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Effect of correlations on electron momentum density
in liquid metals |
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Abstract. A scheme to calculate the electron momentum density in simple liquid
metals, with the effect of both electron correlations and ionic potentials included, is
given. This scheme is applied to the case of liquid aluminium. The results are
substantially different from calculations considering only the ion potentials, and also
from the results for a homogeneous electron gas of corresponding density.
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1. Introduction

It has been noted (Chaddah and Sahni 1976) that the electron correlations are the
probable cause of the long tail seen in experimental Compton profiles (CP). We are
already aware of the well known calculation of Daniel and Vosko (1960) for a homo-
geneous interacting electron gas, which shows that electron correlations reduce the
discontinuity in the electron momentum density (EMD) at K, and also introduce a
long tail in it. It is interesting to explore if calculations for an inhomogeneous
interacting electron gas show a large tail in the EMD. The problem becomes
extremely complex for a crystalline solid but for a molten metal it is somewhat
tractable and it turns out that one can perform numerical calculations within a reason-
able approximation scheme. Accordingly, we present a scheme for calculating the
EMD of a monoatomic molten metal, which includes the effects of both electron
correlations and ionic potentials, and give the results of a calculation for molten Al
Our approach is essentially an extension of the Daniel Vosko scheme in which the
ionic effects are included by following a formalism due to Edwards (1962). In a
pioneering work in the study of electron states, Edwards developed a formalism for
calculating the electron Green’s function starting from the free electron Green’s
function and taking account of the perturbation because of ionic pseudopotentials.
The perturbed Green’s function G(k- E) that he calculated can be used to obtain the
EMD and the density of states: i

n(k)=—;1; f Im G- (k, E) dE ' 1)
occupied
. states . .
[e o] ‘ g
and p(E)=—--71;f_°oIm G- & E)d°k o
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where the superscript identifies the retarded Green’s function. Among other things,
Edwards showed that Ziman’s theory of resistivity in liquid metals follows as an
approximation to his own formulation. However, he did not perform any numerical
calcnlations for n(k) or p(E). Later Ballentine (1966) used this method to numerically
obtain the EMD, and density of states, in liquid Al. Moreover, for reasons to be
discussed in the next section, he also used a self-consistent procedure (often called
the complex energy approximation) to evaluate the Green’s function, and obtain the
EMD (besides other electronic structure information) for liquid Al, Zn and Bi.
Itami and Shimoji (1972) studied the electronic structure of many liquid metals and
alloys using Ballentine’s self-consistent procedure. Chan and Ballentine (1972) have
recently used non-local pseudopotentials to obtain the electronic structure in liquid
Bi, In and Hg. None of the above calculations has, however, attempted to include
the effect of electron-electron correlations. Various other methods have been used
to calculate the density of states in liquid metals, but they also do not consider
correlations. To avoid digression, we will not discuss them here but shall concentrate
on reviewing the work of Ballentine (1966), as this is of utmost relevance to us.

Our approach essentially consists of modifying the free electron propagator to
include the effect of ion potential by the above method. This modified propagator
which describes the °unperturbed state ’—with the electron-electron interactions
playing the role of perturbations, —is then used for calculating the EMD following
the same procedure as was used by Daniel and Vosko (1960). The numerical results
for liquid Al, presented later in this paper, reveal that whereas the departure of the
EMD from the unit step function is, for example, 0-05 at 0-9K for a calculation
following Ballentine, inclusion of correlations changes it to 0:15 at 0-9 K. It must be
emphasized here that although the EMD can be measured by using either Compton
scattering or positron annihilation, the electron correlation effects are not seen in the
latter experiments (Carbotte and Kahana 1964). The reason for this is that the anni-
hilating electron, because of the positron, appears partially neutral to the other
electrons. Thus to directly test the above conclusions a CP study has to be made,
and some efforts in this direction are under way. A preliminary report of this
work has been published (Chaddah 1977).*

