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IsothermalM-H curves, coupled with the critical state model, are routinely used to extract critical current
densityJ.(B); and the limitations and validity are well understood. These hystektld curves can also be
used to estimate the equilibrium magnetizativi (H), and this paper discusses the validity of such a
procedure using analytically tractable modelsJgfH). We put special emphasis on the case wherdvihid
curve shows a fish tail or peak effect, and an experimental procedure to estimate errors in the ihfgired
is presented. The need to infe(H) is underscored by recent experimental works speculating on thermo-
dynamic phase transitions between vortex phases having intrinsic pin8i0§63-182699)01413-7

Hysteresis is observed in the isothernh&H curves of

creasing B|. Studies have recently been initiatddr situa-

most superconductors due to the pinning of vortices. Thisions wherel. vs B shows a “peak effect.”

hysteresis was first related to the critical current density
by Bean’s critical state modelCSM). The original work
assumed a lower critical fielt, =0 and thus ignored the

equilibrium magnetizatioM(H). Bean considered an in-

finitely long cylinder of transverse dimension 2D in a paral-

lel field and assumed field-independdgt The field profiles

The applicability of Eq.(1) has, to our knowledge, not
been examined in great detail. Equatidn would be exact
only if the M-H curve is symmetric abowl(H), and this
is not valid if J¢ is a function ofB. Following the Taylor
series expansion of Ref. 3, one sees that correction terms will
be of order (iJ./dB) and errors in inferringvl .(H) will be

B(x) are then straight lines, and the envelope hysteresigrger than in inferringl.. The need for extractinyl o(H)
curves[which correspond to the field change having fully from hystereticM-H curves is seen for higfi; as well as

penetrated the sample such tiBx) varies monotonically
from the surface to the cenjeare lines of constari¥l, sym-
metric aboutM =0, with magnitudeM ;= (k/2)J.D. Herek

some lowT . superconductors which show intrinsic pinning.
In materials like Bi-Sr-Ca-Ca-O, Nd-Ce-Cu-O, Y-Ba-Cu-O,
and CeRy,° 2 there now exist speculations of thermody-

is a constant that depends on the shape of the cylinder's CrO%Amic phase transitions involving phases with intrinsic pin-

section. When the actud ¢(H) are included, the field pro-
files B(x) retain their shape but are shifted to have a valu
molH+Me(H)] at the surfacé.Denoting the magnetization
in increasing and decreasing field by7(H) andM | (H),
we have MT(H)=Mg(H)—(k/2)J.D and M|[(H)

=Mg(H) +(k/2)J.D, and the hysteresis curves are sym-

metric aboutM ¢(H). It follows that

1
MefH)=5[MT(H)+M[(H)] 1)

and

1
Je(H) =5 [MLH)=MT(H)]. )

Equation(2) has been assumed to be valid even whign

ning. Such phase transitions are expected to have character-

Sstic signatures i o(H).

In this paper we shall present general intuitive arguments
to obtain upper bound&(H) on the errors in the use of Eq.
(1). We shall then consider an analytically tractable model
for J.(B) exhibiting a peak effect. The actual error in the use
of Eq. (1) will be obtained for model parameters, and com-
pared with the upper bounds. An experimental method for
obtaining these upper bounds will then be presented.

Generalizations of CSM fod.(B) decreasing monotoni-
cally with increasingB exist for many functional forms of
J.(B), the most common being the Kim-Anderson and the
exponential model:® Analytical solutions, assumingi,,
=0, exist for infinite cylinders in parallel field geometry
which have a demagnetization factd=0. While field pro-
files B(x) do not depend on the shape of the cylinder’s cross-

depends on the local fiel, and has been used extensively section, the magnetization values d&esults are usually

to infer J;(B) from the magnetization hysteresisM (H)
=M[(H)—MT(H) atH=B/pu,.

