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During the efficient genetic transformation of plants with the gene of interest, some selectable marker genes are also used
in order to identify the transgenic plant cells or tissues. Usually, antibiotic- or herbicide-selective agents and their
corresponding resistance genes are used to introduce economically valuable genes into crop plants. From the biosafety
authority and consumer viewpoints, the presence of selectable marker genes in released transgenic crops may be
transferred to weeds or pathogenic microorganisms in the gastrointestinal tract or soil, making them resistant to treatment
with herbicides or antibiotics, respectively. Sexual crossing also raises the problem of transgene expression because
redundancy of transgenes in the genome may trigger homology-dependent gene silencing. The future potential of
transgenic technologies for crop improvement depends greatly on our abilities to engineer stable expression of multiple
transgenic traits in a predictable fashion and to prevent the transfer of undesirable transgenic material to non-transgenic
crops and related species. Therefore, it is now essential to develop an efficient marker-free transgenic system. These
considerations underline the development of various approaches designed to facilitate timely elimination of transgenes
when their function is no longer needed. Due to the limiting number of available selectable marker genes, in future the
stacking of transgenes will be increasingly desirable. The production of marker-free transgenic plants is now a critical
requisite for their commercial deployment and also for engineering multiple and complex trait. Here we describe the
current technologies to eliminate the selectable marker genes (SMG) in order to develop marker-free transgenic plants and
also discuss the regulation and biosafety concern of genetically modified (GM) crops.
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1. Introduction

Genetic engineering of plants mostly involves the addition of
genetic material (single or multiple genes) that is integrated
into a recipient plant, leading to the modification of the plant’s
genome. The plants with modified genome are known as
transgenic plants or genetically modified (GM) plants. The
first successful genetic engineering of a plant was reported in
1983. Broad-leafed plants such as tobacco and tomato were
easiest to transform, and reliable transformation of cereals such

as rice and maize were not reported until the late 1980s. In
2008, 13.3 million farmers worldwide grew GM crops. Of
these, 12.3 million, or 90%, were smallholder, resource-poor
farmers in developing countries.

In 1996, the transgenic GM crops were released and
commercialized in the US, China, Canada, Argentina,
Australia and Mexico. The estimated area of the commercial
production of GM crops was approximately 52.6 million ha.
GM crop was legally accepted and commercialized in only
13 countries by that time (the US, Argentina, Canada,
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China, South Africa, Australia, Mexico, Bulgaria, Uruguay,
Romania, Spain, Indonesia and Germany). The commercial
production of GM crops in India and Brazil began in 2002.
The increase between 2000 and 2001, in 1 year alone, was
9.4 million ha and represented a 19% increase (http://www.
agnet.org/library/eb/526/). By the end of 2001, 52.6 million
ha was allotted to transgenic or GM crops, and the number
of countries growing these crops has since increased
dramatically to almost more than double (James 2001).
The US and Argentina account for 83.5% of all commercial
GM crops planted to date. Together with Canada and China,
these four countries accounted for almost 99% of the global
GM crop area in 2001 (James 2001).

The GM crop area in developing countries increased
from 14% in 1997 to 26% in 2001 (James 2001), which
represents a higher percentage of growth than in industrial
countries. Over 98% of all GM crops in developing
countries are grown in Argentina and China. China has
approved 31 applications for commercialization of GM
crops (Huang et al. 2002). In the Latin American continent,
Mexico banned GM maize in 1998. Brazil has a moratorium
on growing commercial GM crops and is sometimes
presented as the country that will supply the world its
non-GM soybean (Campolina de Oliveira Soares 2001).
However, especially in regions close to Argentina and
Paraguay, GM soybean is estimated to occupy 35% of the
Brazilian total soybean growing area, albeit illegally
(Schuhmacher 2002). In Asia, India has approved the
commercial application of GM cotton in 2002 (James
2002a, b). In the African continent, South Africa is so far
the only country growing commercialized GM crops.
Europe and Australasia are not growing substantial number
of GM crops.

On a global basis in 2010, a record 15.4 million farmers
grew biotech crops in about 1 billion ha. It is interesting to
note that over 90% of these, about 14.4 million, were small
resource-poor farmers in developing countries (James
2010). The number of countries growing GM crops has
increased to 29 in recent years. This suggests that the GM
crops are the fastest adopted technology in the field of
agriculture (James 2010). The benefits and dangers of GM
crops are the subject of intense debate. The five key areas of
political controversy related to GM crops are food safety,
the effect on natural ecosystems, gene flow into non-GM
crops, moral/religious concerns and corporate control of the
food supply. Horizontal transfer of antibiotic-resistance
genes to animal and human gut bacteria and vertical transfer
of herbicide-resistance genes to weedy relatives are per-
ceived as major biosafety concerns in genetically engineered
crops (Dale et al. 2002). Selectable marker gene (SMG)
elimination is very important for transgene stacking
(Francois et al. 2002; Halpin 2005; Manimaran et al.
2011). SMG elimination enables engineering of a transgenic

plant with additional transgenic traits by sequential trans-
formations using the same SMG (Hohn et al. 2001). Only a
few SMGs are available for transforming a crop plant. In
addition, repeated use of the same promoter and a
polyadenylation signal for different SMGs could cause gene
silencing in transgene-stacked lines (Matzke et al. 1989).
Although the advantage of SMG elimination in transgene
stacking by sequential transformation was recognized very
early (Yoder and Goldsbrough 1994), very little progress
has been made in this direction. Here we discuss the
regulation of GM crops and also describe the recent
advances and current technologies to eliminate the SMG
from the transgenic plant genome. This article will be very
useful for a better understanding of developing marker-free
transgenics plants keeping in mind that this is the major
biosafety public concern.

2. Genetic transformation

Transgenic technologies have enormous potential to
improve crops of interest in a relatively precise way
(Barampuram and Zhang 2011). Genes of interest are
introduced, often by Agrobacterium-mediated transforma-
tion, and become integrated at random positions in the
genome. Initial experiments involved gene transfer by
using Agrobacterium tumefaciens (Herrera-Estrella 1983).
The development of sophisticated methods has opened the
way for an alternative procedure for engineering plants
using direct DNA transfer. The protocols for this transfer
include particle bombardment (Gan 1989), chemical treat-
ments and electroporation (Bates 1994). Following the
development of particle bombardment methods, the
transformation of most crop species has been rapidly
achieved using various modifications of the technique.
However, the methods to introduce foreign DNA in a
plant cell, either by Agrobacterium tumefaciens, micro-
injection, particle gun or protoplast transformation, are
relatively inefficient (Rakoczy-Trojanowska 2002). The
addition of gene to the desired trait of the plant also
requires the use of selection marker genes to select the
transformed cells and tissues.

The genetic markers developed for use in plant cells in
general have been derived from either bacterial or plant
sources and can be divided into two types: selectable and
screenable markers.

& Selectable markers are those which allow the selection
of transformed cells, or tissue explants, by their ability
to grow in the presence of an antibiotic or a herbicide,
such as Hygromycin, Kanamycin and Glyphosate. In
addition to selecting for transformants, such markers can
be used to follow the inheritance of a foreign gene in a
segregating population of plants.
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& Screenable markers encode gene products whose enzyme
activity can be easily assayed, allowing not only the
detection of transformants but also an estimation of the
levels of foreign gene expression in transgenic tissue.
Markers such as β-glucuronidase (GUS), luciferase or
β-galactosidase allow screening for enzyme activity by
histochemical staining or fluorimetric assay of individual
cells and can be used to study cell-specific as well as
developmentally regulated gene expression.

The co-introduction of selectable marker genes, especially
antibiotic-resistance genes, is required for the initial selection
of plant cells that are complemented with a new trait.

3. Selectable marker genes

SMG systems and reporter genes are essential to plant
genetic engineering and for the development of transgenic
crops. These are almost always present in engineered DNA
plasmids used for genetic transformation of plant tissue (Lee
and Gelvin 2008). Without them, creation of transgenic
crops is not feasible on purely economic and practical terms.
These systems allow the relatively straightforward identi-
fication and selection of plants that have stably incorpo-
rated the marker genes along with the genes of interest.
Selectable markers allow the transformed tissue to tolerate
an otherwise lethal exposure of an antibiotic or herbicide.
Untransformed cells and tissues are killed while the cells
carrying the desired gene grow and regenerate into plants.
A visible marker gene will display a colour characteristic
when the transformed tissue is exposed in certain assays.
Selectable markers and visible marker reporter genes
rarely affect the studied trait of interest, but provide a
powerful tool in determining the success of the transfor-
mation events or identification of transformation events
before the gene of interest (GOI) can be identified in the
culture (Sheen et al. 1995).

Two main aspects of the marker gene have to be
considered. Firstly, its structure (nucleic acid sequence),
which will determine factors such as regulation of tran-
scription (constitutive, environmental or developmental
expression), rate of transcription, transcript stability and
efficiency of translation. Secondly, the gene product is
responsible for the dominant expression of a suitable
selective phenotype. The selectable functions on most
general transformation vectors are prokaryotic antibiotic-
resistance enzymes that have been engineered to be
expressed constitutively in plant cells.

