then the similarity transformation given
by Eq. 9) is the linearizing transformation thereby giving a group theoretical interpretation of
it.

Making use of ), Eq. (I3) reduces to an ODE

a®" b =0, '=— (31)

whose general solution can be written as

—b 4 b2 — 4a?
U2116m12+12€m22, mlgz—a.

) 20;2 (32)

Here I; and I are integration constants. Now with the use of Eq. (9, the solution to the original
PDE ([@3) becomes

a

1— , b? — 4a® > 0;
a+ Le™ (az —bt) | Lemz2(az — bt) 4 [ et z)dt
1- ¢ , b2 — da? = 0;
u= a + ePlaz —bt) (I1 + Ly(az — bt)) + [c(t,z)dt (33)
d
1-—- )
a+ eplax —bt) (I cosg(ax — bt) + Iy sing(ax — bt)) + [ c(t,z)dt
b? — 4a? < 0,

with p = —b/2a?, q = V4a? — b2 /2a>.

We note the following: By fixing the integration constants I; and I suitably and for the choice
c(t,z) = 0 we can deduce all the interesting travelling wave solutions and stationary structures
discussed by Brazhnik and Tyson [1999a,b]. For example, let us consider 4> — 4a? > 0. Taking
either one of the constants I; or I equal to zero we have a simple travelling wave solution. The
choice I; = Iy # 0 leads to a V-wave pattern. A Y-wave solution is produced by Iy = —I>. An
oscillating wave front is obtained by restricting Io = 0 with b2 — 4a? < 0. The choice b — 4a® = 0
leads to an inhomogeneous solution when I; = 0, Iz # 0.

4.2(B) Nonintegrable case (m # 2)
A similar analysis on Eq. ) for the (m # 2) case leads to the similarity variables

z=ax —bt, u=w(z), (34)
which reduces the original PDE ([[3)) to an ODE of the form

a*ov” —ma*v? +bvv’ —v*(1—v) =0, v=1-w. (35)



For b # 0, this equation is in general nonintegrable except for m = 0 and b/a = 5/+/6. This special
choice leads to the cline solution

k r—24\]7?
u(z,t) =1— |14+ —exp V6

V6 a6 ’

where k is an arbitrary constant reported by Ablowitz and Zeppetella [1979] (Fig. 1) and the
surface plot is shown in Fig. 2.

(36)
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§

Figure 1: An exact wavefront solution of the Fisher equation (£ = = — %t).
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Figure 2: Surface plot of the solution (BHl).

Case (a): Static solutions (b =0, m #0)
This is the time-independent (static) case and the similarity variables z = 2, w = u lead to
the reduced ODE of the form

W'+ %w"“ +w(l—w) =0. (37)

This readily gives the first integral [Mathews & Lakshmanan, 1974]

1 2
v'? = LvP™ + 1_mv2 - 3_2mv3, v=1-—w, m#1,3/2, (38)

where I is the integration constant. Eq. (B8) on integration leads to elliptic or hyperelliptic
function solutions for suitable values of m. For example, let us consider m = 1/2. Then Eq. (BS))
becomes

v"? = [I1 + 20 — v*] v (39)



Integration of Eq. [B9) leads to

zZ — IQ, (40)

where I, is the second integration constant. Let ¢ = 1+ 1+ 1, c¢2 =1—+1+1;. Then
Eq. #) becomes

dv
=z — IQ. 41
/ V(er = v)(e2 = v)(-v) )

Now the LHS of the above equation can be integrated in terms of elliptic functions and the
solutions are tabulated in Table 1. In a similar way one can integrate Eq. (B8) and obtain elliptic
and hyperelliptic function solutions for certain values of m. Besides the elliptic function solutions,
for a particular value I; = 0 in Eq. (8Y), we obtain a static solitary wave solution (Fig. 3)

u_l—%[secm(b—% ﬁ)], m < 1. (42)

Eq. #2) is nothing but a limiting case of the elliptic function solutions.
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Figure 3: A static solitary wave pulse for m = 1/2 of the generalized Fisher equation, Eq. [{#2).

Case (b): Qualitative analysis

In general Eq. [BH) is of nonintegrable type and this leads to the use of numerical techniques
to explore the underlying dynamics. Here we determine the equilibrium points and then study
the system dynamics in the vicinity of these equilibrium points. Eq. ([BH), after a rescaling, can
be written as

)
P2

o m— — Bp+v(l —wv), ' =d/dz, (43)
v

where Z = z/a and B = b/a. Then the equilibrium points are found to be (0,0) and (1,0).
While the origin is an unstable equilibrium point, the stability determining eigenvalues for the
equilibrium point (1,0) are found to be

_ 2 _
oo BEVE D )
Now the nature of the singular point (1,0) is investigated as a function of the control parameter
B in the range (—o0,00) by analysing the form of the eigenvalues A1 2 given by Eq. @) and the
results are tabulated in Table 2 and the corresponding plots are shown in Fig. (4). One identifies
the existence of periodic pulses and wave front solutions in this case.
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Figure 4: Propagating patterns and corresponding phase portraits in the v — v’ plane of Eq. (BH)
(a) Periodic pulses, (b) Center, (c) Travelling pulse, (d) Stable focus, (e) Travelling wavefront, (f)
Stable node.

Table 1: Table 2. Classification of equilibrium point (1,0) of Eq. @3) as a function of the
parameter B

S.No. Range of B Nature of eigenvalues | Type of attractor/repeller

1. —00< B< -2 A2 >0, A1 # A2 unstable node

2. B=-2 A2 >0, Ay = Ao unstable star

3. —-2<B<0 AMoa=axif, a>0 unstable focus

4. B=0 A2 = £, center

5. 0<B<?2 Meg=axif, a<0 stable focus

6. B =2 /\172 <0, A1 =X stable star

7. 2<B< o A2 <0, A1 # Ao stable node

4.3  Relation between symmetries of m = 2 case and of linear heat
equation

In subsection B2 we derived a Bécklund transformation that transforms the GF equation to a
linear heat equation via singularity structure analysis. In this Sec., by employing the ideas given
by Bluman and Kumei, [1989] (Theorem 6.4.1-1,2, p.320), we derive the linearizing transforma-
tion from the symmetries and thereby confirming the group theoretical interpretation for it. The
aforementioned theorem gives a necessary and sufficient condition for the existence of an invertible
mapping which linearizes a system admitting an infinite-parameter Lie group of transformation.
That is, if a given nonlinear system of PDEs admit an infinite-parameter Lie group of transfor-
mation having an infinitesimal operator

X = 51 (Ia u)azz + 771/(557 u)au”7 (45)