The validity of Eq.(2) for a field dependeni.(B) was
examined by Fietz and WebtUsing a Taylor series expan-

presented for the case of an infinite slab in parallel field as

this geometry has the simplest algebra. Calculations for other
shapes are tedious but straightforward, and since no special
features appear in th®l-H curves, we shall in this paper

sion, they showed that the correction terms are of ordepresent results only for the slab geometry. If we useMheél

(d2J./dB?) and higher. Its usage in the high-supercon-
ductors surprisingly resulted in field independdptat low
fields. This was attributédo the breakdown of Taylor series

curves so obtained, along with E@), to estimateM ¢(H),
we will make an erroréM(H)=1/AMT(H)+M|(H)]
—Me¢(H). In our calculation we shall continue with the as-

expansion for fields below the field for first full penetration sumptionH ;=0 followed in most papers on the CSM, thus

H,. The applicability of Eq.(2) has in recent years been
studied in great detdit’ for J.(B) that decreases with in-
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implying M¢(H) =0. We will then estimate the error in the
use of Eq.(1) from our model calculations, as

8440 ©1999 The American Physical Society
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FIG. 1. (a) A schematic plot of the field distribution used in
obtainingM T (H), MMB1(uoH), andMMB1 (B,(H)) is shown by a
thick line (1), a thin line(ll), and a dotted lin€lll), respectively,
when the applied fielgeoH is increasing(b) The field distribution
case when the applied fieldyH is decreasing used in obtaining the
magnetizatiorM | (H), MM8| (uoH) andM™B| (B,(H)) is shown
by a thick line(l), a thin line(Il), and a dotted lin€lll ), respec-
tively.

1
MedH)=5[MT(H)+M[(H)]. ©)
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B=pugH in each case. Because of the field dependence of
J.(B), the areas corresponding ¥1(H) andM | (H) are
not equal in magnitude, and the erréM.(H) is thus
nonzero. The guestion we address is whether this difference
can be related to measurable quantities. We denote by
B.T(H) the field at the center of the sample when the ap-
plied field H is increasing, and note from Fig.(d that
J.(B:T(H)) is the largest slop8(x) has. In what is some-
times referred to as the modified Bean mddéVIB), we can
calculate magnetizatiorM (H) assuming thatB(x) are
straight lines with slope dictated hj.(uoH). Referring to
this approximation asMMB(H), we note thatMMB7(H)
=—MMB|(H)=—(k/2)J.(uoH)D andk=1 for a slab ge-
ometry. This is shown schematically in Figial where the
thin line (marked I) givesB(x) if we assumel=J.(uoH)
everywhere. The area enclosed between this thin lineBand
=uoH (dashed horizontal linegives the magnetization
MMB1(H). In the same figure, the dotted liimarked IlI)
showsB(x) if we assume thal=J.(B.1(H)) everywhere,
and the area enclosed between this line BrdugH gives
the magnetizatioMMB1[B.T(H)]. Itis then easy to see that
MMB1 (B, (H))<MT(H)<MMB{(H). Using similar argu-
ments and Fig. (b), we note that MMB|(B.|(H))
<M |(H)<MMB|(H). Combining these inequalities, we
0>3[M1(H)+ M| (H)]>(k/4)D[Ic(B.L(H))

. . , get
We shall show in the Appendix that our error estimates re J.(B.1(H))]. On using Egs.2) and (3), and defining

main accurate for nonzeraM(H) in the limit H
>Hey.

We now address the question of estimatialyl .(H)
without knowing the detailed form ad;(B). In Figs. Xa)
and Xb) we show the field profiles, & >H,, for the field

A(H)=3[AM(Bc|(H))—AM(B.T(H))], we get,
|[oM e H)[<[A(H)]. 4

Inequality (4) thus puts an upper bound on the errors in

increasing and decreasing case, respectively. The slope of tterms of theAM(H) measured in theameexperiment. We

profile varies from point to point and equals theat thatB.

shall describe later hoB.1(H) andB.](H) can be experi-

The simplicity of algebra in the slab geometry results in thementally estimated.

