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Rich Variety of Bifurcations and Chaos in a Variant of Murali-Lakshmanan-Chua
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A very simple nonlinear parallel nonautonomous LCR circuit with Chua’s diode as its only non-
linear element, exhibiting a rich variety of dynamical features, is proposed as a variant of the
simplest nonlinear nonautonomous circuit introduced by Murali, Lakshmanan and Chua(MLC). By
constructing a two-parameter phase diagram in the (F −ω) plane, corresponding to the forcing am-
plitude (F ) and frequency (ω), we identify, besides the familiar period-doubling scenario to chaos,
intermittent and quasiperiodic routes to chaos as well as period-adding sequences, Farey sequences,
and so on. The chaotic dynamics is verified by both experimental as well as computer simulation
studies including PSPICE.

I. INTRODUCTION

Sometime ago, the simplest nonlinear dissipative
nonautonomous electronic circuit consisting of a forced
series LCR circuit connected parallely to the Chua’s
diode, which is a nonlinear resistor, was introduced by
Murali, Lakshmanan and Chua [Murali et al., 1994]. The
circuit exhibits several interesting dynamical phenomena
including period doubling bifurcations, chaos and peri-
odic windows. However, in the paramater regimes in-
vestigated, it does not exhibit other important features
such as quasiperiodicity, intermittency, period adding se-
quences, and so on. It will be quite valuable from non-
linear dynamics point of view to construct a simple elec-
tronic circuit which exhibits a wide spectrum of dynam-
ical phenomena [Lakshmanan & Murali, 1996]. In this
paper, we wish to point out that a rich variety of phe-
nomena can be realized with a simple variant of the above
MLC circut, by connecting the Chua’s diode to a forced
parallel LCR circuit instead of the forced series LCR cir-
cuit. The resultant system exhibits not only the familar
period doubling route to chaos and windows but also in-
termittent and quasiperiodic routes to chaos as well as
period adding sequences and Farey sequences, to name a
few.

II. CIRCUIT REALIZATION OF MLC

VARIANT CIRCUIT

The circuit realization of the proposed simple non-
autonomous circuit, namely, a variant of the standard
MLC circuit, is shown in Fig. 1. It consists of a
capacitor(C), an inductor(L), a resistor(R), an exter-
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FIG. 1: Circuit realization of the simple non-autonomous
MLC variant circuit. Here N is the Chua’s diode.

nal periodic forcing voltage source and only one non-
linear element(N), namley, the Chua’s diode. In the
dynamically interesting range, the v − i characteris-
tic of the Chua’s diode is given by the usual three
segment piecewise-linear function [Chua et al., 1987;
Kennedy, M.P, 1992; Cruz, J.M & Chua, L.O, 1992]. The
nonlinear element is added to the familiar forced parallel

LCR circuit instead of the series LCR of MLC circuit
[Murali et al., 1994]. The resulting circuit can be consid-
ered as another important very simple dissipative second
order nonautonomous nonlinear circuit and a variant of
the MLC circuit. By applying Kirchhoff’s laws to this
circuit, the governing equations for the voltage v across
the capacitor C and the current iL through the inductor
L are represented by the following set of two first-order
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non-autonomous diffrential equations:

C
dv

dt
=

1

R
(f sin(Ωt) − v) − iL − g(v), (1a)

L
diL
dt

= v, (1b)

where g(.) is a piecewise-linear function defined by Chua
et al. and is given by g(v) = Gbv+0.5(Ga−Gb)[|v+Bp|−
|v −Bp|] which is the mathematical representaion of the
charactierstic curve of Chua’s diode [Kennedy, M.P, 1992;

FIG. 2: Two parameter phase diagram in the (F − ω) plane.

Cruz, J.M & Chua, L.O, 1992]. The values of the various
circuit parameters chosen for our study are as follows:
C=10.15 nF, L=445 mH, R=1745 ohms, Ω = 1.116KHz,
Ga = −0.76ms, Gb = −0.41ms, and Bp = 1.0V .

In equation(1), f is the amplitude and Ω is the angular
frequency of the externl periodic signal. Rescaling Eq. (1)
as v = xBp, iL = GyBp, G = 1/R, ω = ΩC/G, and
t = τC/G and then redefining τ as t, the following set of
normalized equations are obtained:

ẋ = F sin(ωt) − x − y − g(x), (2a)

ẏ = βx,

(

. =
d

dt

)

(2b)

where β = C/LG2, F = f/Bp, G = 1/R. Obviously
g(x) = bx + 0.5(a − b)(|x + 1| − |x − 1|). Here a =
Ga/G, b = Gb/G. Note that the two coupled first order
ordinary differential equation given by Eqs. (2) can also
be written as a single second order differential equation
of the Lienard’s type in the form

ÿ + ẏ + βg(ẏ/β) + βy = βF sin(ωt). (3)

We note at this point chaos via torus breakdown gen-
erated in a piecewise-linear forced van der Pol equation
of the form(3) with asymmetric nonlinearity has been

studied by Inaba and Mori [Inaba, & Mori, 1991] some-
time ago. However the corresponding circuit uses more
nonlinear elements than the present circuit. Now the
dynamics of equation(2) or equivalently (3) depends on
the parameters a, b, β, ω and F . Then for the above
chosen experimental circuit parameter values, we have
β = 0.05, a = −1.121, b = −0.604 and ω = 0.105. We
use the amplitude F of the external periodic forcing as
the control parameter and carry out a numerical simu-
lation of Eqs. (2) either by integrating Eqs. (2) or by
solving Eq. (3) analytically and numerically, for increas-
ing values of F . For the above choice of parameters the
numerical simulation of Eqs. (2) exhibits novel dynamical
phenomena.