10



with

&i(zyu) = Z of (z,u)F° (z,u), (46a)
o=1
W (xu) = Y B (x,u)F(z,u), (46b)
o=1
then there exists a mapping
zj = ¢i(z,u), =1,2,...,n (47a)
w’ = Y(z,u), y=1,2,....m (47b)

that transforms the given system to a linear system of PDEs. Here F'“ is any arbitrary solution
to the linear system of PDEs. In such a case, the components of the mapping ¢; and 7 satisfy
the follwing set of PDEs:

T Y S -
af (x,u)a—xl —l—ﬁl,(x,u)w = 0, o=12..m (48a)
ow” ov”
g _— o _— — o =
af (z,u) o, + B9 (x,u) S 877, o=1,2,...m (48b)

where 77 is a kronecker symbol, v,0 = 1,2, ..., m.
In our case, the infinitesimal operator generating the infinite parameter group of transformation
is

X =X, =c(t,z)(1 - u)23. (49)

From Eqs. {X) and [E3) we identify
ap =03 =0, B = (1-u)* (50)

Then Eq. @) for ® becomes
3, = 0. (51)

Clearly two independent solutions of Eq. (&Il) can be chosen as the new independent variables
z1=1t, 2z9=u. (52)

Equation #3b) for ¥ becomes
(1—u)*T, =1. (53)

A particular independent solution of Eq. (B3)) can be easily found to be

1
w=T—r (54)
As a result we obtain a mapping
z1=t 2=z, w= ! (55)
1—u
which transforms the Fisher equation to a linear heat equation
Vgy —VUspzo —0 =0, w=1+0. (56)

Here we note that the above transformation is the same as the Bicklund transformation (ZII).

11



5 The (2+1) Dimensional GF Equation

In general models that admit exact solutions are of considerable importance for understanding
general behaviour of nonlinear dissipative systems. In one dimensions such models have received
considerable importance. However, many realistic models are of two or three dimensional in nature
and in this direction Brazhnik and Tyson [1999a,b] considered Eq. (@) in two spatial dimensions
and explored five kinds of travelling wave patterns, namely, plane, V- and Y-waves, a separatrix
and a space oscillating propagating structures. Thus, it will be quite interesting to study the role
of symmetries that allows the system to exhibit different spatiotemporal patterns and structures
which usually will possess some kind of symmetry. Moreover, the GF type equation does not
lose its integrable nature (for m = 2 case) on its dimension being increased. This is a very rare
situation and so we consider the generalized Fisher equation in 2-spatial dimensions,

%(ui—i—ui) —u+u* =0, (67)

Up — Upg — Uyy —
and explore the underlying patterns.
Extending the Lie symmetry analysis to Eq. ([&7) we find that the infinitesimal transformations
t — T=t+er(t,x,y,u), =— X =u+el(t,z,y,u),
Yy — Y =y+enlt,zyu), uw—U=u+ed(t,z,yu), &<I, (58)
again singles out the integrable case for m = 2 with the symmetries
T=a, £=by+l, n=—-br+n, ¢=ct,zy)l—u)? (59)

where c¢(t, z,y) is any solution to the two dimensional linear heat equation ¢; — ¢yy — ¢cyy —c =0
and b,l and n are arbitrary constants. For other values of m(# 2), we get the following symmetries

T=a, £=by+l, n=-bx+n, ¢=0. (60)

5.1 Lie algebras

The symmetry algebra of the (2+1) dimensional Fisher type equation (&7) with m = 2 is spanned
by four vector fields

Xl :8t, X2:y8x_xaya X3:8x; X4:8ya (61)
and a vector field associated with the infinite-dimensional subalgebra
Xe=c(t,z,y)(1 —u)?0,. (62)

The physical interpretation of the vector fields is the following. Vector field X indicates that (1)
is invariant under time translation whereas vector fields X3 and X, reflect the spatial invariance
of (B0 in x and y directions respectively. Vector field X5 demonstrates that Eq. (B1) is invariant
under rotation.

The commutation relations between these vector fields become

[X1,X] =0, [Xi1,X3]=0, [X1,X4] =0, (X1, X] = X,
(X2, X3] = X4, (X2, Xy] = — X3, [Xo, X¢]=yX,, —vX,,
[X37X4] ; [X3; Xc] = Xczv [X47XC] = ch7 (63)

where X, = ¢;(1 —u)?0y, X, =cp(1—u)?0y, and X, =cy(1—u)?0,.
Proceeding in a similar fashion for the nonintegrable case (m # 2) we obtain the associated
Lie algebra as

[leXQ] :05 [X17X3] :05 [X15X4] :05
(X2, X3] = Xy, [Xo, Xu] =—X3, [X3,X4]=0, (64)

which is obviously a subcase of (G3).
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6 Similarity Solutions of the (2+1) Dimensional Integrable
GF Equation

Here we solve the characteristic equation

d ey du )
T £ U ¢

and obtain the similarity reduced PDE in two independent variables. The resultant PDE is then
analysed for its symmetry properties to reduce it to an ODE so that explicit solutions can be
found by integrating it. In the general reduction, we obtain cylindrical function solutions. We
derive certain physically important structures by restricting some of the symmetry parameters
to be zero. For example, we obtain Bessel function solutions by assuming one of the symmetry
parameters to be zero. Similarly proceeding we report certain propagating type structures and so
on by restricting appropriately the choice of the symmetry parameters involved. In such a process,
we report all the propagating structures discussed by Brazhnik and Tyson [1999a,b] as a subcase
of our results. Finally, we put forth the relation between symmetries of the GF equation and the
2-dimensional linear heat equation.

6.1 General reductions

Now integrating Eq. [3) with the infinitesimal symmetries (B) along with the condition b # 0
(as well as [, # 0), we obtain the following similarity variables:

b, 5 o a . 1( n— bz )
21 = =(z” + +ly—nx, z9=—t— —sin e N
1=y Ely 2 b VE T2+ 2be;

u=1- w(z1, 22) + [c(t,z,y)dt (66)

In this case also, one can obtain the linear heat equation

Xt — Xez — Xyy — X =0 (67)

1
by assuming x = — (w(zl , 22)+/ c(t, z, y)dt) in (B0) and substituing the resultant transformation
a

into Eq. @&0). Then the similarity reduced variables ([BH) can be interpreted as giving rise to the
linearizing transformation from the group theoretical point of view. Under the above similarity
transformations, Eq. (&) gets reduced to a PDE in two independent variables z; and zs,

2
A" Wzy 2y

2 2
Wey + 20w, + (2bz1 + I 40wy, + 5T s

+w-—a=0. (68)

