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Inferring equilibrium magnetization from hysteretic M -H curves of type-II superconductors
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IsothermalM -H curves, coupled with the critical state model, are routinely used to extract critical current
densityJc(B); and the limitations and validity are well understood. These hystereticM -H curves can also be
used to estimate the equilibrium magnetizationMeq(H), and this paper discusses the validity of such a
procedure using analytically tractable models forJc(H). We put special emphasis on the case where theM -H
curve shows a fish tail or peak effect, and an experimental procedure to estimate errors in the inferredMeq(H)
is presented. The need to inferMeq(H) is underscored by recent experimental works speculating on thermo-
dynamic phase transitions between vortex phases having intrinsic pinning.@S0163-1829~99!01413-7#
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Hysteresis is observed in the isothermalM -H curves of
most superconductors due to the pinning of vortices. T
hysteresis was first related to the critical current densityJc
by Bean’s critical state model1 ~CSM!. The original work
assumed a lower critical fieldHc1

50 and thus ignored the

equilibrium magnetizationMeq(H). Bean considered an in
finitely long cylinder of transverse dimension 2D in a par
lel field and assumed field-independentJc . The field profiles
B(x) are then straight lines, and the envelope hyster
curves @which correspond to the field change having fu
penetrated the sample such thatB(x) varies monotonically
from the surface to the center# are lines of constantM, sym-
metric aboutM50, with magnitudeMs5(k/2)JcD. Herek
is a constant that depends on the shape of the cylinder’s c
section. When the actualMeq(H) are included, the field pro
files B(x) retain their shape but are shifted to have a va
m0@H1Meq(H)# at the surface.2 Denoting the magnetization
in increasing and decreasing field byM↑(H) and M↓(H),
we have M↑(H)5Meq(H)2(k/2)JcD and M↓(H)
5Meq(H)1(k/2)JcD, and the hysteresis curves are sy
metric aboutMeq(H). It follows that

Meq~H !5
1

2
@M↑~H !1M↓~H !# ~1!

and

Jc~H !5
1

kD
@M↓~H !2M↑~H !#. ~2!

Equation ~2! has been assumed to be valid even whenJc
depends on the local fieldB, and has been used extensive
to infer Jc(B) from the magnetization hysteresisDM (H)
5M↓(H)2M↑(H) at H5B/m0 .

The validity of Eq.~2! for a field dependentJc(B) was
examined by Fietz and Webb.3 Using a Taylor series expan
sion, they showed that the correction terms are of or
(d2Jc /dB2) and higher. Its usage in the high-Tc supercon-
ductors surprisingly resulted in field independentJc at low
fields. This was attributed4 to the breakdown of Taylor serie
expansion for fields below the field for first full penetratio
HI . The applicability of Eq.~2! has in recent years bee
studied in great detail4–7 for Jc(B) that decreases with in
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creasinguBu. Studies have recently been initiated8 for situa-
tions whereJc vs B shows a ‘‘peak effect.’’

The applicability of Eq.~1! has, to our knowledge, no
been examined in great detail. Equation~1! would be exact
only if the M -H curve is symmetric aboutMeq(H), and this
is not valid if JC is a function ofB. Following the Taylor
series expansion of Ref. 3, one sees that correction terms
be of order (dJc /dB) and errors in inferringMeq(H) will be
larger than in inferringJc . The need for extractingMeq(H)
from hystereticM -H curves is seen for high-Tc as well as
some lowTc superconductors which show intrinsic pinnin
In materials like Bi-Sr-Ca-Ca-O, Nd-Ce-Cu-O, Y-Ba-Cu-O
and CeRu2,9–12 there now exist speculations of thermod
namic phase transitions involving phases with intrinsic p
ning. Such phase transitions are expected to have chara
istic signatures inMeq(H).

In this paper we shall present general intuitive argume
to obtain upper boundsD(H) on the errors in the use of Eq
~1!. We shall then consider an analytically tractable mo
for Jc(B) exhibiting a peak effect. The actual error in the u
of Eq. ~1! will be obtained for model parameters, and com
pared with the upper bounds. An experimental method
obtaining these upper bounds will then be presented.