magnetization being simply proportional to the area con-

tained between the field profiB(x) and the horizontal line

We now propose an analytically tractable model for a
peak effect inJ;(B) as

JC(O)qu - B//.L()Ho) for 0<B< Bli

JC(O)ex;{B_Bl— By ) for B;<B<B,,
J(B)= moH1  moHo )
JC(O)exp(ZBZ_Bl— B _ ) for B>B,.
MoH1 moHo  moH1

Here J.(B) shows a peak aB, around which it falls sym-
metrically with a decay constaptyH,. The peak is initiated
atB;. The limit of largeB; gives us a monotonic exponen-
tially decayingJ.(B). To calculateM-H curves for this
model, we follow the methods described earlié? We first
define a generalized field variabfe(with dimension of
length h(B)=f5dB/(1eJc(B)). The magnetization is then

obtained a&'® MT(H):—H+f:E§:ﬂL))B(h)dh/(MoD)

and M | (H)= —H+f2§i;{j;‘”3(h)dh/(ﬂoo) where B(h)

will be obtained by invertindi(B). The advantage of using
the variableh is that'*® h(B.1(H))=h(uoH)—D; and

h(B¢) (H))=h(uoH)+D. If
=[DB(h)dh, we get

we now define G(h)

1
MT(H)=—-H+ D [G(h(uoH))—G(h(ueH)—D)],
Mo

1
M1(H)=—H+ 5 [G(h(uoH)+D)=G(h(uoH))],
Mo ©

and we also geAM(H) analytically.
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For the model defined by E¢p), h(B), B(h), andG(h)
are all obtained trivially. The results f@&(h) are given be-

low
_h}

for 0<h<h(B,), (78

Ho | (34(0)
h*%(O))'”( Ho

G(h)=G(h(B1))+ (B1+ moH1)(h—h(By1))— moH4

=g oo )

35(0) A igH) (B

Xm( . (=h(B))3(0) )
Hiexp(By/uoHp)

for h(B;)<h<h(B,), (7b)
and forh>h(B,),

G(h)=G(h(B,))— uoH1(h—h(B,))
_HlBZ [{ BZ ) F{ Bl _ZBZ_Bl>
3:00) PP oHy ) PP oo oMy

Hy
+ pmoH1 (h_h(BZ)H_JC(—O)

ol 25 ok - 2|
ex ex —
#oH1 #oHo oH1

Jc(0)
Hy

F(282_81 Bl
X ex -
MoH1 HoHo

XIn (h—h(B,))

ool -
ex oty | (7o

The M-H curves given by Egsi6) and(7) are thus ob-
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FIG. 2. () The envelopeM-H curves with nonmonotonically
varying J.(B) with B;=0.6, corresponding toJ;(B,)/J;(0)
=e 2, Since the CSM has the symmeth§](—H)=—M|(H),
we shall showM-H curves only for positiveH. (b) We plot
MefH) andA(H). We also showA|;?(H) which is measurable
isothermally. See text for details.

Once isothermaM-H curves are measurei(H) can
be estimated from Eq2) and for error barssM(H) we
require to use Eq4). The only information not already con-
tained in theM-H curves is a knowledge dB.1(H) and
B.l(H). For any fieldH these can be estimated as follows.
After measuring theM-H envelope curves at any tempera-

tained analytically. One example is plotted in Fig. 2 for thetureT,, field cool the sample from abowvig, to T in field H.

parameters uoHo=puoH,=0.2,B,=0.6,B,=0.8, and
1ode(0)D=0.1(magnetizatiorM and the field88 andH are
in MKS units). We use Eq(3) and also plot the erroréM ¢,

Then isothermally reduce the field while measuring the mag-
netization. It will merge with the envelopgd | (H) curve at
B.1 (H).*>®Similarly, after field cooling the sample @, in

is Fig. 2. And we also plot in Fig. 2 the upper boundsfield H, one should measure the magnetization while raising