2. Effect of ionic pseudopotentials on the electron Green’s function

For investigating the behaviour of the conduction electrons, we adopt the usual
model for a molten metal wherein these electrons are presumed to be detached
from parent cores, and influenced by ionic pseudopotentials and mutual electron-
electron interactions. The effect due to the pseudopotentials will be examined in
this section, and the electron-electron interactions will be taken up in the following
section. '

Let V(r) be the total potential due to the ions, and G, (E) be the free electron
Green’s function, then formal perturbation theory gives

G (E) = Gy (E) + G, (E) V Gy (E) + Gy (E) V Gy (E) VGy (E) + ... (3)

*The lower limit of integration in eq. (6) is —co and not Zero as wrongly typed.
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to be the electron Green’s function in the presence of the jons. We now take ¥(r)
to be the sum of spherically symmetric potentials centered at each of the N ions, ie.

Ve => v(|r—Rq|). (4)

a

This results in factorisation of the matrix element
k| V|K) = (k|o|K) > exp [i (k' —k) ' Rq] ©)

and we may write eq. (3) in the momentum representation to get the diagonal com-
ponent

G (k, E) = G, (k, E) + G, (k, E) V (&, k) Gy (k, E)

+5 G (& B) V(I k) G (&, E) V (K, k) Gy (k, E) + .. ©)
kl

. 1
with Gy(k, Ey = —0——. 6a
o 06 B) = e (69
where we use units such as 4 =1 and m = 1. The nth order term in eq. (6) can be
written as

> Gk E) (k|o|ky) Gy (ky, B) (g |0 [k .
kl» kz, (R} kn-l

vor (kney | 2 | K) Gy (&, E) C, (b —k, Kp—ky, ..oy k—k, ;) @)

where

Colo, PoysB) = . e[ Rat .. +P R @

Qy Py ey

Equations (6), (7) and (8) show how the (perturbed) Green’s function is modified
by the pseudopotentials for a given microscopic configuration of ions. Now in
any macroscopic sample of molten metal, there will be a conglomeration of various
microscopic configurations and one must average over all of these, that is to say we
must ensemble average the above equations. To obtain such an ensemble average

of G(k, E) we replace C, by its ensemble average C,, and this involves the n-particle
correlation function of the liquid. As a matter of fact the above equations, as they
stand, equally apply for a solid or a molten metal. However, the ensemble averaging
makes the numerical computations far more tractable for the latter. The perturba-
tion series given by eq. (6) can be rearranged and summed to obtain

Gk, E)= [E — ’ﬁ; 2k, E)Tl | ©)
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Figure 1. Theself-energy of the electron, Z, is the sum of all the irreducible diagrams.

The full-line indjcates the free electron propagator, while the dotted lines indicate
interaction with the ionic potentials.

where Z(k, E), the © self-energy °, is the sum of all the irreducible graphs and this is
indicated in figure 1. To obtain the retarded Green’s function one follows the
standard procedure of adding an infinitesimal positive imaginary part to E. The
1st order contribution to X(k, E) is just the average potential energy, which can
be chosen as zero. The second order contribution is given by (Ballentine 1966)

r B = [gn 4D I ak—) '
50 E) =, [a T | (10)

with
a(k—p)=rc,(p—k, k—p),

and we will ignore higher order contributions to Z(k, E). Note, however, that this
does not mean that G(k, E) contains only terms up to second order in v, rather it
contains contributions to all orders due to a class of terms. In eq. (10), n is the
ionic density; a is the fourier transform of the two-particle correlation function, or
the structure factor; and u is the ionic pseudopotential. The angular integration in

eq. (8) can be easily performed by using the spherical symmetry of @ and u, and
we get the real and imaginary parts as

Rl Z (k, E) = 4}% f : pdp [u(p)I* a(p) In W[ an
3
Im Z(k, E) = ___é_n;z_l__c | :-VjE) pdp (PP a(p). . (12)

Using egs (9), (11) and (12) with appropriate values for the pseudopotential and the
structure factor, 2'(k, E) and hence G(k, E) can be evaluated. Substituting the latter
in egs (1) and (2), one can obtain the EMD and the density of states. Ballentine
found an anomaly at low energy, in the calculated density of states on using this
procedure. He found from calculations based on the above formalism that for
some positive values of k both the equations given below were satisfied.

