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Abstract

The magnetotransport behaviour is investigated in detail across the first or-

der magnetic phase transition from ferromagnetic to antiferromagnetic state

in polycrystalline Ce(Fe0.96Al0.04)2 sample. The study clearly brings out var-

ious generic features associated with a first order transition, viz., hysteresis,

phase coexistence, supercooling and superheating, presence and limits of the

metastable regimes. These results of magnetotransport study exhibit and

support all the interesting thermomagnetic history effects that were observed

in our earlier dc-magnetisation study on the same sample. Most notable

here is the initial (or virgin) resistivity vs. field curve lying outside the hys-

teretic ”butterfly shaped” magnetoresistivity loops obtained on cyclying the

magnetic field between high enough positive and negative strengths. These

findings, bearing one-to-one similarity with the data obtained in their mag-

netic counterpart (i.e., dc-magnetisation), have been ascribed an origin due

to the arresting of this first order transition kinetics at low temperature and

high magnetic field.
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I. INTRODUCTION

The C15-Laves phase CeFe2 compound, which crystalizes in the form of cubic MgCu2-

type structure, is an unstable ferromagnet with a Curie temperature, TC ≈235K. On dop-

ing with small concentrations of metals like Co, Ru, Ir, Al, Os, Re etc., at the Fe-site,

the ferromagnetic (FM) behaviour disappears at low temperature, and the pseudobinary

system Ce(Fe1−xRx)2 exhibits a stable antiferromagnetic (AFM) phase1–11 below a certain

temperature which we shall henceforth refer to as TN . There exists an extensive amount

of research work on this interesting magnetic system. Various experimental tools have

been employed to know the true magnetic state of Ce sublattice and the instablities re-

lated with the Fe-sublattice. Studies based on neutron scattering12–14, magnetic circular

X-ray dichroism15–17, magneto-optic Kerr effect18, high energy spectroscopy (including x-ray

photoemission, absorption, ultraviolet)19,20, magnetic Compton scattering21, specific heat22,

magnetisation8–11,23,24, magnetotransport25–28 ac-susceptibility29–32 etc. have been reported

in pure and doped CeFe2 alloys. While these studies were mainly associated with the un-

derstanding of the magnetic instability in Ce(Fe1−xRx)2, we have recently started probing

the exact nature of the magnetic phase transition (AFM to FM), whcih can be driven by

high enough magnetic field (H) even at temperatures (T) much below TN ≈ 100K. Our

preliminary attempt on this front started initially with the ac-susceptibility study33 and

investigation of the DC-magnetisation behaviour34 in the Ru- and Ir-doped CeFe2 alloys,

namely, the polycrystalline Ce(Fe0.95Ir0.05)2 and Ce(Fe0.93Ru0.07)2 samples. In these studies

(based primarily on arguments of hysteresis and phase coexistence) the AFM to FM tran-

sition is found to be of first order in nature. Due to the very narrow hysteretic regime in

these Ru and Ir doped CeFe2 alloys, we decided to investigate the Ce(Fe0.96Al0.04)2 alloy

wherein the AFM to FM transition is relatively gradual6,7; this sample also provided us a

distinctly wider H-T phase space (permitted by the maximum magnetic field (i.e., 5.5T)

in our SQUID magnetometer) for a more comprehensive study of the nature of magnetic

transition in this system. This revealed further interesting DC-magnetisation behaviour35,36
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which along with some of our preliminary results of magnetotransport measurements36,

have led us to clearly establish the first order nature of the AFM to FM transition in the

Ce(Fe0.96Al0.04)2 alloy. The present paper deals with our detailed magnetotransport study

on the same sample used in Refs.[35] and [36]. Although preliminary results of magneto-

transport study on Ce(Fe0.96Al0.04)2 have been published in (Ref.[36]), in this paper we (i)

extend our investigation regime in the the resistivity ρ vs. T hysteresis data to higher H;

(ii) present ρ vs. H hysteresis data to lower T; (iii) measure minor hysteresis loops in ρ vs.

T; (iv) compare ρ vs. T data obtained in zero-field cooled and field cooled cooling histories

with that recorded while field cooled warming of the sample; and (v) study ρ by following a

more contrived history dependence of the external magnetic field. The present work shows

that the Ce(Fe0.96Al0.04)2 compound can be taken as a model system where one can observe

most of the generic features related with a first order phase transition. We interpret all

these results in the light of a first order transition and its associated behaviour (e.g., hys-

teresis, phase coexistance, supercooling and superheating, field dependent thermomagnetic

history of magnetotransport behaviour). In addition, a comparison of the present work on

Ce(Fe0.96Al0.04)2 alloy has been made with the existing work on perovskite type manganese

oxide compounds37–39 at appropriate places.