FIG. 3: (a) One parameter bifurcation diagram in the (ω−x)
plane and (b) maximal Lyapunov spectrum (λmax). The value
of the forcing amplitude has been fixed at F = 0.28

To begin with we have carried out an experimental
study of the dynamics of the circuit given by Fig. 1. The
driving amplitude(f) is slowly increased from 0V and the
response of the system is observed to progress through
a series of transition from periodic motion to aperiodic
motion. When the driving amplitude f = 0 (correspond-
ing to the autonomous case), a period-1 limit cycle is
observed. By increasing the amplitude from zero up-
wards, the circuit of Fig. 1 is found to exhibit a quasiperi-
odic(torus) attractor which then transits to chaos via
torus breakdown, followed by periodic windows, period-
adding sequences etc. We have confirmed these results
also by using the standard 4th-order Rugne-Kutta inte-
gration routine and carrying out a numerical analysis of
Eqs. (2) or equivalently Eq. (3) with the rescaled circuit
parameters of Fig. 1 as given above. We have observed a
series of appearence and disappearence of the quasiperi-
odic (torus) and phase locking(periodic) attractors, and
period-adding sequences alternatively by varying the am-
plitude F of the external source at fixed frequency. Illus-
trated in Fig. 2 is the two paramater phase diagram which
is plotted in the (F − ω) plane. In particular, quasiperi-
odic motions and period-adding sequences besides the
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FIG. 4: (a) One parameter bifurcation diagram in the (F −x)
plane and (b) maximal Lyapunov spectrum (λmax). The value
of the forcing frequency has been fixed at ω = 0.105

standard bifurcation sequences have been observed in re-
gions of the lower drive amplitude (F ) and frequency (ω)
values. For example, typical quasiperiodic attractors ex-
ist in the range F = (0.15, 0.2), and ω =(0.09, 0.16). Sim-
ilarly, a period adding sequence exists for F = (0.36, 0.38)
and ω = (0.1, 0.115), a period-doubling bifurcation se-
quence for F = 0.39, and ω = (0.09, 0.1), and also type
I intermittency has been identified for F = 0.38 and
ω = (0.10636) . In addition for F = (0.24, 0.27) and
ω = (0.138, 0.146), as well as for F = (0.26, 0.29), ω =
(0.128, 0.138) and for F = (0.28, 0.33), ω = (0.11, 0.125),
Farey sequences [Kaneko, 1986] exist. The regions of
chaos are also indicated in Fig. 2. Finally Fig. 3(a).
represents the one-parameter bifurcation in the (ω − x)
plane, for F = 0.28 which consists of quasiperiodicity,
chaos, windows, period adding sequences and the familiar
period doubling bifurcation sequence, intermittency and
so on. In fig. 3(b) its corresponding maximal Lyaponov
spectrum in (ω − λmax) is plotted. Also fig. 4(a) repre-
sents the one-parameter bifurcation in the (F −x) plane,
for ω = 0.105, fig. 4(b) depicts the corresponding maxi-
mal Lyaponov spectrum (F −λmax) . Further, the exper-
imental results obtained for a choice of circuit parameters
were also confirmed by using the PSPICE [Roberts, 1997]
deck available to simulate the behavior of the circuit in
Fig. 1. In Fig. 5, we have included for comparison the
chaotic attractor corresponding to F = 0.389V in Eq. (1)
for experimental and SPICE analysis and corresponding
numerical simulation for amplitude f = 0.383 in Eq. (2).

III. CONCLUSION

In this letter, we have presented a very simple second
order dissipative nonlinear nonautonomous circuit which
is a variant of the MLC circuit and carried out. It is

FIG. 5: (a) Chaotic attractor corresponding to F = 0.389V ,
Ω = 1.116KHz in Eq. (1): (a) experimental (b) PSPICE and
(c) corresponding numerical simulation of Eq. (2)

.

shown to possess a very rich variety of dynamical phe-
nomena. In view of the appearance of several ubiquitous
routes to chaos such as quasiperiodicity, intermittency,
period doubling, period-adding and Farey sequence in
such a single but simple circuit, one can make use of the
circuit in varied investigations on chaotic dynamics and
applications, including spatio-temporal studies. A more
detailed analysis of these aspects will be published else-
where.
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