3.1 Commonly used selectable marker genes

Table 1 describes a list of different marker genes, mostly
conferring resistance to antibiotics or herbicides, which

have been used previously for plant transformation studies.
However, the most commonly used selectable markers are:

& nptII and hpt genes (for resistance to the aminoglycoside
antibiotics, kanamycin and hygromycin)

& bar gene (for resistance to herbicide phosphinothricin)

Commercialization of products from plant biotechnology
is hampered largely by (public) concerns about possible
risks related to the introduction of genetically modified
(GM) plants. An unprecedented debate has accompanied the
development and commercialization of transgenic crops.
The presence of selectable marker genes, which include
genes coding for antibiotic resistance that are essential for
the initial selection of transgenic plants, is considered
undesirable by regulatory agencies in Europe. Divergent
policies and their implementation in the European Union on
one hand and the rest of the world have resulted in disputes
with serious consequences on agricultural policy, world
trade and food security. The possible ecological risks
formed by the spread of these markers in the natural
environment represent a major issue of debate. A major
issue of concern relates to the fact that transgenes integrate
at random positions in the genome leading to possible
unwanted side effects (position effect) and unpredictable
expression patterns (Prols and Meyer 1992).

Approximately 50 different selection systems have
been developed over the past several years (Sundar and
Sakthivel 2008; Miki and McHugh 2004). In addition, the
existence of marker genes in transgenic crops could evoke
additional, lengthy risk assessments for release of crops
that contain useful novel traits. Horizontal gene transfer
(HGT) is the transfer of genetic material directly to a
living cell or an organism followed by its expression.
HGT occurs only among unrelated species, such as
between plants and microbes, as well as between micro-
organisms (Thomson 2001). HGT has been shown to
engage members of the same species, of different species,
or even of different domains of life. HGT as a biosafety
issue has been addressed in several studies and a number
of potential hazards have received much attention and
have been debated intensively in the scientific and
popular press (Ho et al. 1999).

Markers that used in genetic transformation and plant
regeneration have been described recently. However, con-
tinuous expression of these markers may interfere with
normal plant growth and development (Ebinuma et al.
1997). Gene stacking by using different selectable marker
genes will lead to duplication of promoters and polyA
signals that may cause un-anticipated gene silencing.
Removal of this type of marker from plant tissues is
necessary unless expression is under stringent control.
Furthermore, current transformation technologies permit
only the introduction of a very limited number of genes
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Table 1. Selectable marker gene used in plant transformation

Gene Sources Gene product Selective agent References

aadA Shigella flexneri Aminoglycoside-3-
adenyltransferase

Streptomycin, spectinomycin Hare and Chua (2002)

neo nptII Escherichia coli Tn5 Neomycin phosphtransferase II Kanamycin, neomycin,
geneticin (G418),
paromommycin, amikacin

Fraley et al. (1983)

nptIII Streptococcus faecalis
R plasmid

Neomycin phosphotransferase III Kanamycin, neomycin,
geneticin (G418),
paromommycin, amikacin

Hare and Chua (2002)

nptI, (aphA1)
aaC3

Serratia marcesens Aminoglycoside-N-
acetyltransferase

kanamycin, neomycin,
geneticin, paramomycin,
gentamycin, tobramycin,
apramycin

Hayford et al. (1988)

AK Escherichia coli Aspartate kinase High concentration lysine
and threonine

Yoder and Goldsbrough
(1994)

SPT Escherichia coli Tn5 Streptomycin phosphotransferase Streptomycin Maliga et al. (1988)
TUAm Eleusine indica a-Tubulin Trifluralin Yemets et al. (2008)
hph, (aphIV) Escherichia coli Hygromycin phosphotransferase Hygromycin B Waldron et al. (1985)
gox Ochrobactrum anthropi Glyphosate oxidoreductase Glyphosate Barry et al. (1992)
Ble Escherichia coli Tn5 Bleomycin resistance Bleomycin Hille et al. (1986)
bnx Klebsiella pneumoniae

sub sp. Ozanaenae
Bromoxynil nitrilase Oxynils Freyssinet et al. (1996)

ilvA or
ilvA- 466

Escherichia coli Threonine deaminase L-O-Methylthreonine Ebmeier et al. (2004)

sulI Escherichia coli pR46 Dihydropteroate synthase Sulphonamides Guerineau et al. (1990)
DHFR Escherichia coli, mouse,

Candida albicans
Dihydrofolate reductase Methotrexate Herrera-Estrella et al.

(1983)
sat3 Streptomyces sp. Acetyl transferase Streptothricin Jelenska et al. (2000)
ASA2 Tobacco Anthranilate synthase 5-Methyltryptophan Cho et al. (2004)
EPSP synthase Petunia hybrida 5-Enolpyruvylshikimate-3-

phosphate synthase
Glyphosate Zhou et al. (1995)

DHPS Escherichia coli Dihydropicolinate synthase S-Aminoethyl Perl et al. (1993)
cat Escherichia coli Tn5,

Phagep1cm
Chloramphenicol acetyl
transferase

Chloramphenicol De Block et al.
(1984a, 1984b)

cah Myrothecium verrucaria Cyanamide hydratase Cyanamide Weeks et al. (2000)
OASA1D Rice Mutant anthranilate synthase 5-Methyltryptophan (5MT) Kobayashi et al. (2005)
pat, bar Streptomyces hygroscopicus Phosphinothricin acetyl

transferase
Phosphinothricin De Block et al. (1989)

csr1-1 Arabidopsis thaliana Acetolactate synthase Sulfonylueras Olszewski et al. (1988)
csr1-2 Arabidopsis thaliana Acetolactate synthase Imidazolinones Aragao et al. (2000)
BADH Spinacea oleracea Betaine aldehyde

dehydrogenase
Betaine aldehyde Hare and Chua (2002)

dhfr Plasmid R67 Dihydrofolate reductase Methotrexate Yoder and Goldsbrough
(1994)

DOG 1 Saccharomyces
cerevisiae

2-Deoxyglucose-6-
phosphate phosphatase

2-Deoxyglucose Kunze et al. (2001)

ocs Agrobacterium tumefaciens Octopine synthase L-Cysteine (AEC) Koziel et al. (1984)
hemL Synechococcus

PCC6301
Glutamate-1- semialdehyde
aminotransferase

Gabaculine Gough et al. (2001)

als Arabidopsis thaliana,
Nicotiana tabacum

Acetolactate synthase Sulfonyl ureas,
imidazolinones,
thiazolopyrimidines

Hare and Chua (2002)

sul Plasmid R46 Dihydropteroate synthase Sulfonamide Yoder and Goldsbrough
(1994)

TDC Catharanthus roseus Tryptophan decarboxylase 4-Methyltryptophan (4- mT) Goddijn et al. (1993)
TSB1 Arabidopsis thaliana Tryptophan synthase 5MT/Cadmium cholride Hsiao et al. (2007)
pds Hydrilla verticillata Phytoene desaturase Norflurazon and fluridone Arias et al. (2006)
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into plants (Francois et al. 2002). Re-transformation of the
same line is needed for multiple trait modifications and new
selectable markers are thus needed with each transformation
to pyramid the same crop variety with different desirable
traits (Hohn et al. 2001). The number of selectable marker
genes that are suitable for each crop species is usually very
limited, and this is true for transformation of recalcitrant
species. Marker excision can allow reuse of a marker after
each transformation step. Marker elimination will not only
appease some potential environmental and consumer con-
cerns, it will also remove technical barriers for plant genetic
transformation (Herrera-Estrella et al. 1983; Bevan et al.
1983). In the recent years, concerns have been raised that the
presence of such genes might be an unpredictable hazard to
the ecosystem as well as to human health. For example, some
of the genes like Bt genes and herbicide-resistant gene might
be transferred by out-crossing into weeds; and the presence of
resistance genes against antibiotic in food products might
theoretically lead to the spread of these resistances via gut
bacteria in humans (Dale et al. 2002). However, there is as
yet no scientific evidence to support these statements.

The successful use of antibiotics in medicine has now
become a problem. Many bacteria, including pathogens of
infectious diseases, are already resistant and can no longer
be controlled with the particular antibiotic (Goossens et al.
2005). These concerns have been taken seriously and
various governments have initiated studies in which such
scenarios are now under investigation. However, the most
elegant way to overcome all the concerns is to just remove
the cause of concern – the selectable marker gene itself.

The drawbacks of traditional markers are becoming
apparent even in practical research:

& Different marker gene systems are required for the
retransformation of plants that have already been
genetically modified. However, there are only a few
available for each crop species.

& If several marker genes left over from various develop-
mental phases accumulate in a plant, the stability of the
genetically engineered trait can be impaired.

& The probability of unforeseen effects (pleiotropic effect)
occurring in the plants increases with the number of
transferred genes and marker genes because the role of
one gene is affected by the other.