Im Z(k, E)=0 - | @)

2
and E—’iz —RI 5(k, E)=0.
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One can see from eq. (9) that this means that G(k, E) has a pole for some positive k.
This implies that there is an eigenstate of the momentum operator which is also a
.stationary state of the system, and this result is evidently untenable. It can be
shown that this error has crept in approximating Z(k, E) by Z,(k, E). Ballentine
therefore proposed that this might be eliminated by evaluating 2Z(k, E), to second
order, in a self-consistent manner, as the solution to the following equation

_ 1 (s (k=) a(k—p)
2k E) =g, [d P e A r (14)

This corresponds to summing the irreducible diagrams shown in figure 2. We can
easily see that if eq. (14) is satisfied by Z(k, E), then X cannot satisfy eq. (13) for posi-

tive k. If it satisfies (13) for some k=p,, then from eq. (14) imaginary part of the
integrand equals

(k=) Palk—p0) 5 (E 2 —R1 2 9, E)

and the delta function is satisfied for a p, in the range of integration, and so
Im X (k, E) cannot be zero for any k and we are faced with a contradiction. So,
eq. (13) can no longer be satisfied and the anomaly is removed by using the self-
consistent eq. (14) for Z(k, E). In practice, rather than solving the integral eq. (14),

one replaces Z(p, E), under the integral sign by Z(p,, E) where P, is chosen, for a
given E, to satisfy

2
E— ’.’3_ —R1 X (py, E)=0 (15)

~and it can be checked that eq. (13) cannot still be satisfied. - Putting

F(E)=E—ZX(p,, E), - (16)
we then get
© +k)*— F
2 By=— T | (PO () [ %] an

We can see that in effect eq. (17) may be obtained by the angular integration of (10),
with E replaced by the complex parameter F, and this has led to its being called the

‘ complex energy approximation’. To solve eqs (15), (16) and (17), Ballentine
used the following procedure. : :

, RN *
/7N AN PSRN
by = ra- 3 Ly

s PN

/ S s
+ LB 4 AAA

b -

Figure 2. The self-consistent X used is the sum of the irreducible diagrams shown.
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(i) choose a value of p,, and using (15) and (16),
RUF(E)=p#2 (18)

(ii) From (16), Im F (E)=—Im 2 (P;, E) and substituting for the imaginary part
of X from eq. (17),

%(P +po)*—F
2pyp Im F (19)'

n © | 2 -1
= t
py f 0 pdp [u(p)? a(p) tan T pdpit (im TP

where we have made use of eq. (18), and the arctan is fixed between —= and =. Equa-
tion (19) is solved numerically to obtain Im F as a function of p,. With this, we
know F and on using eq. (17) we can get Rl 2 (p,, E) as

RIZ (o B) == o [ pdp up)Palp)

bm® py

(Z+pop) + @m P

—ih| o - (20)
(£~ por) + m Py
and finally obtain
=P LRI (py, E | @
E == +RIZ(py E). | @1

We thus obtain E and F for various values of p,. These are then inverted to write
p, and F as functions of E and upon substituting in eq. (17) we can obtain the com-
plete function Z(k, E). o

For the case of liquid Al, Ballentine used the pseudopotential of Heine and
Abarenkov (1964) and the structure factor obtained by Gamertsfelder (1941). But,
as also noted by Ballentine, this x-ray structure factor has a spurious peak at low
momentum, and thus the calculated EMD will show an exaggerated departure from
the free electron case. So for our calculation we decided to use a more accurate
value of the structure factor determined by Fessler e al (1966) using neutron scatter-
ing. Of course, as a check on our computer program we first reproduced the earlier
results of Ballentine using Gamertsfelder’s structure factor.