Generalizations of CSM forJc(B) decreasing monotoni
cally with increasingB exist for many functional forms of
Jc(B), the most common being the Kim-Anderson and t
exponential models.4–6 Analytical solutions, assumingHc1

50, exist for infinite cylinders in parallel field geometr
which have a demagnetization factorN50. While field pro-
files B(x) do not depend on the shape of the cylinder’s cro
section, the magnetization values do.7 Results are usually
presented for the case of an infinite slab in parallel field
this geometry has the simplest algebra. Calculations for o
shapes are tedious but straightforward, and since no sp
features appear in theM -H curves, we shall in this pape
present results only for the slab geometry. If we use theM -H
curves so obtained, along with Eq.~1!, to estimateMeq(H),
we will make an errordMeq(H)51/2@M↑(H)1M↓(H)#
2Meq(H). In our calculation we shall continue with the a
sumptionHc150 followed in most papers on the CSM, thu
implying Meq(H)50. We will then estimate the error in th
use of Eq.~1! from our model calculations, as
8440 ©1999 The American Physical Society
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dMeq~H !5
1

2
@M↑~H !1M↓~H !#. ~3!

We shall show in the Appendix that our error estimates
main accurate for nonzeroMeq(H) in the limit H
@HC1 .

We now address the question of estimatingdMeq(H)
without knowing the detailed form ofJc(B). In Figs. 1~a!
and 1~b! we show the field profiles, atH.HI , for the field
increasing and decreasing case, respectively. The slope o
profile varies from point to point and equals theJc at thatB.
The simplicity of algebra in the slab geometry results in
magnetization being simply proportional to the area c
tained between the field profileB(x) and the horizontal line

FIG. 1. ~a! A schematic plot of the field distribution used i
obtainingM↑(H), MMB↑(m0H), andMMB↑„Bc(H)… is shown by a
thick line ~I!, a thin line ~II !, and a dotted line~III !, respectively,
when the applied fieldm0H is increasing.~b! The field distribution
case when the applied fieldm0H is decreasing used in obtaining th
magnetizationM↓(H), MMB↓(m0H) andMMB↓„Bc(H)… is shown
by a thick line ~I!, a thin line ~II !, and a dotted line~III !, respec-
tively.
-

-

the

e
-

B5m0H in each case. Because of the field dependence
Jc(B), the areas corresponding toM↑(H) and M↓(H) are
not equal in magnitude, and the errordMeq(H) is thus
nonzero. The question we address is whether this differe
can be related to measurable quantities. We denote
Bc↑(H) the field at the center of the sample when the a
plied field H is increasing, and note from Fig. 1~a! that
Jc„Bc↑(H)… is the largest slopeB(x) has. In what is some-
times referred to as the modified Bean model13 ~MB!, we can
calculate magnetizationM (H) assuming thatB(x) are
straight lines with slope dictated byJc(m0H). Referring to
this approximation asMMB(H), we note thatMMB↑(H)
52MMB↓(H)52(k/2)Jc(m0H)D andk51 for a slab ge-
ometry. This is shown schematically in Fig. 1~a! where the
thin line ~marked II! givesB(x) if we assumeJ5Jc(m0H)
everywhere. The area enclosed between this thin line anB
5m0H ~dashed horizontal line! gives the magnetization
MMB↑(H). In the same figure, the dotted line~marked III!
showsB(x) if we assume thatJ5Jc„Bc↑(H)… everywhere,
and the area enclosed between this line andB5m0H gives
the magnetizationMMB↑@Bc↑(H)#. It is then easy to see tha
MMB↑„Bc↑(H)…,M↑(H),MMB↑(H). Using similar argu-
ments and Fig. 1~b!, we note that MMB↓„Bc↓(H)…
,M↓(H),MMB↓(H). Combining these inequalities, w
get 0. 1

2 @M↑(H)1M↓(H)#.(k/4)D@Jc„Bc↓(H)…
2Jc„Bc↑(H)…#. On using Eqs.~2! and ~3!, and defining
D(H)5 1

4 @DM „Bc↓(H)…2DM „Bc↑(H)…#, we get,

udMeq~H !u,uD~H !u. ~4!

Inequality ~4! thus puts an upper bound on the errors
terms of theDM (H) measured in thesameexperiment. We
shall describe later howBc↑(H) andBc↓(H) can be experi-
mentally estimated.