Therefore, there is a need for the development of techniques
for the efficient production of ‘clean’ marker-free transgenic
plants. Thus, the development of efficient techniques for the
removal of selection markers, as well as the directed
integration of transgenes at safe locations in the genome, is
of great interest to biotech companies. Furthermore, the
removal of selectable marker genes will also have a technical
advantage, since the number of available selectable marker
genes is limiting, and stacking of transgenes will become more

and more desirable in the near future. In the next generation of
transgenic plants, antibiotic-resistance markers will be the
exception rather than the rule. However, there is still a long
way to go before sufficient new procedures and strategies.

4. Methods to eliminate marker genes
from nuclear genome

Table 2 describes an up to date progress, in chronological
order from 1985 to 2011, of development of marker-free crops
of various kinds by using different methods and marker genes.
There are several strategies to exclude the selection gene for
marker-free plants in transgenic generations, such as co-
transformation (Depicker et al. 1985; McKnight et al. 1987;
De Block and Debrouwer 1991), site-specific recombination
(Dale and Ow 1991; Gleave et al. 1999), multi-
autotransformation vector (Ebinuma et al. 1997), transposition
system (Goldsbrough et al. 1993) and homologous recombi-
nation (Puchta 2000; Zubko et al. 2000), among which co-
transformation has been widely used. The first reported
example of selectable marker elimination in plants employed
the bacteriophage P1 Cre–lox system, comprising Cre-
catalysed recombination between Lox sites (Dale and Ow
1991). In this study, a lox-flanked hpt gene was removed from
transgenic plants upon re-transformation with a construct
expressing the Cre-recombinase gene. An important improve-
ment of this early technique was reported by Zuo et al. (2001),
who used a chemically inducible artificial transcription factor
for indirect transcriptional regulation of Cre-recombinase gene
expression. Thus, the recombinase gene and the lox recombi-
nation sites could coexist without leading to premature
recombination. Following the selection of transgenic tissue,
chemical induction of the recombinase gene produced the
desired excision events. A major drawback of this method was
the formation of genetic chimeras due to incomplete DNA
excision. A particle gun can deliver a mixture of DNA of two
plasmids carrying a target gene and a selection gene into plant
cells, but the efficiency of marker-free plants obtained was
very low in T1 or T2 progeny (Yohichi et al. 1998). Two
Agrobacterium strains implementing two binary vectors
(Depicker et al. 1985; McKnight et al. 1987; De Block and
Debrouwer 1991) and one Agrobacterium strain harbouring
two binary vectors (Daley et al. 1998) or one binary vector
with two T-DNAs containing target gene and selection gene
(Depicker et al. 1985; Komari et al. 1996; Xing et al. 2000;
Shirley et al. 2004) can also be used to get marker-free plants,
but in all these cases the efficiency of the marker-free plants
was also very low. Moreover, Rommens et al. (2004)
demonstrated that a plant-derived (P-) DNA fragment can be
used to replace the universally employed Agrobacterium
transfer (T-) DNA. Marker-free P-DNAs are transferred to
plant cell nuclei together with conventional T-DNAs carrying
a selectable marker gene.
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4.1 Co-transformation

The co-transformation method is a very simple method
to eliminate the marker gene from the nuclear genome.
Co-transformation involves transformation with two
plasmids that target insertion at two different plant
genome loci. One plasmid carries a selective marker
gene and the other carries the GOI (figure 1). The following
three methods are used in the co-transformation system: (i)
Two different vectors carried by different Agrobacterium
strains (McKnight et al. 1987; De Block and Debrouwer
1991; De Neve et al. 1997) and biolistic introduction of two
plasmids in the same tissue (Shiva Prakash et al. 2009;
Kumar et al. 2010); (ii) two different vectors in the same
Agrobacterium cell (De Framond et al. 1986; Daley et al.
1998; Sripriya et al. 2008); and (iii) two T-DNAs can be
borne by a single binary vector (2 T-DNA system) (Komari
et al. 1996; Xing et al. 2000; Matthews et al. 2001;
McCormac et al. 2001; Miller et al. 2002).

In these co-transformation systems, selectable marker
genes and target genes are not loaded between the same
pair of T-DNA borders. Instead, they are loaded into
separate T-DNAs, which are expected to segregate
independently in a Mendelian fashion (Framond et al.
1986; McKnight et al. 1987; Daley et al. 1998; Matthews
et al. 2001; Jacob & Veluthambi 2002; Vain et al. 2003;
Permingeat et al. 2003; Park et al. 2004; Parkhi et al.
2005; Higgins et al. 2006; Li et al. 2007a, b; Zhao et al.
2007; Sripriya et al. 2008; Qi et al. 2009; Yu et al. 2009;
Ramana Rao and Veluthambi 2010; Ramana Rao et al.
2011). The advantages of co-transformation methods
include the high adaptability of conventional, unmod-
ified Agrobacterium-mediated gene transfer methods
and easier handling of the binary vectors because the
two T-DNA are separated and, hence, target gene T-
DNA can be handled independently of selectable marker
gene T-DNA. This method depends on the co-transformation
efficiency and the independent integration of T-DNA
into the plant genome. Generally, the co-transformation
efficiency is in the range of 30–50%, which is
acceptable for practical applications (Depicker et al.
1985; McCormac et al. 2001; Komari et al. 1996).

In this method SMG can be eliminated from the
plant genome at the time of segregation and recombi-
nation that occurs during sexual reproduction by
selecting on the transgene of interest and not the
SMG in progeny. In spite of all these, there are several
inevitable limitations. The methods described above are
very time consuming and compatible only for fertile
plants. The tight linkage between co-integrated DNAs
limits the efficiency of co-transformation. Indeed,
integration of SMG and the transgene is at indiscrim-
inate event: both the SMG and transgene may integrateT
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in the same loci and that is not feasible for co-
transformation. However, the overall advantages of these
methods remain unclear. Most of the research paper
documented the limitations of the co-transformation
methods that are limited and useful only for flowering
plants but de Vetten et al. (2003) developed a silencing
construct (pKGBA50mf-IR 1.1) and transformed in to
potato (karnico) via highly virulent LBA4404 or AGL
Agrobacterium-mediated transformation without the use of
selection marker gene. They have developed a PCR-
based detection method, and >2% of the recovered
shoots showed a complete gene silencing of the
granule-bound starch synthase 1 (GBSS1) gene resulting
in an amylase-free phenotype. They have successfully
developed a protocol that is useful for vegetative as
well as flowering plants. Recently, in rice, high
transformation frequency (86%) was achieved through genetic
separation in 4 out of 10 primary co-transformants that
were forwarded to the T1 generation (Sripriya et al.
2011). A majority of marker elimination strategies involve
elimination of marker genes and genes encoding recombi-
nases (or transposons) by segregation in the T1 generation
or T2 generation. This would not be feasible in vegeta-
tively propagated plants and in plants that take many years
to flower (e.g. rubber). Ramana Rao and Veluthambi
(2010) reported efficient strategies to employ marker
elimination and achieved marker-free transgenic tobacco
in the T0 generation itself.

4.2 Multi-autotransformation

The multi-autotransformation (MAT) vector system repre-
sents a highly sophisticated approach for the removal of
nuclear marker genes (Ebinuma et al. 1997). The MAT
vector system is a positive selection system that gives the
advantage of regeneration to the transgenic cells without
killing the non-transgenic cells. It is a unique transformation
system that uses morphological changes caused by onco-
gene [the isopentenyltransferase (ipt) gene] or rhizogene
(the rol gene) of A. tumefaciens which control the
endogenous levels of plant hormones and the cell responses
to plant growth regulators as the selection marker.
Expression of the ipt gene causes abnormal shoot morphol-
ogy called extreme shooty phenotype (ESP), which subse-
quently reverts into normal shoots with objective transgenes
due to the excision of ipt gene by the function of ‘hit-and-
run’ cassette system (Ebinuma and Komamine 2001).

In this MAT system, a chosen GOI is placed
adjacent to a multigenic element flanked by RS
recombination sites (figure 2). A copy of the selectable
ipt gene from A. tumefaciens is inserted between these
recombinase sites, together with the yeast R recombinase
gene and this entire assembly is situated within a T-DNA
element for the Agrobacterium-mediated transformation
of plant tissues. In this plant transformation system,
neither antibiotic- nor herbicide-resistance genes are

GOIP T RB Marker gene LB P T RB

Explants  having GOI and marker gene

T0 plant having GOI and marker gene

T1 plant having gene of interest (GOI)T1 plant having marker gene only

LB

Co-transformation

Law of segregation

(a)

(b)

(c)

(d)

Figure 1. Schematic diagram of Co-transformation method for making marker free transgenic plants. (a) Physical diagram of two
T-DNA region showing gene of interest (GOI) and marker gene. (b) Transformed calli having GOI and marker gene. (c) T0 plant having
GOI and marker gene. (d) Two T1 plants one with GOI and another with marker gene.
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necessary as a selection marker. In addition, this system
of transformation allows for repeated transformation of
genes of interest in a plant (Sugita et al. 2000).

