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Do we really need a superconducting glass model ?
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Abstract. Muller and coworkers have introduced the concept of a superconducting glass to
explain some magnetization data in high T, superconductors. We explain this data using
conventional ideas of type-II superconductivity.
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Susceptibility measurements on La,.gsBay.; sCuO, have been interpreted as resulting
from a “superconducting glass” state (Muller er al 1987). The concept of a super-
conducting glass has also been used as a possible explanation of the isothermal
magnetization data on La, ¢St,.,Cu0O, (Maletta et al 1987). This concept has been
used to suggest the existence of Josephson junctions in the intragranular regions
(Deutscher and Muller 1987; Morgenstern et al 1987) of high T, superconductors. We
shall show in this note that this data can be explained by conventional concepts
without invoking a superconducting glass state.

It is well known (see e.g. Chandrasekhar 1969) that the state of a superconductor at
any (H, T) point is independent of how this point is approached only because B =0
inside the superconductor. It follows as a corollary that for a type-II superconductor in
the region H > H.,, the state of the system will depend on how the point (H, T) is
approached. We will first show that the ergodic and non-ergodic behaviour of
susceptibility (Muller et al 1987) is a manifestation of the path-dependent nature of the
state above H,,. They first cooled the sample to a low temperature in zero field, then
applied a field H and studied the susceptibility through various stages of heating and
cooling in this constant field H. They made measurements in fields varying from 0-35T
to about 0-02 T which are all larger than H,, in these materials (Grover et al 1988).

When a zero-field cooled (ZFC) sample at T is subjected to a field H > H.y,
macroscopic shielding currents are set up and a model for the magnetization of such a
ZFC sample was proposed by Bean (1962, 1964). When such a sample is heated in this
field H, to a temperature T}, we will argue that the equilibrium state will be the same as
that of a ZFC sample cooled to T; and then subjected to H. Muller et al (1987) then
cooled this sample, and this field cooling from (T, H) to (T, H) does not change the
macroscopic shielding current distribution from that at (T, H), but the London
screening increases as H,; increases on cooling. A sample thus prepared at (T, H) is
different from a ZFC sample at (T, H), or from an FC sample at (T, H), and its path-
dependent magnetization can be obtained by following Bean’s model (1962, 1964).

Ravi Kumar and Chaddah (1987,1988) have extended Bean’s model to high T,
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superconductors by assuming that J, decays exponentially with H. It is also known
from experiments that J, decays exponentially with increasing temperature (see e.g.
Senoussi et al 1988). With these inputs we have calculated the magnetization seen by a
sample subjected to temperature and field variations as in the studies of Muller et al
(1987). We assume that the sample is an infinite slab and the parameters and the results
of our calculation are shown in figure 1. These will now be explained and compared
with the results shown in figure 2b of Muller et al (1987).

Point A in figure 1 is the calculated magnetization of a ZFC sample in a field of
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Figure 1. The calculated magnetization of a sample in an external field of 10 mT. The sample
is assumed to have a T.=90K and is prepared at point A by cooling in zero field and then
applying 10 mT. It follows curve 1 on heating but is cooled and heated in between at points
B, C, D and E. The curves labelled 2 are all reversible, but the magnitude of the slope increases
continuously from points B to E. We have taken Jeo*(= 107 Amp/em?) = 1.
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10mT, which is more than H,, (0). As the temperature is raised curve 1 is followed and
the magnitude of magnetization drops as J,(H) decreases with increasing temperature.
When we warm the sample from (H, T) to (H, T)), the shielding currents flowing at T
start decaying because their current density is more than J(T)) (see e.g. section 7-2 of
Wilson 1983). The decay rate is governed by the (small) flux-flow resistance. As these
shielding currents decay the field profile inside the sample changes and shielding
currents are set up deeper inside the sample. The final distribution of shielding currents
and thus the magnetization is identical to that of a ZFC sample which was cooled only
to T; and then subjected to a field H. If we now cool the sample from T, to T it does not
retrace curve 1 but follows curve 2. This is because the shielding currents at (H, T})
always remain below the critical current density during cooling, and thus will not decay
and the shielding current distribution cannot change. There is a small increase in H,,
on cooling from Ty to T and this results in a small increase in the magnitude of
magnetization or susceptibility (magnetization and susceptibility are proportional in
this constant field case). Since London screening is reversible, and since the shielding
currents do not experience any flux flow resistance during the traversal of curve 2, curve
2 is reversible and this is in accordance with the results of Muller et al (1987).

Based on the arguments in the preceding paragraph, we can state that curve 1 is
followed on heating but not on cooling. On cooling from any point on curve 1 we will
get a curve similar to the set of curves 2. The magnetization along curve 2 is reversible
until it merges with curve 1. The slope of curve 2 is dictated by the variation of H,; with
temperature, and this reversible curve will thus have a smaller slope at lower
temperatures. Finally at temperatures close to T, curves 1 and 2 will appear, within
experimental error, to merge and curve 1 will appear reversible. All these features are
depicted in figure 1 and explain the ergodic and non-ergodic behaviour reported by
Muller et al (1987). We should mention that Bean’s original assumption of field-
independent J, and Ravi Kumar and Chaddah’s extension yield results that would
appear indistinguishable on the scale of figure 1.

We now consider the field-dependent isothermal magnetization of a ZFC sample
(Maletta et al 1987) shown in figure 2a. The magnitude of the slope decreases with
increasing field and the magnetization reaches a minimum before again increasing. As
shown in figure 2b, this is consistent with the model of Ravi Kumar and Chaddah
(1987), but not with Bean’s original model (1964) and this has been discussed in detail
by Grover et al (1988). It should be emphasized here that irrespective of how small be
the ratio of the grain size to the London penetration depth, the slope of M vs H curve
must always be independent of H (see Clem and Kogan 1987) for fields below H,,. A
large penetration depth cannot explain the data of figure 2a. The isothermal
magnetization data are also thus explained with a conventional theory of type-1I
superconductors. .

The final feature is the decay of magnetization with time on switching off the field
(Muller et al 1987). Within Bean’s model any change in the external field requires a
redistribution of the shielding currents and this is the process of flux-creep. Such a
feature is well known in type-II superconductors (see e.g. figure 3.3.24 of Brechna 1973),
and is explained within the Kim-Anderson model of flux creep (Anderson and Kim
1964)..

We have shown in this paper that the major experimental results used to propose a
superconducting glass state can be understood within existing conventional theories of
type-1II superconductors.
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Figure 2. Measured isothermal magnetization curve of Maletta et al is shown in (a), and the
calculated curves in (b). The agreement with the model of Ravi Kumar and Chaddah is

apparent. .
4
The authors are grateful to Dr K V Bhagwat and Dr B A Dasannacharya for
discussions.
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