We now propose an analytically tractable model for
peak effect inJc(B) as
Jc~B!55
Jc~0!exp~2B/m0H0! for 0,B,B1 ,

Jc~0!expS B2B1

m0H1
2

B1

m0H0
D for B1,B,B2 ,

Jc~0!expS 2B22B1

m0H1
2

B1

m0H0
2

B

m0H1
D for B.B2 .

~5!
Here Jc(B) shows a peak atB2 around which it falls sym-
metrically with a decay constantm0H1 . The peak is initiated
at B1 . The limit of largeB1 gives us a monotonic exponen
tially decaying Jc(B). To calculateM -H curves for this
model, we follow the methods described earlier.7,15 We first
define a generalized field variable14 ~with dimension of
length! h(B)5*0

BdB/„m0Jc(B)…. The magnetization is then

obtained as7,15 M↑(H)52H1*h„Bc↑(H)…
h(m0H)

B(h)dh/(m0D)

and M↓(H)52H1*h(m0H)
h(Bc↓(H)…

B(h)dh/(m0D) where B(h)

will be obtained by invertingh(B). The advantage of using
the variable h is that7,15 h„Bc↑(H)…5h(m0H)2D; and
h„Bc↓(H)…5h(m0H)1D. If we now define G(h)
5*0

hB(h)dh, we get

M↑~H !52H1
1

m0D
@G„h~m0H !…2G„h~m0H !2D…#,

M↓~H !52H1
1

m0D
@G„h~m0H !1D…2G„h~m0H !…#,

~6!

and we also getDM (H) analytically.



he

ds

er

is-

e

-

s.
a-

ag-

ing

than
nt if

ith

e

ng
e-

8442 PRB 59BRIEF REPORTS
For the model defined by Eq.~5!, h(B), B(h), andG(h)
are all obtained trivially. The results forG(h) are given be-
low

G~h!5m0H0F S h1
H0

Jc~0! D lnS Jc~0!

H0
h11D2hG

for 0,h,h~B1!, ~7a!

G~h!5G„h~B1!…1~B11m0H1!„h2h~B1!…2m0H1

3Fh2
H1

Jc~0!
expS B1

m0H0
D2h~B1!G

3 lnS 12
„h2h~B1!…Jc~0!

H1exp~B1 /m0H0! D
for h~B1!,h,h~B2!, ~7b!

and forh.h(B2),

G~h!5G„h~B2!…2m0H1„h2h~B2!…

2
H1B2

Jc~0!
expS B2

m0H1
DexpS B1

m0H0
2

2B22B1

m0H1
D

1m0H1F „h2h~B2!…1
H1

Jc~0!

3expS B2

m0H1
DexpS B1

m0H0
2

2B22B1

m0H1
D G

3 lnFJc~0!

H1
„h2h~B2!…

3expS 2B22B1

m0H1
2

B1

m0H0
D1expS B2

m0H1
D G . ~7c!

The M -H curves given by Eqs.~6! and ~7! are thus ob-
tained analytically. One example is plotted in Fig. 2 for t
parameters m0H05m0H150.2, B150.6, B250.8, and
m0Jc(0)D50.1 ~magnetizationM and the fieldsB andH are
in MKS units!. We use Eq.~3! and also plot the errorsdMeq
is Fig. 2. And we also plot in Fig. 2 the upper boun
D(H)5@DM „Bc↓(H)…2DM „Bc↑(H)…#/4. We have con-
firmed from our results for various values of the paramet
that inequality~4!, viz. udMeq(H)u,uD(H)u is satisfied for
both monotonic exponentialJc(B), and forJc(B) showing
differing extents of the peak effect. Before initiating a d
cussion on the experimental method of obtainingBc↑(H)
andBc↓(H), we wish to point out that inequality~4! can be
violated only when there is a gross violation of Eq.~2!. As
noted earlier, this can happen only when a Taylor series
pansion forB(x) breaks down4 and that is whenB(x) has an
inflexion point. SinceJc(B) is small atB1 , this can occur
only in a very narrow range of fields nearB1 . Our results
however show no evidence of inequality~4! breaking down
nearB1 . It is to be noted from Fig. 2 thatdMeq(H) is of the
order of a few percent of the hysteresisDM (H), and the
upper boundD(H) overestimatesdMeq(H) by up to a factor
of 2.
s