In an earlier version of the MAT vector, R recombinase
activity was constitutively up-regulated by the action of the
CaMV 35S promoter. This system was found to incur a risk
of marker gene excision before the selection of transformed
plant tissues could take place. To circumvent this problem, a
more recent version of the MAT vector (Matsunaga et al.
2002) allows for a delay in the excision of the ipt and
R recombinase genes. This is made possible by the use of a
chemically inducible glutathione S-transferase promoter
from maize to drive R recombinase gene expression. Once
the positive selection of transformed plant tissues showing
an ‘extreme shooty phenotype’ has occurred, the excisive
recombination of RS sites, leading to a loss of the
recombinase and marker genes, is induced by treatment
with the herbicide. Kunkel et al. (1999) have shown that
with a dexamethasone-inducible promoter to control the
expression of the ipt gene, transgenic calli and shoots can
be produced in the presence of dexamethasone. Once the
inducer is removed, the transgenic shoots/plants will be
morphologically or developmentally normal. Angela et al.
(2003) have reported that the KN1 activity can be
controlled by a steroid induction system in Arabidopsis
thaliana. The steroid inducible kn1 fusion gene described
by Angela et al. (2003) may be a suitable system for
production of transgenic plants if the steroid induction
system is tightly regulated.

Recent reports on the Ipt-type MAT system have shown
that it is a better system to produce marker-free transgenics.

The Ipt-typeMAT vector system has been successfully used to
generate marker-free transgenic cassava plants (Saelim et al.
2009). This system utilizes the ipt gene as morphological
marker for visual selection of transgenic lines. The ESP of
transgenic lines is lost due to the removal of ipt gene
mediated by the yeast R/RS system. As a result, phenotyp-
ically normal shoots, considered marker-free transgenic
plants, could be obtained. This is the first demonstration of
the efficacy of Rint/RS system in promoting excision of ipt
marker gene in cassava species. Expression of the uidA
reporter gene was tested in transformation experiments of
barrel medic (Medicago truncatula Gaertn.) with the Ipt-type
control vectors pIPT5, pIPT10 and pIPT20 and distinct
in vitro culture conditions (Scaramelli et al. 2009). The same
strategy was used for producing marker-free transgenic
Kalanchoe blossfeldiana Poelln. In this study, we used
A. tumefaciens strain EHA105 harbouring an ipt-type MAT
vector, pMAT21, containing lacZ and gus genes and the
removable cassette in the T-DNA region, employing ipt gene
as the selectable marker gene (Thirukkumaran et al. 2009).
Rol-type MAT vector (pMAT101) containing lacZ gene as a
model gene and the removable cassette with gus gene in the
T-DNA region were used to produce morphologically normal
transgenic Kalanchoe blossfeldiana Poelln, employing rol
gene as the selectable marker gene and gus gene as a reporter
gene (Thirukkumarana et al. 2010). In an attempt to produce
transgenic marker-free Petunia hybrida plants resistant to
Botrytis cinerea (gray mold), ipt gene was used as a
selectable marker gene (Khan et al. 2010a). There is a report
of ipt gene being used as a selection marker gene to produce
marker-free disease-resistant potato (Khan et al. 2010b). A

IP
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LB RSGOI P ipt T IP R gene T RS RB

In

Multi-auto-transformation vector

LB RSGOI P ipt T R gene T RS RB

P ipt T IP R gene T RLB GOI RB

Figure 2. Principle of MAT (multi-autotransformation) uses oncogene (ipt) for selection of transgenic plants and a site-specific
recombination system (R/Rs). Recombinase (R) catalyses recombination between two directly oriented recognition sites (Rs) and removes
a ‘hit and run’ cassette from a plant genome. Recombinase (R) gene expression is under the chemically inducible promoter (IP) in order to
avoid early removal of ipt gene. P; promoter, T; terminator, GOI; gene of interest, LB; left border, RB; right border.
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chitinase gene, ChiC (isolated from Streptomyces griseus
strain HUT 6037) was used as a gene of interest.

The Rol-type MAT vector has been tried in Antirrhinum
majus (Cui et al. 2000, 2001), tobacco (Ebinuma and
Komamine 2001), white poplar (Zelasco et al. 2007),
Petunia hybrida (Khan et al. 2010c), etc. A total of 11
independent β-glucuronidase (GUS)-positive hairy roots were
induced following co-cultivation of leaf explants of
Antirrhinum majus L. with A. tumefaciens strain GV2260
containing Rol-type MAT vector pNPI702 (Cui et al. 2000,
2001). The chimeric ipt gene or the rol genes are combined
with the site-specific recombination R/RS system to remove
the oncogenes from the transgenic cells after transformation in
case of tobacco (Ebinuma and Komamine 2001). Genetic
transformation of an elite white poplar genotype (Populus
alba L., cv. ‘Villafranca’) was performed with MAT
vectors carrying the ipt and rol genes from A. tumefaciens
spp. as morphological markers. The occurrence of abnor-
mal ipt and rol phenotypes allowed the visual selection of
transformants (Zelasco et al. 2007). A. tumefaciens strain
EHA105 harbouring a Rol-type MAT vector, pMAT101,
was used to produce morphologically normal transgenic
Petunia hybrida ‘Dainty Lady’ employing rol gene as the
selection marker gene. The lacZ gene was used as a model
GOI (Khan et al. 2010c).

4.3 Site-specific recombination

Recombination is very clear phenomenon in biological
systems: it occurs between two homologous DNA molecules.
In bacteriophage, site-specific recombination takes place
between defined excision sites in the phage and in the bacterial
chromosome. In site-specific recombination, DNA strand
exchange takes place between segments possessing only a
limited degree of sequence homology (Kolb 2002; Coates et al.
2005). The site-specific recombination methods in plants have
been developed to delete selection markers to produce
marker-free transgenic plants or to integrate the transgene
into a predetermined genomic location to produce site-specific
transgenic plants (Nanto and Ebinuma 2008). Basically three
site-specific recombination systems are well known and are
described in the following sections for the elimination of
selection marker gene.

4.3.1 Cre/lox site-specific recombination system: The Cre/loxP
system consists of two components: (a) two loxP sites each
consisting of 34 bp inverted repeats cloned in direct orientation
flanking a DNA sequence and (b) the cre gene encoding a 38
kDa recombinase protein that specifically binds to the loxP
sites and excises the intervening sequence along with one of
the loxP sites (figure 3A). The Cre/loxP system has been
tested in several plants including Arabidopsis (Zuo et al.
2001), Nicotiana (Odell et al. 1990; Dale and Ow 1991;

Gleave et al. 1999), Zea mays (Zhang et al. 2003) and Oryza
sativa (Hoa et al. 2002; Sreekala et al. 2005).

One of the greatest advantages of the Cre/lox system is
the specificity of the enzyme for its 34 bp recognition
sequence. With a few exceptions, it is difficult to insert and
to excise genes with precision in the plant genome without a
site-specific recombination system. Marker gene removal
from transgenic plants using the Cre/lox recombination
system of bacteriophage P1 requires re-transformation and
out-crossing approaches that are laborious and time con-
suming (Dale and Ow 1991). In order to initiate the Cre/lox
recombination for removal of the marker gene, other novel
inducible site-specific recombination systems have been
used (figure 3B).

However, several approaches were developed to
overcome these shortcomings, including the use of some
chemical inducers (Schaart et al. 2004; Yuan et al. 2004;
Zhang et al. 2006) and heat shock (Wang et al. 2005;
Cuellar et al. 2006). Marker-free transgenic tomato plants
expressing cry1Ac were obtained by using a chemically
regulated Cre/lox-mediated site specific recombination
system (Zuo et al. 2001; Zhang et al. 2006). Lin et al.
(2008) reported a chemical induction method for creating
selectively terminable transgenic rice using benzothiadia-
zole (Bentazon), a herbicide used for weed control in
major crops like rice, maize, wheat, cotton and soybean.
Similarly, Ma et al. (2009) reported a marker-free
transgenic tomato using a salicyclic acid-inducible Cre–loxP
recombination system. Through this system they have devel-
oped 41% transgenic tomato that are marker free (nptII gene)
in the F1 generation.

A Cre/loxP recombination system was used for elimina-
tion of a caseinolytic protease P1 (clpP1) in tobacco
(Kuroda and Maliga 2003). Deb Roy et al. (2008) reported
a heat inducible Cre/loxP site-specific recombination system
to remove nptII gene from A. thaliana transgenic plants
transformed with glyI gene. The cre gene was driven by the
heat-inducible promoter (hsp), and the nptII gene is flanked
by lox sequences. These inducible site-specific recombina-
tion systems can also be applied in vegetatively propagated
crop plants for marker gene excision.

4.3.2 FLP/FRT recombination system: In the FLP/frt site-
specific system of the 2 μm plasmid of Saccharomyces
cerevisiae, the FLP enzyme efficiently catalyses recombi-
nation between two directly repeated FLP recombination
target (frt) sites, eliminating the sequence between them. By
controlled expression of the FLP recombinase and specific
allocation of the frt sites within transgenic constructs, the
system can be applied to eliminate the marker genes after
selection (Lyznik et al. 1996; Cho 2009).