For the pseudopotential we again used the Heine-Abarenkov pseudopotential
previously used by Ballentine. The potential has been generated in a local approxi-
mation, and is screened using the static Hartree dielectric function which is slightly
modified, following Heine and Abarenkov, to account for the conduction electrons
being orthogonal to core states. We have used the same parameters, and followed
the same local approximation scheme, as were employed by Ballentine. We should
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Table 1. A comparison of various calculations for the EMD for liquid Al

EMD: n(k)

With only correla~
tions and no elec-
tron-ion interaction

With only electron- Wwith both electron-
klky ion interactions ion interactions

im0 corclations - agd corlations o Daniel and
osko)

01 0-98 097 097

0-5 0-:98 0:96 ' 096

07 0-98 0:93 094

0-8 097 091 0-93

09 0-95 085 0-90

1-1 0-047 0-09 0-06

12 0-015 0-036 04029

1-3 0-007 0-02 0-02

emphasize that at this stage no effort is made to include the effect of correlations
among the conduction electrons.

Using this potential and the structure factor of Fessler et al (1966) we followed
Ballentine’s self-consistent procedure, and obtained the EMD.  Our results are
given in table 1. 'As expected, this is more free electron-like than what was obtained
by Ballentine using the structure factor due to Gamertsfelder. The value of
X (k, E) obtained in our calculation were used in what follows.

3. Inclusion of correlation effects

With the values of Z (k, E) obtained above, eq. (9) gives the Green’s function for
electrons by the ionic potentials. In this section we consider the effect of coulombic
interactions amongst these ¢ modified * electrons. -

We now make the approximation to eq. (9), valid in the region near the pole of
the Green’s function,

Gk B) = ——— e
. E—2_—X(k,E) E— _-— k, —+ 2
Jstn E-g-3[egr2)

! < (23)

k2 k2
E——_ — k, —
2 =2(=3)
and we will use for convenience the notation

seskH e
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We have thus assumed that the modified electrons have energy e, = (k?/2) + Rl 2,
and a damping y,=Im Z,. Now, for a long-lived quasiparticle having a Green
function given by eq. (9), we have (see Fetter and Walecka 1971).

k2
& ==+ RLI(K )

—_ Imz(ks ‘k)
Ow

a)=€k]

For

39X (k, w)

1
ow <

o= €k

we get back the approximation made in eqs (23) and (24). Such approximations,
where the E-dependence of Z(k, E) is finally ignored, are made when we use the
momentum to label decaying quasiparticle states. We attempt to look at these
states as simultaneous eigenstates of the hermitian momentum operator and a non-
hermitian Hamiltonian. If such simultaneous eigenstates are to form a complete
set (as desired here, and in complex band structure calculations) then the momentum
operator and the complex Hamiltonian must commute. This straightaway implies
that both the real and the imaginary parts (e and y) of the complex Hamiltonian
must be functions of k alone.- In our case the complex energy, which is a function.
of k alone, is :

.
‘K =5 T

We are now ready to consider the correlation effects and to calculate the EMD
following Daniel and Vosko (1960). Following their procedure, we add to the
actual Hamiltonian a fictitious infinitesimal term to get