The similarity reduced PDE (@8) can itself be further analysed for the symmetry properties
by once again subjecting it to the invariance analysis under the classical Lie algorithm. For this
purpose we first redefine the variables as

7 =221 +124n? Zy=2, w=w-—a, bn#0 (69)

so that Eq. (@) becomes

2
Wz, + 402z, + AP E Wz, 2, + s,z + B = 0. (70)
21
Eq. [{) can be shown to possess the following symmetries

T=c3, (=0, ¢=c10+g(z1, %), (71)

13



where ¢; and c3 are arbitrary constants and g(2i, 22), which arises due to the linear nature of
Eq. [@), is any solution to the equation gz, + 4b%gz, + 4b°21 95,5, + ?—95252 + g = 0. The corre-
21
sponding Lie vector fields
X = (952, Xo = w@w, Xg = 9(217 22)(911, (72)
lead to the infinite-dimensional Lie algebra

[X1,X2] =0, [X1,X,]=X

9zo

[XQng] = —Xg, (73)

where X, = g2, (21, 22)0g. By solving the characteristic equation associated with the symmetries
[0 we obtain new similarity variables

C122

¢ =7, w:a—l—e(?) f(C)'f‘é/g(21722)6<_£22>dz2 ; (74)

where f(() satisfies the linear second order ODE of the form
Cf'4+¢f +(A+BOf =0, A= (ac1/2bc3)?, B = (14c1/c3)/4b?, (75)

and prime denotes differentiation with respect to ¢. The exact solution to Eq. ([H) can be expressed
in terms of cylindrical functions of the form [Murphy, 1969]

f=121(2/BC) + 1 22(2\/BQ), (76)

where Z;((), ¢ = 1,2, are two linearly independent cylindrical functions and Iy, I are arbitrary
constants. Then the invariant solution to the (2+1)-dimensional PDE (&) can be written as

C1_
—Z

a+e(2 ; ) <11Z1(2\/B—21) + I, Z5(2V/B21) — = fg(zl,22)6<522) dzz>

u=1—a

+/c(t,x,y)dt‘| , (17)

where Z; and Zs are of the form @0) via (63). Here g(Z1, Z2) can also be taken as zero. However,
the solution (IZZ) is richer in structure when g(z1, z2) is taken as non-zero.

6.2 Special Reductions

Besides the above general solution, some physically interesting structures can be obtained by
choosing some of the symmetry parameters including the arbitrary functions to be zero. In the
following we present certain nontrivial cases. Particularly, we consider separately the two special
cases: (a) ¢; =0 and (b)ey = —cs.

6.2(A) The choice b# 0

Case (a): ¢; =0.
Solving the characteristic equation associated with [Il) with ¢; = 0 we obtain the similarity
variables

¢ =7, wza—i—f(C)—i-l/g(zl,zz)sz. (78)

C3
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Here the function f({) satisfies the ODE

" I _ fi ’fi
I HBf=0, B=qgs =0

The solution (static) to ([[@) is found to be

£(¢) = I Jo(2¢/BC) + LYo (2/BY),

(79)

(80)

where Jy and Yj are zeroth order Bessel functions of first and second kinds respectively. Then the

time-independent solution to the original PDE (&) becomes

u= l—ala+LiJo (2\/B (02(x2 + y2) + 2b(ly — nx) + 12 + n2))

+ 1Y, (2\/3 02(22 + 42) + 2b(ly — nz) + 12 + n2))

-1

1
+c_/9(51,52)d52+/c(t,3:,y)dt
3

(81)

The solution plot is given in Figs. (5) for g(z1,22) = 0 and c¢(t,z,y) = 0. For the choice
I, # 0,1, = 0, Fig. (5a) shows a static circular symmetric pattern. If we choose Is # 0 while
keeping I; = 0 we get a static structure (Fig. (5b)) exhibiting circular symmetry with a singularity
at the origin and it is due to the nature of Bessel function of second kind. Finally for I7, I3 # 0

the plot is shown in Fig. (5¢).
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Figure 5: Static structures exhibiting &) circular symmetry: (a) I; # 0,1 =0(b) [; = 0,15 #0

(C) Il,Iz 7é 0.

Case (b): ¢; = —cs.

15



Making use of the choice ¢; = —c3 in () we obtain the similarity variables

_ 1 _
C =z, w=a-+ e %2 f(() + c— /g(zl7 22)€Z2d22] . (82)
3
These similarity transformations reduce the PDE ([ll) to an ODE
2 el / _ _ i 2
CfHCf +Af =0, A= (). (83)

where prime denotes differentiation with respect to ¢. Solving Eq. B3) we find
f=hL{"+ L™, mip=+V-A (84)

Since A > 0, bounded solution can be written as

a+ e *2 <11

sin (\/Zlog } (b2(x2 +9%) + 2b(ly — nx) + 12 + n2) } ) D

u = 1—a

cos (\/Zlog |(0*(2* + ) + 2b(ly — nx) + I* + n?)| ) ’

—1

+1z (85)

Here the variable z5 is given by Eq. (B8). The solution plot is given in Figs. (6) for g(z1, 22),
c(t,z,y) = 0 and it exhibits a complicated propagating pattern.

6.2(B) The choice b=0

In the general reduction, we have assumed b # 0. In this subsection, we derive certain interesting
patterns by taking the symmetry parameter b = 0. For this choice the symmetries are (vide

Eq. E9))
r=a, &=1, n=n, ¢=ct,z,y)(l—u) (86)

The similarity transformations

a
zn=nr—ly, zo=ax—1lt, u=1-— , 87
! v = w(z1,22) + [ e(t, z,y)dt (87)

are found by solving the characteristic equation associated with Eq. Bd). Under the above set of
transformations &), Eq. (&) can be transformed to

lw,, + (I* + nHw,, ., + d*w.,., + 2anw,,., + w —a = 0. (88)

The invariance of Eq. (BR) under the one-parameter Lie group transformations leads to the in-
finitesimals

2

2
T = 2@%@2“2 - 2%0121 +c, £= —Qa?clzl + 7(l2 +n?)e1z — cs,

¢ = (c121 + )W + h(z1, 22), (89)

where @ = w — a and the arbitrary function h(z1, 22) satisfies the equation lh,, + (1> +n?)h,, ., +
a%hyyzy + 2anh,, ., +h = 0.

Using the symmetries given in Eq. [BY) one can construct a general similarity reduced ODE.
However, as our aim is to show some interesting solutions we consider a lesser symmetry parameter
group in the following.
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(a) (&) (<)

=20 u

Figure 6: Propagating type structures corresponding to Eq. (83 at various instants: (a) I, Is # 0
(b) It # 0,13 =0 (c) [y = 0,12 #0.