Shan et al. (2006) used the heat-inducible system in a
FLP/frt site-specific recombinase system. Under this, the
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expression of FLP was tightly under the control of the heat
shock protein, hsp (figure 4). Two different constructs were
used, the frt-containing vector (pCAMBIA1300-betA-frt-
als-frt) and the FLP expression vector (pCAMBIA1300-
hsp-FLPhpt). Through the process of re-transformation, the
FLP recombinase gene was introduced into transgenic
(betAfrt-als-frt) tobacco. In the re-transgenic plants after
heat shock treatment, the marker gene als, flanked by
two frt sites, could be excised by the inducible expression
of FLP recombinase under the control of hsp promoter. A

heat-inducible strategy for the elimination of selection
marker genes was also reported in vegetatively propagated
plants like potato (Cuellar et al. 2006).

Recent report describes the generation of marker-free
transgenic maize plants constitutively expressing AtNHX1, a
Na(+)/H(+) antiporter gene from A. thaliana that conferred
salt tolerance on plants, using the FLP/frt site-specific
recombination system (Li et al. (2010)). Transgenic plant
expressing a modified FLP recombinase gene was crossed
with transgenic plant harbouring AtNHX1 and mutant als, a
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Figure 3. (A) Hypothetical diagram of Cre–lox approach used in developing marker free transgenic plants. (a) The T-DNA region
showing Cre gene followed by the transcribed mRNA and Cre protein expression. (b) T-DNA region showing GOI and marker gene
merged between loxP sites. (c) Resulting transgenic plants showing excision of marker gene. (B) Hypothetical diagram of chemically
inducible Cre/lox approach used in developing marker free transgenic plants. (a) The T-DNA region showing Cre gene controlled by an
inducible promoter followed by the transcribed mRNA and Cre protein expression. (b) T-DNA region showing GOI and marker gene
merged between loxP sites. (c) Resulting transgenic plants showing excision of marker gene when induced chemically.
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selectable marker gene flanked by two directed FRT sites.
The sexual crossing led to precise and complete excision of
the FRT-surrounding the als marker gene in the F1
progenies. Further, salt tolerance examinations indicated
that marker-free AtNHX1 transgenic plants accumulated
more Na(+) and K(+), and produced greater biomass and
yields than did the wild-type plants when grown in high-
saline fields. These results demonstrate the feasibility of
using this FLP/frt-based marker elimination system to
generate marker-free transgenic important cereal crops with
improved salt tolerance.

Woo et al. (2009) described the successful excision of
antibiotic-resistance genes from transgenic plants via the use
of an oxidative stress-inducible FLP gene. FLP encodes a
recombinase that can eliminate FLP and hpt selection genes
flanked by two FRT sites. During a transformation
procedure in tobacco, transformants were obtained by
selection on hygromycin media. Regenerants of the initial
transformants were screened for selective marker excision in
hydrogen-peroxide-supplemented media and both the FLP
and hpt genes were found to be eliminated.

Two site-specific recombination systems, Cre/lox and
FLP/frt, were tested for marker gene removal and targeted
gene transfer in a Populus (Fladung et al. 2010). A hybrid
aspen clone (Populus tremula x Populus tremuloides) was
co-transformed with plasmids containing either the FLP or
the Cre recombinase, both under control of a heat-inducible
promoter (HSP, Gmhsp17.5-E from soybean) flanked by the
two recognition sites (FRT or lox). Molecular investigations
of heat-shock-treated Cre or FLP transgenic lines indicate
excision of inserts between the two recognition sites.
Further, a site-specific recombination at the FRT sites
leading to targeted integration of a fragment could be

demonstrated for the FLP/frt system. Transgenic aspen
carrying two constructs (each with different genes between
the FRT sites) revealed the excision of both fragments
between the FRT sites as well as targeted integration of the
fragment from the second construct exactly at the former
position of the fragment in the first construct. Combining
both site-specific recombination systems, this strategy
suggested the targeted transgene transfer and removal of
antibiotic marker genes.

Nandy and Srivastava (2011) reported the use of FLP/frt
system for efficient targeting of foreign gene into the
engineered genomic site in rice. The transgene vector
containing a pair of directly oriented FRT sites was
introduced by particle bombardment into the cells containing
the target locus. FLP activity generated by the co-bombarded
FLP gene efficiently separated the transgene construct from
the vector-backbone and integrated the backbone-free con-
struct into the target site. Strong FLP activity, derived from the
enhanced FLP protein, FLPe, was important for the successful
site-specific integration (SSI). The majority of the transgenic
events contained a precise integration and expressed the
transgene. Progeny of the precise transgenic lines inherited
the stable SSI locus and expressed the transgene.

4.3.3 R/RS recombination system: The MAT vectors consist
of yeast site-specific recombination R/RS system to excise
the DNA fragment and the ipt gene positioned between two
directly oriented recombination sites (Araki et al. 1987).
The ipt gene encodes isopentenyltransferase, which cataly-
ses the formation of isopentenyl AMP, a precursor of
several cytokinins. Following gene transfer, overexpression
of the ipt gene leads to an increase in endogenous
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Figure 4. FLB/frt site-specific recombination system. (a) The T-DNA region showing FLP gene controlled by heat inducible promoter
(hsp70) followed by the transcribed mRNA and FLP protein expression. (b) T-DNA region showing GOI and marker gene merged
between frt sites followed by resulting transgenic plants showing excision of marker gene.
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cytokinins and, subsequently, the production of ESP (named
as ipt shoots). Ipt shoots are characterized by reduced apical
dominance, abnormal morphological changes, short interno-
des and lack of rooting ability (Smigocki and Hammerschlag
1991; Hewelt et al. 1994). Therefore, the Ipt shoots are
visually selected and subcultured to develop normal looking
shoots. Site-specific recombination mediated by recombinase
of the R/RS system during subculturing produces morpho-
logically normal marker-free transgenic plants. However, one
of the major limitations of using this system is the low
frequency of marker-free transgenic plants, as most of the
modified transposable elements (containing ipt gene) reinsert
elsewhere in the genome shortly after their excision, and thus
only cells with transposition errors would generate pheno-
typically normal plants.

A new MAT vector has been created in which the maize
transposable element Ac for removing the ipt gene is
exchanged with a site-specific recombination system R/rs
isolated from Zygosaccharomyces rouxii (Sugita et al. 1999)
The R/rs system comprises a R recombinase gene and two rs
recombination site sequences. The ipt combined with the
(R) gene was placed within two directly-oriented recogni-
tion sites to remove it from transgenic cells after transfor-
mation. The improved MAT vector is used to generate
marker-free transgenic plants efficiently. Such a system can
be applied to woody plants or vegetatively propagated
species to produce marker-free transgenic plants as well as
providing the basis for the development of an inducible
plant transformation system. Expression of ipt gene under
dexamethasone-inducible promoter led to the recovery of
lettuce and tobacco transformants under inducing conditions
(Kunkel et al. 1999).

The recombination sites are typically between 30 and 200
nucleotide in length and consist of two motifs with a partial
inverted repeat symmetry, to which the recombinase binds
and which flank a central crossover sequence at which the
recombination take place (figure 2). The unique ability of
Cre to catalyse a crossover between directly repeated lox
sites flanking any fragment of DNA has been exploited to
remove selectable marker genes from transgenic plants. The
pairs of sites between which the recombination occurs are
usually identical, but there are exceptions (e.g. attP and attB
of λ integrase (Landy 1989)). The simplest approach is to
generate plants that express the cre gene and to cross them
with plants in which the selectable marker gene is flanked
by lox sites. The marker gene is excised in the F1 generation
and the cre gene is segregated away in the subsequent
generation. The selection marker gene can be eliminated
either by re-transformation (Odell et al. 1990; Dale and Ow
1991; Russell et al. 1992) or by crossing over (Bayley et al.
1992; Russell et al. 1992; Chakraborti et al. 2008). The
re-transformation and crossingover strategy was very labour
intensive and time consuming, and in both the approaches

the selection marker gene is eliminated at F1 generation. The
answer to the above problem was an autoexcision system
controlled by inducible promoter, and with this system the
F1 progengy is free of the selection marker gene. This is
very well studied in most of the agronomical important
crops, and marker-free transgenic plants were success-
fully generated in Arabiodopsis, maize, tobacco and rice
(Hoff et al. 2001; Zuo et al. 2001; Zhang et al. 2003; Yuan
et al. 2004; Sreekala et al. 2005). In a recent report for the
development of disease-resistant marker-free tomato, ipt
gene was used as a selection marker and wasabi defensin
(WD) gene, isolated from Wasabia japonica, as a target
gene. WD was cloned from the binary vector, pEKH-WD
to an Ipt-type MAT vector, pMAT21, by gateway cloning
and transferred to Agrobacterium tumefaciens strain
EHA105 (Khan et al. 2011).