_ 2 + 2 +
Hy(k)= °+’\kF§ R el DI 3ok @
p+a P

Here A is an infinitesimal parameter, and aﬁ‘ (a) is the creation (annihilation) opera-
tor for an electron with momentum k (but with a propagator given by eq. (23)).
The EMD n(k) of the system is given by the ground state expectation value of aja;,
We use in eq. (25), and in what follows, the convention

|p| <k and |p+ q| > kg (26)
The momentum density is then calculated as follows. The ground energy E, (k)

of this fictitious Hamiltonian H, (k) is evaluated by treating the perturbation, caused
by electron interactions and the fictitious term, in the random phase approximation,
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using the technique of Gell-Mann and Brueckner (1957) to sum the diagrams for
electron-hole pair excitations. The effect of the electron-electron interaction till
the Hartree-Fock term is included in the pseudopotential, and only diagrams cor-
responding to interactions beyond these are considered. Also, as pointed out by
Daniel and Vosko (1960), exchange graphs give comparatively negligible contribu-

tion near the Fermi surface and are ignored. The EMD is then evaluated using
E, (k) through the equation

2 laE (3] ‘
PO e B0 @

Equation (27) already takes account of the number of states per unit k-space, and
the EMD is given by

n(k) =P (k) for k> ky
=1+ P (k) for k <K, 28)

We have implicitly assumed that the ground state of the unperturbed system is
a Fermi vacuum. This is justified as Rl 2, is a smooth function of k and so all
states from k=0 to K are occupied, where K satlsﬁes

Kf \Riz, —E
7'*" KF_— F* ' (29)

Moreover, it is clear from eq. (27) that what matters (in the evaluation of the EMD)
is the A-dependent part of the ground state energy, and this is obtained from the
electron-hole pair excitations. Consequently, what is really important is to fully
include the effect of ionic potentials in the corresponding propagators, and this is
what we do by using the propagators given by eq. (23).

Gell-Mann and Brueckner (1957) had obtained the correlation energy for a homo-
geneous electron gas in the random phase approximation. The problem is to sum
to all orders the contributions, to the ground state energy, of electron-hole excita-
tions with a momentum transfer q. They rewrote the energy denominators ina
temporal representation, with suitable electron propagators, and they obtained the
sum of all diagrams in a given order as a single integral. The contributions from
various orders then form a geometric series, and can be summed in a closed form.
Using the Gell-Mann and Brueckner technique, and following the procedure of
Daniel and Vosko (1960), we get

1Qk3 1 zw (=1
E, (k) =— d3 .
2 (k) 2788 2 Ip+ql>lq 1 n=2 n

[l
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with units K, = 1 in eq. (30) and in what follows, and with
Qu, g, k) = flp‘ <1 9 f‘fm dt exp (—itug)

exp [— | | (qp+qi— §p| T A @ip+al,&k — dpf, )]

(1)

(32)

and where €k gives the energy at which the pole occurs in G(k, E). From eq. (23)

k2
qxi = 5 1 %

(33)

The sign of Im X, is chosen suitably for k£ > 1 and k < 1, and also for > 0 and

t>0. To first order in A we can write

Ey (k) = E, + AE (k)
where

Qk2 1 ddq (% z"o (—-aQ )"
E (k)y=""L — — it : 9
1) 8w 4 q f——oo ua Oy n=1\ ¢*

@, and O, are given by

Qo q)= [ d% [7 dtexp (—itug)

Ipl <l
ip+qf>|

exp[—|2]| (gp+aql—¢p)]
0B =[d% Cp+alkdp B [O, dn
eXp(QituQ)itI-eXp[—-lfl(e|p+q|—e;p|)]
Putting  o=}¢*+q.p+ RLYp 4 q—Rl 2|p,
and B=ug—TIm 5| p + q — Im Zyp)
where Im X > 0, we get

[¢3

Oy (9) =2 d*p oy

o?—p2

—_— 3 R
Qg R ==2[dpCp+ark—dpLR) -

- (34

6y

- (36)

@7

(38

(39)

(40)
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We finally get from eqs (27) and (34),

1 oo 2
P (k) = dg | dua g —
= g [0t [J et B[ = 1] @

where the limits of ¢ integration are from (1—k) to oo for k<1, and from (k—1) to
(k+1) for k£ >1. v

The problem of calculating n(k) reduces to evaluating the above integrals, and
this is discussed in the next section.