II. EXPERIMENTAL

The Ce(Fe0.96Al0.04)2 alloy sample employed in the present magnetotransport study be-

longs to the same batch of samples used earlier in the study of bulk magnetic and transport

properties6, and neutron measurements12. Details of the sample preparation and character-

ization can be found in Ref.[6]. A commercial cryostat (Oxford Instruments Inc., UK) with

a maximum magnetic field of 16T is being used for carrying out the four probe resistivity

measurement as a function of temperature and magnetic field H applied transverse to the

measuring current. The isofield ρ vs. T data was recorded with the following different pro-

tocols:
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1. Zero Field Cooling (ZFC): The sample was first cooled from above TC down to lowest

temperature of measurement in zero field, then subjected to the magnetic field, and ρ(T)

data was recorded during warming of the sample.

2. Field Cooled Cooling (FCC): The sample was subjected to desired magnetic field strength

above its TC , and the ρ(T) data was recorded while cooling the sample.

3. Field Cooled Warming (FCW): The resistivity of the sample was measured as a func-

tion of T during warming of the sample which had been earlier field cooled to the lowest

investigated temperature.

III. RESULTS

Figure 1 shows the T-dependence of resistivity for the Ce(Fe0.96Al0.04)2 sample in ab-

sence of magnetic field recorded during the initial cooling cycle starting from 290K, as well

as during the subsequent warming cycle. During the initial decrease in temperature, while

the paramagnetic (PM) to FM transition is reflected in the change of slope in ρ vs. T

plot at about 200K, the rise of ρ is observed below about 84K due to a second magnetic

phase transition from FM to AFM ordered state. This second transition gets completed at

about 35K (while cooling), below which the resistivity once again decreases with decrease in

temperature. For comparison, we present in the inset of Fig.1 a dc-magnetisation, M vs. T

plot for the same sample in 2mT magnetic field. The three magnetic phases marked as PM,

FM and AFM in different T-regimes complements our present results of the resistivity mea-

surement. During the thermal cycling (i.e., warming and cooling), the resistivity behaviour

exhibited distinct hysteresis across the FM to AFM transition (see main panel of Fig.1).

In Figs.2a-d, ρ vs. T plots for magnetic field strengths of 0.7T, 1.5T, 2.5T and 4.0T,

are respectively shown for the three different histories of application of magnetic field, e.g.,

ZFC, FCC and FCW (ρ vs. T plots in ZFC and FCC protocols for other fields; 0.5T, 2.0T

and 3.0T can be found in Fig.4 of Ref.[36].). As is evident from Figs.2a-d, the resistivity

plots for all the three protocols - ZFC, FCC and FCW are strongly affected by the strength
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of the applied magnetic field across the FM-AFM transition. Note that both the onset

and completion of AFM-FM transitions are shifted to lower temperatures in the presence

of magnetic field. This shift is again found to be strongly field dependent. Compared

to a value of ≈93K for completion of AFM-FM transition while warming the sample in

the absence of field (see Fig.1), the same transition gets completed only by ≈46K when

a magnetic field of 4T is applied (see Fig.2d). The magnetic field has another interesting

effect in the low temperature AFM-state. Above a certain value of H (i.e., 0.5T), the FCC

resistivity stays below the ZFC resistivity at low temperatures (see also Fig.4 of Ref.[36]). At

any temperature, this difference of resistivity is field-dependent, increasing with the applied

magnetic field. Furthermore starting at 4.5K, the FCW-data overlapped with the FCC-data

upto some field-dependent temperature. Above this temperature, the FCW-curve continues

to rise (in contrast to the falling FCC-curve) until it merges with the ZFC-curve at some

slightly higher T. Thus the ρ vs. T curves under the FCC and FCW protocols show the

downturn at different temperatures. It is to be noted here that above the merger point

of FCW- and ZFC-ρ(T) curves, the ρ(T) curve of the FCC-protocol lies distinctly below

that recorded in the FCW-protocol. We stress here that FCW-protocol is basically a minor

hysteresis loop of second kind (as would be described in next para) initiated from the lowest

investigated temperature.

Figure 3 shows the results obtained across what are called the ”minor hysteresis loops”

(MHL’s) in absence of external magnetic field. Two kinds of MHL’s are recorded. In the

first kind, the sample is initially warmed from sufficiently low temperature, and then from

a predetermined temperature the sample is cooled back. The MHL initiated at 44.5K from

the warming cycle (Fig.3) is an example of this kind. In the second kind, the sample is

initially cooled (from well above TC) upto a predetermined temperature, and then it is

warmed. The MHL’s inititated on the cooling curve at 60K, 75K and 84K in the Fig.3 are

examples of this kind. It can be clearly seen that the two MHLs initiated near the onset and

completion of AFM-FM transition, respectively at 44.5K and 84K are reversible. However,

the MHL’s initiated from cooling curve at 60K and 75K followed an altogether different path.
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They finally merged with the warming curve (initiated from 4.5K, and would be henceforth

referred to as envelope warming curve).