Case (a): To begin with let us consider ¢; # 0 and all other parameters (cz, c3,c4) are zero
in 8. Now solving the characteristic equation associated with the symmetries we obtain the
following similarity variables

a’ 5  (I*+n?)

¢ = =4 + 5 22 — anz 2,
_ _F(C,2) (al)® F(C,21)
w o= e <L F(C) — /F(Qzl)h(zh,@)e Vdz |, (90)
C1
1 2,2 22 2]% . o .
where F((,z1) = ~5a2 [2(1 +n°)¢ —a”l zl} . Using the above similarity transformations we
a
deduce an ODE
1 , 1 12 +n?
Cf"+ [ +Bf=0, B=go 1 | (91)

where the prime stands for differentiation with respect to (. Eq. (@) admits a time-dependent
cylindrical wave solution of the form

F(Q) = L Jo(2v/BC) + LYo(24/BC). (92)
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From (@) we can provide the time-dependent solution to the original PDE through the trans-
formations (@) and @Md). The solution is plotted in Figs. (7) for various instants, exhibiting
propagating spike like patterns.

(a) (&) (<)

Figure 7: Bessel type propagating solutions for various instants as given by Eq. (@2): (a) I1, > # 0,
(b) Il 75 07_[2 =0 (C) Il = 0,[2 7&0

Case (b): ¢; =0.
The choice ¢; = 0 and ¢g, ¢3,¢4 # 0 in Eq. [B9) leads to the similarity transformations

C=c3za+cozy, W= ekz2 [f(g) + %/h(zl,za)ekz?d@ , k= Z—;l (93)
which transforms Eq. ([§5) into an ODE of the form
Af"+Bf' +Cf =0, A= (ac3)? + (I +n?)c3 + 2ancacs,
B =lc3 + 2a%kes + 2ancy, C=1+1k+ (ak)?, '= %, (94)
whose general solution is given by
F(O) = ™S 4 ™26y, = —i (B+ VB —14C), (95)

and ( is quadratic in time ¢. Substituting the similarity transformations ([@3]) and &) in ([@5) the
solution to the original PDE (BZ)) can be obtained.
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Case (c): Propagating structures.
By assuming n = ¢3 = 0 in Eq. (@), the ODE becomes

1+ Ik + (ak)?
"—kif=0, ki=-—— (102)5 ) : (96)

Then, the system (B1) is found to exhibit propagating structures and the corresponding solutions
are given by

1-— a{a + exp [k (ax — lt)} l[l cos(v/k1ealy) + I sin(v/kycaly)

-1
h
+/Mek22d22 —i—/C(f,fE,y)dt} ) kl <07

Cs

1- a{a + exp [kz (ax — lt)} IieV krealy 4 Ie™ Vv krcaly

—1
h
_,_/Mek@d@ +/c(t,x,y)dt} ; k1 > 0;

C5

(97)

1— a{a + exp [k (ax — lt)} Licoly + I

+ / h(z1, 22) k22,

Cs

+/c(t,:v,y)dt} , k1 =0.

The presence of an additional function h(z1, z2) in the solution (@) leads to a more general form.
In particular, Eq. (@) exhibits the five classes of bounded travelling wave solutions reported by
Brazhnik and Tyson [1999a] with specific choice of the parameters involved along with h(z1,z2) =0
and ¢(t,z,y) = 0. The corresponding solutions are given below.
The simplest travelling wave solution (Fig. 8a)
1 I, I

11— L k>0, A= 2 98
1+ Aexp [k (az — It) + VEicaly) ! a " a (98)

is constructed by assuming either I; = 0 or Iy = 0. When I; = I3(# 0), one obtains a V-wave
pattern (Fig. 8b)
1

2
b 1+ Aexp [k (ax — It)] cosh(v/E1caly) ' a %)

A wavefront oscillating in space (Fig. 8c)

1 I
—1- oA=L 100
1+ Aexp [k (ax — It)] | cos(vkicaly)| a (100)

exists for the choice I = 0 and k1 < 0. Further for I; # 0 and I = 0 we get a separatrix solution
(Fig. 8d)

1 IllCQ
=1- k=0 A= . 101
“ 1+ Aly|exp [k (ax — It)]’ ! ’ a (101)
Finally, for positive k1 with I; = —I5 the Y-wave solution (Fig. 8e)
1 L
1 L A= 102
" 1+ Aexp [k (az — It)] | sinh(v/k1caly)| a (102)

exists. In each of the above solutions A is a positive constant. As Fisher equation forms a basis for
many nonlinear models, the above solutions are nothing but reminiscent of patterns from different
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fields. To mention a few, V-waves are characterized in the framework of geometrical crystal growth
related models [Schwendeman, 1996] and in excitable media [Brazhnik & Davydov, 1995], while
space oscillating fronts are relevant to cellular flame structures and patterns in chemical reaction
diffusion systems [Scott & Showalter, 1992; Showalter, 1995]. Besides, excitable media supporting
space-oscillating fronts are discussed by Brazhnik et al. [1996] with a geometrical model.

Figure 8: Five interesting classes of propagating wave patterns as obtained in ref.[Brazhnik &
Tyson, 1999a], which follow from Eqs. [@@): (a) Travelling waves, (b) V-waves, (c¢) Oscillating
front, (d) Separatrix solution, (e) Y-waves with & = k(azx — lt).

6.3 Relation between symmetries of m = 2 case and of linear heat
equation in 2-spatial dimensions
Proceeding in a similar fashion as that for the (141) dimensional Fisher equation as given in
subsection one obtains a mapping
1

:1—u

21=1t, 20=2, 23=19, W (103)

by solving Eqs. [@8) for the two spatial dimensional case. Eq. (I03)) then transforms the Fisher
equation in 2-spatial dimensions to a 2-dimensional linear heat equation

Vzy — Vapzo — VUzazs — 0 =0, w=1+0. (104)

However, as in the case of the (14+1) dimensional GF equation, we have given an interpretation
for the transformation (IIJ) in terms of the Bécklund transformation via Eq. II).

7 The Nonintegrable (2+1) Dimensional GF Equation

One can make use of the same techniques that used for the integrable case to obtain some special
solutions for the nonintegrable case (m # 2). To start with, we shall consider the general reduc-
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tions. Due to the nonintegrable nature of the equation under consideration, the general reductions
lead to ODEs of non-Painlevé type. However, we obtain certain special solutions, like plane wave
solutions, static structures and localized structures under appropriate parametric restrictions.