4.4 Transposon-based marker methods

Transposon-mediated repositioning of a transgene of interest
has been proposed as an alternative for generating a wide range
of expression levels in selectable marker-gene-free transgenic
plants (Yoder and Goldsbrough 1994). The functionality of
the Maize Activator/Dissociation (Ac/Ds) elements system as
a gene tagging tool has been being successfully demonstrated
since the early 1990s (Izawa et al. 1991, 1997; Chin et al.
1999; Enoki et al. 1999). In general, all Ac elements are
identical, 4563 bp in length. Ds elements are Ac elements
that have undergone deletions. Transposase are the proteins
that stimulates the movement of Ac. Deletions of Ac
elements created Ds elements in which all or part of this
transposase was eliminated (figure 5). This lack of trans-
posase activity accounts for the inability of Ds elements to
move in the absence of Ac. The transposase that is encoded
by Ac elements can move throughout the cell and excise any
Ds or Ac element. Because of this ability, the Ac/Ds
transposase is said to be transacting (Kunze and Starlinger
1989). Two transposon-mediated strategies have been devel-
oped to generate marker -free transgenic plants. The first
strategy involves Agrobacterium-mediated transformation
followed by intragenomic relocation of transgene of interest,
and its subsequent segregation form the selectable marker in
the progeny (Goldsbrough et al. 1993). The second involves
excision of the marker gene from the genome (Ebinuma
et al. 1997). Both strategies were developed using the
maize Ac/Ds transposable element but can be adapted to
use similar autonomous transposable element.

Ebinuma et al. (1997) proved the feasibility of this
strategy by eliminating the ipt marker gene from transgenic
tobacco plants. Transgenic plants constitutively expressing
the ipt gene have elevated cytokinin-to-auxin ratios, result-
ing in loss of apical dominace, suppression of root
formation and what is referred to as shooty phenotype. In
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transformed tobacco leaf disc with a T-DNA containing
nptII and gus genes and a chimeric Ac element with a 35S-
ipt gene, two-thirds of this differentiated adventitious shoots
showed extremely shooty phenotype. Upon subculturing
these phenotypic distinct shoots, normal shoots were
developed, which indicated the removal of ipt gene
expression. The basic advantage of this strategy is that
marker-free transgenic plants can easily be screened at the
T0 generation, avoiding the need for sexual cross plants and
thereby making the strategy applicable to the vegetatively
propogated crops like banana, potato, grapes and so on. In
spite of all the advantages, the main limitation for this
strategy is that the generation of marker-free transgenic
plants is very low. The transgenic plants are genomically
instable due to the continuous presence of heterlogous
transposons (Scutt et al. 2002). Besides marker elimination,
Cotsaftis et al. (2002) also developed an approach to
generate ‘new events’ by relocating the ‘gene of interest’
by transposing to new locations on the genome.

4.5 Chemical-inducible system

For the past several years, this recombination system was
very often used in plant transformation to eliminate
selection marker gene. Cre/lox recombination system of
Bacteiophage P1 is one of the systems developed in the
context of marker removal in transgenic plants (Dale and
Ow 1991). In order to remove the cre gene from the
transgenic plants, re-transformation and out-crossing
approaches have been used, which enables the loss of cre
gene in subsequent generations, but this process is very
laborious and time consuming (Dale and Ow 1991). In order
to initiate the Cre/lox recombination for removal of the
marker gene, other novel inducible site-specific recombina-
tion systems have been developed (figure 3B). Now several
approaches are used to overcome these shortcomings by using
some chemical inducers (Yuan et al. 2004; Zhang et al. 2006)

or by heat shock (Wang et al. 2005; Cuellar et al. 2006). The
chemical-inducible Cre/loxP (CLX) vector system benefits
also from a particularly regulated system of chemical
induction (Sreekala et al. 2005). The procedure could be
used for vegetatively propagated species and may be
particularly well adapted to crop species requiring transfor-
mation by the regeneration of embryo cultures.

Marker-free transgenic tomato expressing cry1AC were
obtained by using chemically regulated Cre/lox-mediated
site-specific recombination system. The marker gene nptII
was eliminated by two directly oriented and loxP sites were
located between the CaMV35S promoter and a promoterless
cry1AC. Upon induction by 2μM β-estradiol, sequence
encoded the selectable marker and two loxP sites were
excised from the tomato gemone (Zhang et al. 2006). Using
the Cre/loxP recomnbination system the expression of Cre
recombinase was under the control of estrogen receptor-based
transactivator XVE. Upon induction by β-estradiaol, the
selection marker gene fused with Cre recombinase, flanked
by two lox sites, was autoexcised from the Arbidopsis
genome, and thus the chemical-inducible system is reliable
method for generating marker-free transgenic plants (Zuo
et al. 2001). Recently Lin et al. (2008) have reported a
chemical-induced method for creating selectively terminable
transgenic rice. They have used benzothiadiazole herbicide
(Bentazon), which has been used for weed control of several
major crops, such as rice, corn wheat, cotton and soyabean.
These crops express cytochrome P450 for detoxifying the
herbicide benzaton. They generate benzaton-sensitive rice
plants, by suppressing the expression of this detoxification
gene through antisense RNA, or benzaton-sensitive transgenic
rice with high glyphosphate tolerance.

4.6 Heat-inducible system

This site-specific recombination system is used widely in the
applied biotechnology for generating marker-free transgenic
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Figure 5. Schematic diagram of minimal terminal inverted repeats of the Ac-Ds transposon system. (a) T-DNA region showing GOI
merged between Ac sites and marker gene, reporter gene and AcTpase region is outside the Ac sites. (b) Diagram showing the T-DNA
region having GOI merged in Ac region excised out from marker and reporter gene.
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plants. Cre/loxP and FLP/frt recombination systems and the
knowledge of promoters give researchers an upper hand for
generating marker-free transgenics. Shan et al. (2006) have
developed the transgenic tobacco using FLP/frt recombinase
system in which the expression of FLP was tightly under the
control of hsp (heat shock protein) (figure 4). Two different
constructs were used in this approach (frt-containing vector
pCAMBIA1300-betA-frt-als-frt and the FLP expression
vector pCAMBIA1300-hsp-FLP-hpt), and through the pro-
cess of re-transformation, the FLP recombinase gene was
introduced into transgenic (betA-frt-als-frt) tobacco. In re-
transgenic plants, after heat-shock treatment, the marker gene
als flanked by two identical orientation frt sites could be
excised by the inducible expression of FLP recombinase
under the control of hsp promoter. Excision of all the genes
was found in 41% re-transgenic tobacco plants. Heat-
inducible strategy for the elimination of selection marker
gene was also used in vegetatively propogated plants like
potato (Cuellar et al. 2006) and seed-producing plants like
tobacco (Wang et al. 2005). In this strategy HSP70 was used
as heat-inducible promoter in Cre/lox recombination system.
A new binary expression vector based on the ‘genetically
modified-gene-deletor’ system was constructed. In this
vector, the gene coding for FLP site-specific recombinase
under the control of a heat shock-inducible promoter
HSP18.2 from A. thaliana and ipt gene as a selectable
marker gene under the control of the cauliflower mosaic virus
35S (CaMV 35S) promoter was flanked by two loxP/FRT
fusion sequences as recombination sites in direct orientation.
Further characterization of the transgenic tobacco plants
confirmed the elimination of the ipt gene along with gusA
in the primary stage. Heat-inducible approach provides a
reliable strategy for autoexcising a selectable marker gene
from calli, shoots or other tissues of transgenic plants after
transformation and producing marker-free transgenic plants.
The disadvantage of this method is not negotiable. When
autoexcision constructs are used, the recombinase can be
activated by a chemical compound or by a heat shock in the
shoots and seeds or during a subculture step and an extra
regeneration step. The latter possibility lengthens the time to
obtain marker-free transgenic plants and can introduce
(additional) somaclonal variation.

4.7 Positive selection system

Some marker genes for positive selection (table 3) enable
the identification and selection of genetically modified
cells without injury or death of the non-transformed cell
population (negative selection). In this case, the selection
marker genes should give the transformed cell the
capacity to metabolize some compounds that are not
usually metabolized. This fact will give the transformed

cells an advantage over the non-transformed ones. The
addition of this new compound in the culture medium, as
nutrient source during the regeneration process, allows
normal growth and differentiation of transformed cells,
while non-transformed cells will not be able to grow and
regenerate de novo plants.

4.7.1 The gus gene: The gus gene codes for the
β-glucuronidase enzyme (GUS; EC 3.2.1.31) and was
isolated from Escherichia coli. This gene is widely used as
a reporter gene in transgenic plants. In this system, the
selective agent is a glucuronide derivative of benzylade-
nine (benzyladenine N-3-glucuronide), an inactive form of
the plant hormone cytokinin. This glucuronide present in
the selection medium can be hydrolysed by the GUS
enzyme produced in the transformed cells, releasing active
cytokinin (benzyladenine) in the medium. This cytokinin
will be a stimulator for transformed cell regeneration while
the non-transformed cell development is arrested. The
selective agent (benzyladenine N-3-glucuronide) does not
have any effect on the non-transformed cells because the
cytokinin is in its inactive form. There are only few reports
concerning the successful use of this system in the
effective recovery of transgenic plants (Joersbo and
Okkels 1996; Okkels et al. 1997).

4.7.2 The manA gene: The man gene codes for the
phosphomannose isomerase enzyme (PMI; EC 5.3.1.8) isolat-
ed from Escherichia coli. In the presence of mannose, the PMI
converts mannose-6-phosphate into fructose-6-phosphate in
transformed cells that can be immediately incorporated in the
plant metabolic pathway. Thus, mannose can be used as the
sole carbohydrate source for the transformed cells. This
selection system is immediate and extremely efficient
(Joersbo et al. 1998).