The isothermal ρ vs. H data was also recorded at various temperatures ranging from

2K to 120K. We show in Figs.4a and 4b, the ρ vs. H data for the lowest temperature (i.e.,

2K) and at 100K, respectively. Within our accuracy of measurements, the ρ vs. H plots

for T ≥ 100K were found to be linear right from 0T. As pointed out previously36, the ρ(H)

behaviour at lower temperatures is quite interesting. A small rise in ρ with initial increase

of H (within the AFM regime) along the virgin-curve is observed only at 2K (see Fig.4a).

Finally, we present in Fig.5, the results of resistivity measurements in 0.7T magnetic field

during a warming cycle starting from 4.5K temperature point which has been approached

using an altogether different protocol. In this protocol, the final state (i.e., 4.5K,0.7T) is

being prepared following two steps. The first step involved the FCC protocol in 2.5T from

above TC to 4.5K. Subsequent to this, in a second step, the field was reduced isothermally

from 2.5T to 0.7T (these two steps are indicated as path-I in the inset of Fig.5). For the

purpose of comparison, the ρ(T) plots for FCC and FCW protocols at 0.7T (corressponding

to cooling and warming along the path-II as indicated in the inset of Fig.5) are also shown in

Fig.5. With the initial reduction of field from 2.5T to 0.7T field at 4.5K, the resistivity value

showed a jump (as indicated by a vertical arrow from point marked ”A” at 4.5K in Fig.5)

to a value (marked as point ”B”, Fig.5) which was smaller than the ρ(4.5K,0.7T) value

recorded in any of the conventional ZFC, FCC or FCW measurement protocols for H=0.7T.

However, on subsequent warming of the sample, the resistivity was found to increase as

shown in Fig.5 until it finally merged with the ρ vs. T curve in 0.7T corressponding to the

FCW protocol.

IV. DISCUSSION
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A. First order AFM to FM transition and the associated hysteresis

Based on the ρ vs. T data, we first argue that with increase in temperature and/or field,

the low temperature low field AFM phase transforms to FM phase through a FOT. The

first indication of a FOT comes in the form of hysteresis in resistivity which is observed

in both the temperature (Figs.1 and 2) and field cyclings (Fig.4). During the cooling of

the sample, the onset of the rise of resistivity starts with the nucleation of AFM phase at

≈84K (Fig.1). This upturn in resistivity basically occurs due to the appearence of magnetic

superzones at the onset of FM-AFM transition6,7 (i.e., at TN ). Further cooling converts

more and more fraction of the sample from FM state to AFM state, with the result that the

entire sample transforms into AFM state below about 35K. During the warming cycle, the

decrease in resistivity at the transition is slightly delayed compared to the cooling cycle, and

starts at around 48K. This decreasing ρ(T) across the transition is again associated with the

more and more fraction of sample getting converted into FM-state. Within the hysteretic

resistivity regime, the difference in resistivity values at any temperature is associated with

the relative fraction of coexisting phases. (i.e., at any temperature within the hysteretic

ρ(T) regime, this fraction has a different value for the cooling and warming cycles.)

It is to be emphasized here that the transition from AFM to FM state during the warming

cycle completes at distinctly higher temperature (≈ 93K) than the onset of FM to AFM

transition (≈ 84K) during a cooling cycle. Similar to this, the onset of AFM to FM transition

during warming cycle takes place at a relatively higher temperature (i.e., ≈ 48K) compared

to completion of FM to AFM transition at ≈ 35K during the cooling cycle. The difference

in the two temperatures at both the ends of the hysteretic regime is an indication that

the FM to AFM transition in the present investigations of Ce(Fe0.96Al0.04)2 is first order in

nature. As we shall see later, the effect of the applied field is to affect these various transition

temperatures and the magnitude of thermal hysteresis in the resistivity (Fig.2).

We wish to state here that the FM to AFM transition in the present case of

Ce(Fe0.96Al0.04)2 sample is quite broad on temperature axis in comparison to relatively sharp
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FM to AFM transition observed in single crystal manganese oxide perovskite samples37–39.

The broadening of a first order transition with the disorder in the sample is predicted

theoretically40 way back in 1979, and very recently the magneto-optic imaging study on the

vortex matter of single crystal Bi-2212 sample has shown how the disorder leads to a distri-

bution of transition temperatures and/or fields across the solid to liquid melting transition,

which leads to heterogeneous nucleation across the transition41. We believe that a similar

distribution of transition temperatures and/or fields exists in the present case of polycrys-

talline sample of Ce(Fe0.96Al0.04)2. Accordingly, the transition from one magnetic phase to

another magnetic phase in the present work on Ce(Fe0.96Al0.04)2 should be designated here

by a band, instead of a transition line on H-T phase space.