7.1 General reductions

To begin with we derive a general similarity reduced ODE by assuming none of the parameters in
D) to be zero. The similarity variables thus obtained are

b -b
n=c@+y?)+ly—nz, z2=—t-— %sirf1 <L) ,

2 VIZ 4+ n? 4+ 2bz;
u = w(z1, 22). (105)
Under the transformations () the reduced PDE in two independent variables takes the form
2
9 9 AWy, m

Way + 2bw,, + (2b21 + 17 + 0w, ., + o T l; jr = + T
2 2y, 2 a*w? 2

z2 —

Again looking the invariance properties of Eq. ([08) we get the following infinitesimals:

T:Cla 5:07 ¢:0 (107)
These infinitesimals reduce Eq. () to an ODE
4b? <<f” +f'+ %f@) +f—f=0 (108)

under a set of similarity transformations
(=72, w=f(Q), 7z =2bz+1*+n’ (109)

As Eq. () is not integrable, we look for special reductions with lesser number of parameters
involved.

7.2 Special reductions

For the special case b = 0 the infinitesimals obtained are 7 = a,£ =1, n = n, ¢ = 0. The
associated similarity transformations z;1 = nx — ly, z9 = ax — lt, u = w(z1, 22) reduces the Fisher
type equation (B7) to a PDE

m
lw., + (I + n*)w,,., + a*w.,., + 2anw., ., + T

x[(12 + n*)w2, + a*w?, + 2anw.,w.,| +w—w® =0 (110)

in two independent variables z; and z5. Applying classical Lie algorithm on Eq. ([T0) one obtains
the following infinitesimals

T =c, 5:@, b =0. (111)

The corresponding similarity variables, ( = —acoz1 +n(c1 + ¢2)2z2 and w = f((), reduce Eq. ([I0)
to

Af”+Bf’—ATmf/2—f+f2=0, (112)

with f =1~ f, A = a?(c?n? + c2I?), B = nl(c; + c2) and prime stands for differentiation with
respect to (. Because of the nonintegrable nature of Eq. (IT2), we look for subcases by assuming
one or more of the vector fields to be zero. In the following we report some of the nontrivial cases.
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7.2(A) Plane wave solutions

For m = 0, making use of a similar procedure as in the previous case we can obtain the plane
wave solution. That is, m = 0 leads to the ODE for ¢ = ¢/vA

i %f’ - (113)

It is then straightforward to check that for B/v/A = 5/1/6, Eq. ([I3) satisfies the Painlevé property
so that the solution to the original PDE is found to be

k
14+ —exp

V6

Here we obtain a propagating plane wave and the pattern is plotted in (Figs. 9).

(a) &)

U(Iayvt) =1-

-2
<7’L(Cl +cg)(ax —\/Zé_)A— G/CQ(ly_TL.T)>‘| . (114)

Figure 9: An exact propagating plane wave solution Eq. (ITd) at different instants of time: (a)
t=0,(b)t=25,(c)t=10, (d) t =15.

7.2(B) Static and localized structures

Substituting ¢; = —co in (), we obtain the similarity transformations ¢ = z1, w = f(¢). This
transforms Eq. (II) to an ODE

- - = = 1
J'=F P AJ =) =0, A= s
For Eq. ([TH), in addition to the elliptic function solutions of the form tabulated in Table 1, we

obtain a particular planar solitary wave solution (Fig. 10)

u_1_3—2mlsech2<12_(nz—ly) A )

2—-2m 2 1—-m

(115)

,m< 1. (116)

We note the solutions given in ([T and ([[IH) are 2-dimensional generalizations of (B8l and

E2) respectively.
Besides the above, the choice b = 0, a = 0, | = 0 reduces the (2+1) dimensional Fisher
equation (BZ) to that in (1+1) dimensions for m # 2.

8 Nonclassical Reductions

Generally, for many PDEs there exist symmetry reductions that are not obtained by using the
classical Lie group method. As a consequence, there have been several generalizations of the
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Figure 10: Fig. 10. A planar solitary wave solution for Eq. (ITH) in the particular limit.

Table 2: Elliptic Function Solutions of Eq. B8) for m = 1/2.

S.No. | Order of Roots Function v(z) modulus k
c1 2_Cl—C

2 (M - _
sn (ﬁ(z Iz)ak) o
casn? (é(z —Iy), k> ¢ — ¢
on? (g@—b),k) 9 a

C1C
3. |er>v>e>0|v= 172 — | k2=

\/a(z—lg),k “

c1 — (1 — ea)sn? | —

1. cp>c>02>w v=1c1 —

2. ct>co>0>0 V=

C1 —C2

2 (z— L), k po1"

4. c1>v>c>0| v=c1 — (c1 —c2)sn

[CIIPNEN
=

€1

classical Lie group method for symmetry reductions. Bluman and Cole [1969], then proposed the
so-called non-classical method of group-invariant solutions in the study of symmetry reductions
of a linear heat equation. An algorithm for calculating the determining equations associated with
the nonclassical method was presented by Clarkson and Mansfield [1993]. This procedure has
been applied to several nonlinear systems and in some cases, such as the Boussinesq equation, the
Burgers’ equation and the FitzHugh-Nagumo equation, new similarity reductions not obtainable
through classical symmetries have been found [Levi & Winternitz, 1989; Arrigo et al. 1993;
Nucci & Clarkson, 1992] (see also Mansfield et al. [1998] and references therein). In the classical
method we consider the infinitesimal generator, associated with the one-parameter Lie group of
transformations,

V= &(t,z,u)0p + 7(t, 2, u)0, + ¢(t, 7, u)0u (117)

which leaves the system () invariant. But in the nonclassical method, one requires the given
equation (3] and the surface condition

itz w)ug + 7(t, zyw)uy — @(t, z,u) =0 (118)

together to be invariant under the transformation with the infinitesimal generator (Id). In this
case one may obtain a larger set of solutions than that for the classical method. Moreover,
significant progress has been made in the study of nonclassical symmetries for nonlinear PDEs of
diffusive type. To mention a few, Gandarias and Bruzén, [1999] have obtained several solutions
for a family of Cahn-Hilliard equations that are not invariant under any Lie group admitted by
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the equation. In a similar fashion, separable new solutions that are not obtainable via classical
method have been reported for a mathematical model [Gandarias, 2001] of fast diffusion through
nonclassical method. This prompts us to look for nonclassical symmetries associated with the GF

equation ().

8.1 The (1+1) dimensional Fisher equation

There are two types of nonclassical symmetries: those where the infinitesimal 7 is non-zero and
those where it is zero. In the first case, we can assume without loss of generality that 7 = 1,
while in the second case we can assume & # 0 and 7 = 0. In the following we investigate them
separately.