x-

Once isothermalM -H curves are measured,Meq(H) can
be estimated from Eq.~2! and for error barsdMeq(H) we
require to use Eq.~4!. The only information not already con
tained in theM -H curves is a knowledge ofBc↑(H) and
Bc↓(H). For any fieldH these can be estimated as follow
After measuring theM -H envelope curves at any temper
tureT0 , field cool the sample from aboveTc to T0 in field H.
Then isothermally reduce the field while measuring the m
netization. It will merge with the envelopeM↓(H) curve at
Bc↑(H).15,16Similarly, after field cooling the sample toT0 in
field H, one should measure the magnetization while rais
the field. It will merge with the envelopeM↑(H) curve at
Bc↓(H). Since Bc↑(H) and Bc↓(H) are now known, the
upper boundD(H) can be known from theM -H curves.

Field-cooled measurements are usually more tedious
isothermal measurements. In an isothermal measureme
one starts from the field-increasing envelope curveM↑(H)
and starts reducing the field, the minor loop will merge w
the field-decreasing envelope curveM↓ at BII↑(H), where
BII↑(H),Bc↑(H).15 Similarly, by starting fromM↓(H)
and raising the field, the minor loop will merge with th
field-increasing envelope curve atBII↓(H), whereBII↓(H)
.Bc↓(H). And as long asDM (H) is monotonic between
BII↑(H) andBII↓(H), we can replaceBc↑(H) by BII↑(H)
andBc↓(H) by BII↓(H) in inequality given by Eq.~4!. We
note that,15 h(BII↑(H))5h(m0H)22D, and h„BII↓(H)…
5h(m0H)12D. We denote the upper bound obtained usi
these fields byD II

UB(H). Since these isothermal measur

FIG. 2. ~a! The envelopeM -H curves with nonmonotonically
varying Jc(B) with B150.6, corresponding toJc(B2)/Jc(0)
5e22. Since the CSM has the symmetryM↑(2H)52M↓(H),
we shall showM -H curves only for positiveH. ~b! We plot
dMeq(H) andD(H). We also showD II

UB(H) which is measurable
isothermally. See text for details.
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ments are more convenient, we have also compared in F
our calculatedD II

UB(H) whereBc↑ andBc↓ are replaced by
BII↑ andBII↓, respectively. As expected,D II

UB(H) is larger
in magnitude thanD(H) over most of the field region. We
thus have a completely isothermal technique of estima
Meq(H) along with error barsdMeq(H). This technique has
been used in a recent experiment to estimateMeq(H) in
CeRu2,12 and the upper boundD II

UB(H) on dMeq(H) were
negligible compared toMeq(H).

To conclude, we have in this paper investigated in de
the errors in estimatingMeq(H) from isothermal M -H
curves. We have solved analytically a model for the c
where a fishtail or peak effect is seen. In view of rece
speculations9–12 of thermodynamic phase transitions at t
onset of the fishtail or the peak effect, equilibrium magne
zation is a very important thermodynamic parameter. O
analysis has concluded with an experimental technique
providing an upper bound on the errors in estimat
Meq(H).

We acknowledge some useful discussions with Manoj
Harbola. M.C. acknowledges financial assistance from C
~India!.
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APPENDIX

We takeHC1Þ0 and Meq(H)Þ0 and following pages
85–88 of de Gennes2 set B5Beq(H)5m0„H1Meq(H)… at
the surface of the slab. We denote the magnetization t
obtained bym(H), and the magnetization obtained with th
assumptionHC150 by M (H). A field-dependentJC(B) is
assumed. A look at Figs. 3.13~b!, 3.14, and 3.16 of Ref. 2
immediately gives us@note that Meq(H) is negative#,
m↑(H)5Meq(H)1M↑(h), and m↓(H)5Meq(H)
1M↓(h), where h5H1Meq(H). We then get,
1/2@m↑(H)1m↓(H)#2Meq(H)51/2@M↑(h)1M↓(h)#, or
dmeq(H)5dMeq(h), where dMeq(h) is the asymmetry
aboutM50 when we assumeHC150, anddmeq(H) is the
asymmetry aboutMeq(H) in a ‘‘proper’’ calculation.

By assumingHC150, and thereby ignoring the differenc
between the applied field and the surface field, we only d
placed the asymmetry atH to h5H1Meq(H). The effect is
negligible as long asMeq!H, which is much weaker than
HC1!H.

We note that we have, following standard treatments
the CSM, ignored surface barrier effects. These are impor
only at low fields.17
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