Mannose cannot be usually metabolized by non-
transformed cells and is converted into mannose-6-phosphate
by endogenous hexokinase. Therefore, when mannose is
added to the culture medium, plant growth may be
minimized due to mannose-6-phosphate accumulation. The
mannose-6-phosphate toxicity in plant cells was shown to
be responsible for apoptosis, or programmed cell death,
through induction of an endonuclease, responsible for DNA
laddering (Stein and Hansen 1999). Mannose-6-phosphate
accumulation also causes phosphate and ATP starvation that
deplete cells of energy for critical functions such as cell
division and elongation, giving rise to growth inhibition.
Therefore, mannose is a hexose that fills the desirable
requirements for a good selection agent: it is (a) soluble in
plant culture media, (b) absorbed by plant cells, (c)
inexpensive, (d) easily available and (e) safe.

Althoughmost plant species are sensitive to mannose, some
species, especially dicotyledonous, have shown a considerable
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insensitivity to this sugar, including carrot, tobacco, sweet
potato and legumes. Other species are extremely sensitive and
have been successfully transformed by the use of mannose as
selective agent, such as sugar beet, maize, wheat, oat, barley,
tomato, potato, sunflower, oilseed rape and pea (Joersbo et al.
1998; 2000; Negrotto et al. 2000; Wang et al. 2000). Some
plant transformation protocols that use the positive selection
system with PMI were at least 10 times more efficient than
the traditional protocols based on the use of kanamycin as
selection agent (Wright et al. 2001).

4.7.3 The xylA and DOGR1 genes: A similar positive
selection system has been developed using the xylose isomerase
gene (xylA) isolated from Thermoanaerobacterium thermo-
sulfurogenes or from Streptomyces rubiginosus, as selection
marker gene (Haldrup et al. 1998a, b). Transgenic plants of
potato, tobacco and tomato were successfully selected in
xylose-containing media. Recently, the DOGR1 gene encoding
2-deoxyglucose-6-phosphate phosphatase (2-DOG-6-P) was
used to develop a positive selection system for tobacco and
potato plants (Kunze et al. 2001). DOGR1 gene, which has
been isolated from yeast, gives resistance to 2-deoxyglucose
(2-DOG) when overexpressed in transgenic plants.

4.8 Negative selection system

An alternate and potentially more efficient strategy is based
on the incorporation of a negative selection step. Negative
selectable markers are of two types: (a) conditional negative
selectable marker (e.g. codA) and (b) non-conditional
negative selectable marker (e.g. Diphtheria toxin).
Recently, Ramana Rao and K Veluthambi (2010) reported

that MYMV TrAP is a good non-conditional negative
selectable marker for developing marker-free transgenic
plants. Finally, the combination of using a mixture of
mechanisms, transient selection, sequential transformation,
negative marker genes, P-DNA and a mutated virD2 gene
together should be capable of producing high-frequency
marker-free transgenic plants by co-transformation methods.
Recently, a novel marker gene dao1, encoding D-amino acid
oxidase, has been characterized. It can be used as positive or
negative marker, depending on the substrate (Erikson et al.
2004). Therefore, it is possible to apply the negative
selection after a positive selection using one marker gene,
dao1, via changing D-alanine or D-serine to D-isoleucine or
D-valine for the substrates. Conversion of an externally
provided specific substrate into its phytotoxic derivative by
the marker gene encoded enzyme enables this counter
selection. The tms2 gene was the first conditional selective
marker gene to be used in tobacco (Depicker et al. 1988)
and in Arabidopsis (Karlin-Neumann et al. 1991). Indole
acetic acid hydrolase (IAAH) encoded by the tms2 gene
confers sensitivity of plants to naphthalene acetamide
(NAM) because IAAH converts NAM to the potent auxin
naphthalene acetic acid (NAA), which inhibits seedling
growth. Other conditional markers proven to be effective in
dicots are aux2 in cabbage (Beclin et al. 1993), the HSV-tk
gene in tobacco (Czako and Marton 1994), a bacterial
cytochrome P450 mono-oxygenase gene in tobacco
(O’Keefe et al. 1994) and Arabidopsis (Tissier et al. 1999)
and codA in Arabidopsis (Kobayashi et al. 1995) and
tobacco (Schlaman and Hooykaas 1997). So far, the
cytochrome P450 (the product of which catalyses the
dealkylation of a sulfonylurea compound, R7402, into its

Table 3. Positive selection used in plant transformation

Gene Sources Gene product Selective agent References

ipt Agrobacterium tumefaciens Isopentyl transferase None Endo et al. (2001)
rolC Agrobacterium rhizogenes ‘Hairy root’ phenotype None Ebinuma and Komamine

(2001)
iaaM, iaaH Agrobacterium tumefaciens Indole acetic acid None Tuominen et al. (1995)
dsdA Escherichia coli D-Serine ammonialyase None Erikson et al. (2005)
manA (pmi) Escherichia coli Phosphomannose isomerase D-Mannose Joersbo et al. (1998)
uidA (gusA) Escherichia coli b-Glucuronidase Benzyladenine-N-3-

glucuronide
Joersbo and Okkels
(1996)

codA Escherichia coli Cytosine deaminase 5-Flurocytosine (5-FC) Kobayashi et al. (1995)
atlD Escherichia coli strain C Arabitol dehydrogenase Arabitol LaFayette et al. (2005)
xylA Thermoanaerobacterium

sulfurogenes
Xylose isomerase D-Xylose Haldrup et al. (1998a, b)

AtTPS1 Arabidopsis thaliana Trehalose-6-phosphate synthase Glucose Leyman et al. (2006)
dao1 Rhodotorula gracilis D-Amino acidoxidase D-Amino acids(D-alanine

and D-serine)
Erikson et al. (2004)

OsDREB2A
and AtSOS1

Rice and Arabidopsis thaliana Salt resistant phenotype High concentration of Nacl Zhu and Wu (2008)
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cytotoxic metabolite) and codA (whose product cytosine
deaminase converts the non-toxic 5-fluorocytosine into
phytotoxic 5-fluorouracil) are the only genes to have been
used as conditional negative selectors in monocots. Both
have been proven to be effective in barley (Koprek et al.
1999). The only gene used in rice so far is the cytochrome
P450 (Chin et al. 1999). Moreover a selection system based
on a mutant rice gene for a feedback-insensitive α- subunit of
anthranilate synthase (OASA1D) was developed for the
transformation of rice and potato (Yamada et al. 2004).
Expression of OASA1D conferred resistance to the tryptophan
analog 5-methyltryptophan (5MT). The selection system
based on OASA1D and 5MT was as effective as hygromycin
B selection in rice (monocotyledon) and kanamycin selection
in potato (dicotyledon) (Yamada et al. 2004).

Osakabe et al. (2005) reported the coding sequences of
acetolactate synthase (ALS) gene from rice, and mutagen-
ized the ALS gene into a herbicide-resistant form. After
transfer of this construct to the rice genome, transgenic
plants were efficiently selected with a herbicide, bispyribac-
sodium salt, which inhibits the activity of wild-type ALS.
The marker system consisted exclusively of host plant DNA
and enabled efficient selection in a monocot crop plant, rice.
The selection system can potentially be applied to generate
transgenic plants of other crop species and can be expected
to be publicly acceptable.

4.9 Autoexcision strategy

A number of methods to eliminate the selection marker
gene form the plant genome are now known. The
earlier methods of autoexcision such as the heat-
inducible system and chemical-inducible system are
time consuming and the marker gene is eliminated in
the next generation after segregation. For the develop-
ment of marker-free transgenic plants, scientists have
developed a novel and ideal method, which eliminates
the selection marker gene in a single generation. This
method is known as ‘autoexcision strategy’, in which the
marker is easily eliminated in the T1 seeds of the transgenic
plants (the seeds which is collected from the T0 plants)
(Mlynarova et al. 2006). The next generation of the
transgenic plants will be marker free.

Autoexcision strategy is very recently introduced and
used in the plant biological system to eliminate selection
marker gene from the plant genome. Autoexcision system is
controlled by pollen- and /or seed-specific promoters and it
was reported that the highly-efficient autoexcision of
selective markers is successfully achieved in tobacco
(Mlynarova et al. 2006; Luo et al. 2007). Autoexcision
strategy relies on floral-specific promoters to regulate the
expression of cre recombinase to generate marker-free
transgenic plants. The functionally characterized promoters

were used in the strategy and the system is successfully
demonstrated in rice (Bai et al. 2008). The novel marker-
free approach mediated by the Cre–loxp recombination
system and the Cre gene was under the control of floral-
specific promoter OsMADS45. The marker gene nptII was
completely removed from the T1 progenny of the rice with
37.5% efficiency.