8.1(A) The case T #0

We set 7 = 1 in the invariant surface condition without loss of generality and use it together with
its differential consequences to eliminate u; and so Eq. ([3)) takes the form

1Tuui—u—|—u2. (119)

uzz:(b_guz_

Applying the classical Lie algorithm to ([ITY) and eliminating the highest derivative involving the
variable z, the coeflicients of the linearly independent expressions in the remaining derivatives are
set equal to zero. From the resultant set of determining equations for &, 7, and ¢, which are in
general nonlinear, we get

r=1, &=b, ¢=dt,z)(1—-u)? m=2, (120a)
3 gzb) d):O, m¢27 (]‘20b)

where b is an arbitrary constant. In Eq. (&), d(t, x) satisfies d; — dgy —d = 0.
The corresponding similarity variables for the m = 2 case are
1

z =z —bt, u:1_w(2)+fd(t,x)dt’ (121)

which are similar to the ones obtained by the classical method earlier in SecHl Thus we are lead
to the similarity reduced differential equation

@ +bw' +w=0, w

w—1,"=d/dz, (122)

which is similar to @) and the results then follows as before. Similar is the case with m # 2.
Thus both classical and nonclassical reductions lead to the same solutions for the present system.

8.1(B) The case T=0, £#0

Let 7 = 0 and £ # 0. We then set £ = 1, without loss of generality. The invariance surface
condition simplifies the Fisher equation to

ut—¢z—¢¢u—%¢2—u+u2:o. (123)

Applying the classical Lie algorithm to the above equation we end up with a more complicated
nonlinear PDE

¢t - ¢LE;E - 2¢¢mu - ¢2¢uu + u(l - u)(bu + (2’(1, - 1)¢

2m m g m 3
_m¢¢z - m(b Oy — m¢ =0. (124)
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This system is considerably more complex than the system ([3) and hence cannot be solved in
general. We have made different ansétze for ¢(¢,z,u) and found that all of them lead to only the
group invariant solutions found by the classical algorithm.
However, for the m = 0 case, by assuming ¢ to be independent of x and t we get ¢ =
/2
U ?u —1, 7 =0, £ = 1 which is different from that obtained through the classical method.

However this choice leads to a singular solution of the form

3
U= gsec2 <x—2|—c> . (125)

8.2 The (2+1) dimensional GF equation

We extend the nonclassical symmetry analysis to the (2+1) dimensional Fisher equation (&7) and
in this analysis there are three cases to consider, namely, (i) 7 # 0, (ii) 7 = 0, 7 # 0, and (iii)

TZO) 77:05 53&0

8.2(A) The case T #0

We use the invariance surface condition
up = ¢ — Eug — Ny (126)

with its differential consequences to eliminate u;. Applying the classical Lie algorithm to the
Fisher equation

%(ui—i—u;) —utu?=0 (127)

O — Uy — MUy — Ugy — Uyy —

and then equating coefficients of various powers of derivatives of the dependent variable u we have
a set of determining equations. Solving them we get finally

T=1, {=azy+as, 1n=—azx+cy, é=dt,z,y)(1—u)? m=2 (128a)
=1, fE=asy+ay, nN=—-azx+cy, ¢=0, m#2. (128b)

Here d(t, x,y) satisfies the equation d; — dgs — dyy —d = 0 and as, a4, c4 are arbitrary constants.
Comparing this set of symmetries with that obtained by the classical method we find that they
are similar to the latter case. So the similarity reductions will reduce the PDE to the same ODE
as that obtained by the classical method.

8.2(B) The case =0, n#0

Here we set n = 1, without loss of generality, and analogous to the above procedure we use
the above choice to eliminate all y-derivatives. Then applying the classical Lie algorithm to the
resulting equation we obtain a more complicated nonlinear PDE. Solving the resultant system of
determining equations we obtain the following symmetries

(’L) T = Oa 5 = C1, n= 15 ¢ = 07 (129&)

. 1
(i1) T=0, & :I:\/i, n=1 ¢=0, (129b)
for all values of m. The similarity reduction variables z; = c1y — @, 22 = t, u = w(z1, 22) associ-
ated with ([29al) reduces the GF equation in 2-spatial dimensions to that in 1-spatial dimension.
Similarly, the similarity transformations z; = +v2y — z, 20 = t, u = w(21, z2) for ((2Z9H) again
reduces the original PDE to that in 1-dimension and hence the results follow as in the case of the
classical method.
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8.2(C) The case T=0,n=0, £#0

In this case we set £ = 1, without loss of generality, and as above we make use of the invariance
condition u, = ¢ to eliminate all x-derivatives. Then we apply the classical Lie algorithm to the
resulting equation and we get a nonlinear PDE of the form

- ¢t + ¢mm + ¢yy + ¢uu(¢2 + ui) + (1 —2u+ 2¢um)¢ + 2¢uuuu - ’U,(l - ’U/)¢u

m ¢ 2 2 2 2
» 2 200, =0. (130
o lTo gy + 99 + 9wl + 67) + 26,0, + 266 (130)
Solving the system of determining equations we obtain ¢ = 0 V m. Thus the (2+1)-dimensional
GF type equation, under the similarity transformation z; = y, 2o = ¢, u = w(z1, 22) reduces to
that in (1+41)-dimensions and hence the results as in the case of the classical Lie algorithm case
follow.

9 Generalized Conditional Symmetry Reductions

Recently Fokas and Liu [1994a,b] proposed the notion of Generalized Conditional Symmetry (GCS)
and applied it to construct some physically interesting exact solutions of certain nonlinear non-
integrable PDEs. Such exact solutions are of primary importance because they identify certain
interesting and novel physical phenomena and moreover such solutions may be hard to identify
or may not be quite transparent from the numerical solution of a nonlinear PDE. In this method
the PDE is reduced to an ODE in terms of certain types of generalized conditional symmetries.
Indeed the GCS can be considered as a natural generalization of the nonclassical method just as
the generalized symmetry method [Olver, 1986] is considered as a generalization of the Lie-point
symmetry method. Particularly, for the reaction diffusion type equations, several new separable
solutions that cannot be obtained via the non-classical and non-local symmetry methods have been
derived through this method [Qu, 1997; Qu, 1999a,b; Chou & Ku, 1999; Qu et al., 2000]. Further,
it is recently shown that the GCS method is the most efficient tool for solving the problem of
dimensional reduction of initial value problems for evolutionary type PDEs in a purely algebraic
way [Zhadanov & Andreitsev, 2000]. Motivated by these facts we investigate the existence of
generalized conditional symmetries, if any, for the GF equation.

9.1 The method

Let K (t,u) denotes a function that depends on a differentiable manner of ¢, u, uy, tzy,.... The
function o(t, x,u) is a generalized symmetry of the evolution equation u; = K (¢, u) iff

0o

—+ |K,0] =0 131

0 | o] =0, (131)
when u; = K(t,u), where [K,0] = ¢/K — K’o, and the prime denotes the Gateaux derivative.