A(H)=[AM(B./(H))—AM(B.T(H))]/4. We have con-

the field. It will merge with the envelop® 1(H) curve at

firmed from our results for various values of the parameter8.|(H). SinceB.T(H) and B,/ (H) are now known, the

that inequality(4), viz. |6M¢(H)|<|A(H)| is satisfied for
both monotonic exponential.(B), and forJ.(B) showing

upper boundA(H) can be known from thé-H curves.
Field-cooled measurements are usually more tedious than

differing extents of the peak effect. Before initiating a dis- isothermal measurements. In an isothermal measurement if

cussion on the experimental method of obtainBg (H)
andB.| (H), we wish to point out that inequaliti4) can be
violated only when there is a gross violation of Eg). As

one starts from the field-increasing envelope cu#g(H)
and starts reducing the field, the minor loop will merge with
the field-decreasing envelope curlk| at B,;T(H), where

noted earlier, this can happen only when a Taylor series ex8;,7(H)<B.1(H).® Similarly, by starting fromM | (H)

pansion forB(x) breaks dowhand that is whe(x) has an
inflexion point. Sincel,(B) is small atB,, this can occur
only in a very narrow range of fields neBr. Our results
however show no evidence of inequali) breaking down
nearB; . Itis to be noted from Fig. 2 thaiM ¢(H) is of the
order of a few percent of the hysteredisv(H), and the
upper bound\ (H) overestimate$M .(H) by up to a factor
of 2.

and raising the field, the minor loop will merge with the
field-increasing envelope curve Bf, | (H), whereB,, | (H)
>B.|(H). And as long asAM(H) is monotonic between
B, T(H) andB,, | (H), we can replac8.T(H) by B, T(H)
andB.| (H) by B, | (H) in inequality given by Eq(4). We
note that® h(B;1(H))=h(u,H)—2D, and h(B, |(H))
=h(uoH)+2D. We denote the upper bound obtained using
these fields byA[{2(H). Since these isothermal measure-
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ments are more convenient, we have also compared in Fig. 2 APPENDIX
our calculatedA|;®(H) whereB.] andB,| are replaced by
B, 7 andB, |, respectively. As expected,;>(H) is larger

in magnitude tham\ (H) over most of the field region. We
thus have a completely isothermal technique of estimatin
Me(H) along with error bar$sM((H). This technique has
been used in a recent experiment to estimisitg(H) in

We takeH¢;#0 and Mg(H)+#0 and following pages
85-88 of de Gennésset B=Bgy(H)=o(H+MgfH)) at
the surface of the slab. We denote the magnetization then
%btained bym(H), and the magnetization obtained with the
assumptiortHc; =0 by M(H). A field-dependentl(B) is
CeRy,* and the upper boundYB(H) on SMeH) were fissumgd. A quk at Figs. 3.3, 3.14, and 3.16 of R_ef. 2
negligible compared to/ o (H). immediately gives us[note that M (H) is negativé,

To conclude, we have in this paper investigated in detaiM (H) =MedH) + MT(E)’ and M| (H)=Me(H)
the errors in estimatingM¢(H) from isothermal M-H +M(h), where h_H“LMEq(H)' We  then get,
curves. We have solved analytically a model for the casa/AMT(H)+m](H)]=MefH)=1/ZMT(h)+M| ()], or
where a fishtail or peak effect is seen. In view of recentﬁmeq(H):‘sMeq(h)' where dMefh) is the asymmetry
speculation¥ 22 of thermodynamic phase transitions at the 2P0UtM =0 when we assumbl¢,=0, andome{H) is the
onset of the fishtail or the peak effect, equilibrium magneti-2SymMmetry aboum{(H) in a “proper” calculation.
zation is a very important thermodynamic parameter. Our BY assumingic,=0, and thereby ignoring the difference

analysis has concluded with an experimental technique dP€tween the applied field and the surface field, we only dis-
providing an upper bound on the errors in estimatingPlaced the asymmetry & to h=H+M{H). The effect is
Meg(H). negligible as long aM,<H, which is much weaker than

Hei<<H.
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