Verweire et al. (2007) have developed marker-free
transgenic plants of A. thaliana introducing a germline-
specific autoexcision vector containing a cre recombinase
gene under the control of a germline-specific promoter
(APETALA1 and SOLO DANCERS genes from Arabidopsis
(A.thaliana) Columbia-0). Transgenic plants become genet-
ically programmed to lose the marker when its presence is
no longer required. Using this method the frequency of
regenerating marker-free transgenic lines in Arabidopsis is
83–100%. In spite of all the above, autoexcision strategy
has its limitations: it is successful only in flowering plants.
It will not be useful for the vegetatively propogated plants
like grapes, potato and banana.

4.10 Abiotic stress-related gene as selection marker

In all these methods such as co-transformation, site-
specific integration, chemical induced and heat-induced
marker gene elimination, the marker gene is eliminated in
the second generation, but in only the autoexcision
strategy method the marker gene is eliminated in the F1
generation. Here we discuss the novel approaches for the
development of marker-free transgenic. It is a well-known
fact that various genes encode proteins that protect the
plants at the time of several environmental stresses like
drought stress, salt stress and oxidative stress. Till date so
many genes that are well characterized in A. thaliana or in
several agronomically important crops can be used for the
development of marker-free transgenic plants. Incorporation
of such well-characterized genes in to those plants that are
salt sensitive, including rice (Oryza sativa), maize (Zea
mays), soybean (Glycine max), beans (Phaseolus vulgaris)
and tomato (Lycopersicum esculantum), is a contribution to
the agriculture sector for developing transgenic plants
(Munns 2005).

The basic ideas behind this strategy is that plant tissue or the
plant senses high Na+ concentration in the soil/media and
initiates signal transduction to activate a set of stress-
responsive genes for salt tolerance. The gene is incorporated
into the plant tissue or explants without the selection marker
gene. After transformation the tissue will grow under the
pressure of salt stress, and explants that grow well without any
deformities are selected and grown further in the salt stress
medium until the vegetative proliferation of the explants. In
the whole experiment there is no need to use the selection
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marker. The gene itself can be used as selection marker to
select the transformed tissue (Zhang et al. 2009a, b).

ESKIMO1 gene is reported to be involved in plant water
economy as well as cold and salt tolerance (Bouchabke-
Coussa et al. 2008). Yoshida and Shinmyo (2000) attempted
to make the yeast Na+-ATPase function in plant cells. The
ENAl (i.e. exitus natru, for the latin words meaning ‘exit
sodium’) gene that encodes the Saccharomyces cerevisiae
Na+-ATPase was placed under the control of the CaMV35S
promoter and introduced into BY2 cells. Transgenie BY2
cells that produced Enal protein were able to grow in
modified LS medium containing 120 mM of LiCl, conditions
which markedly inhibited the growth of untransformed cells.
Sanan-Mishra et al. (2005) explored the potential role of
PDH45 (pea DNA helicase 45) in overcoming salinity stress.
PDH45 mRNA is induced in pea seedlings in response to high
salt, and its overexpression driven by a constitutive cauliflower
mosaic virus-35S promoter in tobacco plants confers salinity
tolerance. The overexpression of barley group 3 LEA gene
HVA1 in leaves and roots of rice and wheat lead to improved
tolerance against osmotic stress as well as improved recovery
after drought and salinity stress (Sivamani et al. 2000; Rohila
et al. 2002). There are following limitations:

i. In case of an unknown gene it will be difficult to use
the system.

ii. Screening will be tedious because there will be chances
of escape of untransformed calli.

5. Regulation and biosafety concern of GM crops

The great success of GM crops has had an enormous impact
on world crop production and cultivation pattern of
agricultural species (James 2006). The extensive environ-
mental release and cultivation of GM crop varieties have
aroused tremendous biosafety concerns and debates world-
wide (Stewart et al. 2000). Biosafety issue has already
become a crucial factor in constraining the further develop-
ment of transgenic biotechnology and wider application of
GM products in agriculture. There are quite number of
biosafety related concerns in general, but the most important
ones can be summarized as follows. (1) direct and indirect
effects of toxic transgenes (e.g. the Bt insect-resistance
gene) to non-target organisms (O'Callaghan et al. 2005;
Oliveira et al. 2007); (2) influences of transgenes and GM
plants on biodiversity, ecosystem functions and soil
microbes (Giovannetti et al. 2005; Oliveira et al. 2007);
(3) transgene escape to crop landraces and wild relatives
through gene flow and its potential ecological consequences
(Wilkinson et al. 2000; Snow et al. 2003; Lu and Snow
2005; Mercer et al. 2007); and (4) potential risks associated
with the development of resistance to biotic-resistance
transgenes in the target organisms (Dalecky et al. 2007;

Li et al. 2007a, b; Wu 2007). In addition, there are still
some unknown involvements in potentially significant
interactions between transgenic traits and the environments.
Among the above environmental biosafety issues, transgene
escape from a GM crop variety to its non-GM crop
counterparts or wild relatives has aroused tremendous
debates worldwide (Ellstrand et al. 1999; Ellstrand 2001,
2003; Lu and Snow 2005). This is because transgene
escape can easily occur via gene flow that may result in
potential ecological consequences if significant amounts of
transgenes constantly move to non-GM crops and wild
relative species. This is particularly true when these
transgenes can bring evolutionary selective advantages or
disadvantages to crop varieties or wild populations. It is
therefore essential to properly address the most relevant
questions relating to the transgene outflow and its potential
environmental consequences on a science-based altitude.

6. Conclusion and future prospects

The improvement of agricultural production and productiv-
ity as well as the future versatility of agricultural production
are dependent on the rational utilization of technologies. We
stand at the convergence of an incredible array of new
technologies, such as recombinant DNA technology, infor-
mation technology and high-throughput genomics, to
enhance our understanding of the structure and function of
the genomes and to apply this information for plant and
animal improvement. Products arising from modern bio-
technology such as GM or transgenic crops are providing
new opportunities to achieve sustainable productivity gains
in agriculture.

The presence of selectable marker genes, especially those
which include genes coding for antibiotic resistance and
which are essential for the initial selection of transgenic
plants, is seen by European regulatory agencies as undesir-
able. An issue of concern relates to the fact that transgenes
integrate at random positions in the genome leading to
possible unwanted side effects (mutation) and unpredictable
expression patterns. In addition to the risk of HGT, there is
also a ‘vertical cross-species’ transfer risk that could
potentially create enhanced weediness problems (Dale
et al. 2002). The production of marker-free transgenic crops
eliminates the risk of HGT and could mitigate vertical gene
transfer. Transfer of plant DNA into microbial or mamma-
lian cells under normal conditions of dietary exposure
would require all of the following events to occur: (i)
removal of the relevant gene(s) from the plant genome,
probably as linear fragments; (ii) protection of the gene(s)
from nuclease degradation in the plant as well as animal
gastrointestinal tract; (iii) uptake of the gene(s) with dietary
DNA; (iv) transformation of bacteria or competent mam-
malian cells; (v) insertion of the gene(s) into the host DNA
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by rare repair or recombination events into a transcribable
unit; and finally (vi) continuous stabilization of the inserted
gene (FAO/WHO 2000). Thus, the development of efficient
techniques for the removal of selection markers, as well as
the directed integration of transgenes at safe locations in
the genome, is of great interest to biotech companies.
Furthermore, removal of selectable marker genes will
also have a technical advantage, since the number of
available selectable marker genes is limited, and stacking
of transgenes will become more and more desirable in
the near future.

Generally, selectable marker genes are not required once
the transgenic plants are regenerated and the genetic
analyses completed. The presence of a particular marker
gene in a transgenic plant necessarily precludes the use of
the same marker in subsequent transformation and the use of
a different marker system is required for each transforma-
tion round or event. Thus, any technique that can remove or
eliminate a selection marker gene in transgenic crops is
highly desirable if for no other reason than that the same
procedure can be used in subsequent transformations. For
transgene technology to be commercially successful, multi-
ple independent transgenes available need to be added in
existing sequence.

Therefore, there is need for the development of
techniques for the efficient production of ‘clean’
marker-free transgenic plants. Among the several tech-
nologies described, two have emerged with significant
potential. The simplest is the co-transformation of genes
of interest with selectable marker genes followed by the
segregation of the separate genes through conventional
genetics. The more complicated strategy is the use of
site-specific recombinases, under the control of inducible
promoters, to excise the marker genes and excision
machinery from the transgenic plant after selection has
been achieved. The field of marker gene removal
continues to produce new innovations. For example,
the possibilities of increasing the number of different
heterologous recombinase systems available by molecu-
lar evolution approaches have been discussed, and new
marker gene and marker-free strategies are under
development (Schubbert et al. 1998). The removal of
marker gene and backbone from the transgenic plants
supports multiple transformation cycles for transgene
pyramiding. Although research continues, it is clear that
several viable methods for the removal of unwanted
marker genes already exist. It seems highly likely that
continued work in this area will soon remove the question
of unwanted marker genes from the debate concerning the
public acceptability of transgenic crop plants. At present
there is no commercialization of marker-free transgenic crop as
it is still in the stage of proof-of-concept (Manimaran
et al. 2011). Development for production of marker-free

transgenics would further strengthen the crop improvement
programme with widespread applications in both funda-
mental research and biotechnology. Overall, the GM crops
are expected to contribute globally to the food security.
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