The function o(t, z,u) is a GCS of equation ([[3)) if there exists a function A such that

0
S+ [K.0] = Atz u,0), Alt,2,u,0) =0, (132)
where K (t,u), and o(t,z,u) are differentiable functions of ¢, z, u, uy, Uyy, . .. and A(t, z,u,0) is a

differentiable function of ¢, z, u, Uy, Ugz,..., and o, 0y, Oy, - . . It is obvious from ([[32) that Eq. (3
admits a GCS o iff

0'K |g—o=0, (133)

provided o is explicitly independent of time ¢.
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9.2 The (1+1)- dimensional GF equation
Let the Fisher equation admits a GCS of the form

0 = Uyy + H(u)uZ + F(u)u, + G(u), (134)
where H(u), F(u) and G(u) are arbitrary functions u. Substituting (I34)) into ([33]) one gets

[Huu —2H(2H, - H?) - —— (L - 3H> - (Hu - 2H2)} ul
—Uu

(I—wu)?\1l-u
| P — 2HE, — 4F(H, — H?) + —"(F, + 4P H) + |3
uu u u 1_u u (1—’11,)2 z
—|Guu —2F(F, — HF) — 4G(H, — H*) + 2u — 1)H — u(1 — u)H,
M HG - 2P 4 Gy) + M2 | (a1 - w) + 26)
1—u (1—wu)2| ®

Uy —u(l —u)Gy + (1 — 2u)G

+4FG(L—H)
1—u
m

+2G?*(H — m) =0. (135)

Equating coefficients of various powers of u, to zero and then solving the resulting overdetermined
equations we get

m

S l-u’

where ¢; and ¢y are arbitrary constants. The corresponding GCS are

Gu)=u(l—u), F(u)=c, Ym, (136)

0= Ugpy + T ui+cluw+u—u2. (137)

—u
With the above some exact solutions can be constructed. The ODE o = 0 is solved to obtain u
as a function of x with integration constants dependent on time ¢ alone. Then substituting this
solution into the governing equation, the time evolution of these time-independent constants are

determined. The exact solutions are then obtained by solving these systems.
The GCS ([I3D) leads to

u"—l—llug—i—clu’—i—u—uQ:O (138)
—u

which cannot be integrated as such except for m = 2. Thus for m = 2, we obtain
w=1-[1+A0)e™ + B{)e™*| ™", mys= % Ver—4 (139)
Substituting ([[39) into the Fisher equation (&) we get
R (1 A lmd + Dt maz] g lm3 4 1)+ mgx])l7 (1408)

c1 £/t — 4o
2 )

for m = 2. We wish to mention that the solution ([Z0al) can be recovered from the linear heat
equation Wang et al. [1996] and the results are similar to that obtained through the classical
algorithm. Further Eq. ([400) is similar to Eq. ([B3]) and hence we obtain the various propagating
structures already discussed through the classical method.

Eq. [38) is of non-Painlevé type for all other values of m (# 2) and is similar to BH) and
hence the previous results follow. Thus GCS reductions lead to the same results as that obtained
through the classical method for the modified perturbed GF equation.

my2 = (140Db)
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10 Conclusions

In this paper, we have investigated the integrability /symmetry properties of the generalized Fisher
type nonlinear reaction-diffusion equation in both (14+1) and (241) dimensions. The singularity
structure analysis singles out the m = 2 case as the only system parameter for which the GF
equation is free from movable critical singular manifolds. Further a Backlund transformation for
the integrable case is shown to linearize the GF equation to the linear heat equation. The symmetry
analysis shows that the system under consideration possesses interesting Lie point symmetries
that lead to the infinite-dimensional Lie algebra for the integrable case, thereby exhibiting various
interesting patterns and dynamics, and giving rise to a group theoretical interpretation for the
system. In addition to the above, we have given exact and numerical solutions for specific choices of
the nonintegrable case. Our studies on the GF equation reveals the existence of a large number of
interesting wave patterns, static and localized structures. We have also carried out the nonclassical
and generalized conditional symmetry reductions.

Acknowledgments

This work forms a part of the National Board of Higher Mathematics, Department of Atomic
Energy, Government of India and the Department of Science and Technology, Government of
India research projects.

References

Ablowitz, M.J. & Zeppetella, A. [1979] ”Explicit solution of Fisher’s equation for a special wave
speed”, Bull. Math. Biol., 41, 835-840.

Ablowitz, M. J. & Clarkson, P. A. [1991] ” Solitons: Nonlinear Evolution Equations and Inverse
Scattering” (Cambridge University Press, Cambridge).

Arrigo, D.J., Broadbridge, P. & Hill, J.M. [1993] ”Nonclassical symmetry solutions and the
methods of Bluman-Cole and Clarkson and Kruskal”, J. Math. Phys., 34, 4692-4703.

Bindu, P.S., Senthilvelan, M. & Lakshmanan, M. [2001] ” Singularity structures, symmetries and
integrability aspects of generalized Fisher type nonlinear diffusion equation”, J. Phys. A: Math.
Gen., 34, 1.689-L696.

Bindu, P.S. & Lakshmanan, M. [2002] ”Symmetries and integrability properties of generalized
Fisher type nonlinear diffusion equation, Proceedings of the Institute of Mathematics of NAS,
Ukraine, Eds. Nikitin, A.G., Boyko, V.M. & Popovych, R.O., Part -1, 43, 36-48.

Bluman, G.W. & Cole, J.D. [1969] " The general similarity solutions of the heat equation”, J.
Math. Mech., 18, 1025-1042.

Bluman, G.W. & Kumei, S. [1989] ” Symmetries and Differential Equations” (Springer-Verlag,
New York).

Brazhnik, P.K. & Davydov, V.A. [1995] ” Non-spiral autowave structures in unrestricted excitable
media”, Phys. Lett. A., 199, 40-44.

Brazhnik, P.K., Fan, S. & Tyson, J.J. [1996] ”Nonspiral excitation waves beyond the eikonal
approximation”, Phys. Rev. E., 54, 4338-4346.

Brazhnik, P.K. & Tyson, J.J. [1999a] ” Travelling waves and static structures in a two-dimensionsal
exactly solvable reaction-diffusion system”, J. Phys. A: Math. Gen., 32, 8033-8044.

Brazhnik,P.K. & Tyson, J.J. [1999b] ”On travelling wave solutions of Fisher’s equation in two
spatial dimensions”, STAM. J. Appl. Math., 60, 371-391.