4. Computational details and results -

We will now discuss how to evaluate the EMD in a liquid metal using the preceding
theory. To evaluate P(k), we first need to calculate @y and O, and for this we
use the values of 2, whose computation was described in section 2. 'We performed
the double integrations (over p and 6) in egs (39) and (40) numerically and obtained
Q, and Q, for various u, g and k. The calculation was tested by taking 2'=0, and
reproducing Daniel and Vosko’s free electron results with a=0-11. In evaluating
P(k) we exploited one simplifying feature viz. for large values of either g or u, Q,
and Q, are almost independent of Z. We may therefore simplify the evaluation of
eq. (41) by splitting the range of integrals into two regions: Region I where u and
g are both less than some large but finite value £ (taken as 4-5 in our case) and Re-
gion II where either u or ¢ (or both) exceed ¢. Since in the latter region Q,and @,
are almost independent of ¥ (including ¥=0), the contribution to P(k) from this
region may as well be obtained for the free electron case (i.e. Z=0). Thus the
Z-dependence needs careful consideration -only for Region I. The contribution to
P(k) from this region is designated as P'(k), and from Region II as R(k). In our
computation we evaluated R(k) by calculating P’(k) for the free electron case (i.e.
Z=0) and subtracting this value from the results of Daniel and Vosko (with
a=0-11). We next obtained P’(k) for molten Al by actual numerical integration,
and deduced P(k) by .

P(k) = P'(k) + R(k). (42)

The EMD n(k) is then obtained from eq. (28). The results from our scheme are
given in table 1. For comparison, we have also given the results for a free electron
gas of corresponding density. We have ignored the effect of temperature on the
electron occupancies, since it causes a comparatively negligible change.

As is evident from the tabulated results, when the effect of both the ionic and
correlation effects is included, the deviation of the EMD from the unit step-function
is more than what either of the earlier schemes (which ignore one or the other of
these effects) yields. We may add that our scheme can also be used to study cor-
relation effects in anisotropic materials, though the computational effort required
would go up enormously. :

We would like to draw attention to an earlier attempt to study the EMD of an
inhomogeneous interacting electron gas. Eisenberger et al (1972) had calculated
the EMD in those pure metals where the smallest reciprocal lattice vector |G| > 2K,
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+) 1]

Figure 3. We have followed the convention that|p| > pp and corresponds to &
‘hole® while jptq|> Py and corresponds to a particle. Q is the momentum -

transferred in an electron-ion interaction. The diagrams correspond to (a) electron
self-interaction, (b) electron-hole interaction; and (c) electron-electron interaction,
mediated by anion.

in particular for Li and Na. They treat the electronic correlation ‘exactly’ (in the
spirit of Daniel and Vosko 1960) and treat the inhomogeneous potential effect to
second order of perturbation. In our calculation for a liquid metal, the effect of
ions is considered to the second order of irreducible diagrams. This is well beyond
the second order of perturbation. Further, in view of a large number of Green’s
function calculations for disordered solids, the electron self-energies obtained to a
high degree of accuracy can be used in our scheme to obtain EMD’s for other in-
homogeneous interacting electron systems.

Before concluding we must note that in this scheme the ionic potentials are ex-
plicitly included only in the single electron Green’s function, and consequently some
many particle interactions are ignored. Though we include diagrams of the form
shown in figure 3(a), electron-ion-electron interactions of the form shown in figure
3(b) are ignored. Such an jonic interaction will be accounted for if one starts with
a two-electron Green’s function, or in a many-body calculation which includes both
ion-electron and electron-electron interactions simultaneously. In this case, how-
ever, the contribution from (a) is larger as one is allowed all values of momentum
transfer Q to the ion. In (b) one starts with an electron-hole pair and the magnitude
of Q is restricted since both the annihilating electrons cannot lie outside the Fermi
sphere. Such restrictions on the available phase space do not apply for diagrams
shown in figure 3(c), but their contribution cannot be evaluated by the present
scheme.
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