28



Calogero, F. [1991] ”Why are Certain Nonlinear PDEs Both Widely Applicable and Integrable?”,
in What is Integrability? Ed. V. E. Zakharov, (Springer-Verlag, Berlin), p1-62.

Chou, K.S. & Qu, C.Z. [1999] ” Symmetry groups and separation of variables of a class of nonlinear
diffusion-convection equations”, J. Phys. A: Math. Gen., 32, 6271-6286.

Clarkson, P.A. & Mansfield, E.L. [1993] ”Symmetry reductions and exact solutions of a class of
nonlinear heat equations”, Physica D, 70, 250-288.

Fokas, A.S. & Yortsos, Y.C. [1982] ”On the exactly solvable equation S; = [(3S + 7) 2S.]. +
a(BS + v)~2S, occuring in two-phase flow in porous media”, SIAM J. Appl. Math., 42,
318-332.

Fokas, A.S. & Liu, Q.M. [1994a] ”Nonlinear interaction of travelling waves of nonintegrable
equations”, Phys. Rev. Lett., 72, 3293-3296.

Fokas, A.S. & Liu, Q.M. [1994b] ” Generalized conditional symmetries and exact solutions of
nonintegrable equations”, Theor. Math. Phys., 99, 263-277.

Gandarias, M.L. & Bruzén, M.S. [1999] ”Nonclassical symmetries for a family of Cahn-Hilliard
equations”, Phys. Lett. A, 263, 331-337.

Gandarias, M.L. [2001] ”New symmetries for a model of fast diffusion”, Phys. Lett. A, 286,
153-160.

Grimson, M.J. & Barker, G.C. [1994] ” Continuum model for the spatiotemporal growth of bac-
terial colonies”, Phys. Rev. E., 49, 1680-1684.

Head, A. [1993] "LIE: a PC program for Lie analysis of differential equations”, Comput. Phys.
Commun., 77, 241-248.

Lakshmanan, M. & Rajasekar, S. [2003] ” Nonlinear Dynamics: Integrability, Chaos, and Pat-
terns”, (Springer-Verlag, Berlin).

Levi, D. & Winternitz, P. [1989] ”Non-classical symmetry reduction: example of Boussinesq
equation”, J. Phys. A: Math. Gen., 22, 2915-2924.

Mansfield, E.L., Reid, G.J. & Clarkson, P.A. [1998] ”Non-classical reductions of a (341) dimen-
sional cubic nonlinear Schrédinger equation”, Compt. Phys. Comm., 115, 460-488.

Mathews, P.M. & Lakshmanan, M. [1974] ”On a unique nonlinear oscillator”, Qt. Appl. Math.,
32, 215-218.

Murphy, G. M. [1969] ” Ordinary Differential Equations and Their Solutions” (Affiliated East-
West Press, New Delhi).

Murray, J.D. [1989] ” Mathematical Biology” (Springer-Verlag, Berlin).

Nucci, M.C. & Clarkson, P.A. [1992] ” The nonclassical method is more general than the direct
method for symmetry reductions: An example of the FitzHugh-Nagumo equation”, Phys.
Lett. A, 164, 56-59.

Olver, P.J. [1986] ” Applications of Lie Groups to Differential Equations” (Springer-Verlag, New
York).

Qu, C.Z. [1997] ”?Group classification and generalized conditional symmetry reduction of the
nonlinear diffusion-convection equation with a nonlinear source”, Stud. Appl. Math., 99,
107-136.

Qu, C.Z. [1999a] ”New generalized conditional symmetry reductions and exact solutions of the
nonlinear diffusion-convection-reaction equations”, Commun. Theor. Phys., 31, 581-588.

29



Qu, C.Z. [1999b] ”"Reductions and exact solutions of some nonlinear partial differential equations
under four types of generalized conditional symmetries”, J. Austral. Math. Soc. B, 40, 1-42.

Qu, C.Z., Zhang, S. & Liu, R. [2000] ”Separation of variables and exact solutions to quasilinear
diffusion equations with nonlinear source”, Physica D, 144, 97-123.

Rosen, G. [1982] "Method for the exact solution of a nonlinear diffusion-convection equation”,
Phys. Rev. Lett., 49, 1844-1847.

Sachdev, P.L. [1987] ” Nonlinear Diffusive Waves” (Cambridge University Press, Cambridge).

Schwendeman, D.W. [1996] ” A front dynamics approach to curvature-dependent flow”, SIAM. J.
Appl. Math., 56, 1523-1538.

Scott, S.K. & Showalter, K. [1992] ”Simple and complex propagating reaction-diffusion front”,
J. Chem. Phys., 96, 8702-8711.

Scott, A.C. [ 1999] ” Nonlinear Science: Emergence and Dynamics of Coherent Structures” (Ox-
ford University Press, Oxford).

Showalter, K. [1995] ” Quadratic and cubic reaction-diffusion fronts”, Nonlinear. Sci. Today, 4,
1-10.

Walgraef, D. [1996] ” Spatiotemporal Pattern Formation” (Springer-Verlag, NewYork).

Wang, X.Y., Fan, S. & Kyu, T. [1996] ”Complete and exact solutions of a class of nonlinear
diffusion equations and problem of velocity selection”, Phys. Rev. E., 56, R4931-R4934.

Weiss, J., Tabor, M. & Carnevale, G. [1983] "The Painlevé property for partial differential
equations”, J. Math. Phys., 24, 522-526.

Whitham, G.B. [1974] ” Linear and Nonlinear Waves” (Wiley, New York).

Zhadanov, R.Z. & Yu Andreitsev, A. [2000] ” Non-classical reductions of intial-value problems for
a class of nonlinear evolution equations”, J. Phys. A: Math. Gen., 33, 5763-5781.

30



	Introduction
	Generalized Fisher (GF) Equation
	Singularity Structure Property of the GF Equation
	P-property of eq. (??)
	Bäcklund transformation

	Lie Point Symmetries of the (1+1) Dimensional GF Equation and Integrability
	Lie symmetries
	 Similarity reductions
	 Relation between symmetries of m=2 case and of linear heat equation

	The (2+1) Dimensional GF Equation 
	 Lie algebras

	Similarity Solutions of the (2+1) Dimensional Integrable GF Equation
	 General reductions
	Special Reductions
	Relation between symmetries of m=2 case and of linear heat equation in 2-spatial dimensions

	 The Nonintegrable (2+1) Dimensional GF Equation
	General reductions
	Special reductions

	Nonclassical Reductions
	The (1+1) dimensional Fisher equation
	The (2+1) dimensional GF equation

	Generalized Conditional Symmetry Reductions
	The method
	The (1+1)- dimensional GF equation

	Conclusions