B. Minor Hysteresis Loops and Phase-coexistence

The study of minor hysteresis loops42 (MHL’s) has been recently recognised as an im-

portant experimental technique to study the phenomenon of phase coexistence across the

FOT in more detail33,35,43,44. Our magnetotransport results (Fig.3) provide support in favor

of phase coexistence across the foregoing AFM to FM transition. Consider the MHL’s that

were initiated well inside the hysteretic regime. They showed a strong irreversible behaviour.

For example, the MHL initiated on cooling cycle at 60K, during its course (i.e., while warm-

ing) did not come reversibly along the ρ(T) of cooling curve due to the already transformed

AFM phase at 60K. Instead, a slight increase in resistivity with T is observed along this

initial course of MHL due to the temperature dependence of transformed AFM phase akin

to ρ(T) behaviour in the low temperature AFM regime below 35K. On further warming

along the MHL, this increasing resistivity behaviour changes back to decreasing resistivity

behaviour due to more and more AFM to FM conversion with the result that the MHL

finally merges with the envelope warming cycle at about 70K. The evidence of (a) phase

coexistence and (b) the hysteresis due to the different fractions of FM and AFM phases is

clearly obvious from the fact that the resistivity of the sample measured at any tempera-
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ture within the irreversible portion of MHL, is drastically different than that recorded along

either the envelope cooling or warming cycle at the same temperature.

On the other hand, the reversible behaviour of MHL initiated from the warming-cycle

at 44.5K (a temperature at which a distinct thermal hysteresis in resistivity exists between

the envelope cooling and warming cycles) comes due to the fact that the onset of nucleation

of FM has not taken place until 44.5K during the warming cycle. Thus while the sample is

purely in the AFM state until 44.5K during warming cycle, a finite fraction of the sample

continued to remain ferromagnetic upto 35K while cooling. With the same argument, the

MHL initiated from the cooling cycle at 84K which took a overlapping course along the

envelope cooling cycle indicated the absence of any AFM phase at or above 84K during the

initial cooling cycle. This state of the sample (i.e. fully FM) at 84K during the cooling

cycle (as well as along the MHL under consideration) is in sharp contrast to that along the

envelope warming cycle where the sample contains a finite fraction of AFM phase (which

is yet to transform into FM state) for even for T>84K as indicated by ρ vs. T plot for

84K<T<93K (Fig.3). We note here that a clear co-existence of FM and AFM phases was

also observed in zero field neutron measurement12 in a substantial T-regime below the onset

of the phase transition in Ce(Fe1−xAlx)2 samples with 0.2≤x≤0.08.

C. Metamagnetic transition and associated metastabilities

The ρ vs. H plots for T ≥ 100K exhibited typical ferromagnetic response i.e., negative

magnetoresistance which increases in magnitude with field right from H = 0. However,

at lower temperatures, the ρ vs. H plots in the virgin as well as field increasing envelope

cycle showed field induced AFM to FM transition, commonly referred to as ”metamagnetic

transition”, resulting from spin-flipping in the AFM phase at high enough fields45. The

decrease of resistivity due to onset of ferromagnetism at Hm(T) continues (due to conversion

of more and more antiferro-phase into ferro-phase) until some higher field after which the

resistivity decreases linearly with the field indicating the usual negative magnetoresistance
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(∝ H) behaviour of the fully transformed high field FM state of the entire sample. We note

here that the positive magnetoresistance behaviour (i.e., ρ increasing with increase in H) of

the AFM state is distinctly observed only in the low temperature ρ vs. H plot recorded at

2K (Fig.4a). This positive sign of magnetoresistance in a AFM state is consistent with the

previous reports46 on Fe-Mn-Cr ternary alloys.

Along the H-decreasing envelope branch of a ρ vs. H curve (for T ≤ 80K), the entire

sample remains in the form of high field FM phase down to relatively lower field values

compared to those along either the virgin curve or the H-increasing envelope curve. This is

expected across a first order transition47 as a sign of metastable behaviour due to (a) the

supercooling of the high field FM phase below the transition field, and (b) superheating of

low field AFM phase above the transition field, when field is cycled across the transition

field (i.e., Hm line or more prescise Hm-band). Further, one expects that for some value

of H below Hm(T) the resistivity behaviour of the sample should once again become AFM

like. However, the results of Fig.4a (this work) and Fig.2 of Ref.[36]) clearly show that this

is not the case with Ce(Fe0.96Al0.04)2. This is so because resistivity along the H-decreasing

envelope curve is anomalous since on cycling the field back to H=0, the resistivity value

corresponding to the low field stable AFM phase [i.e., that of H-increasing envelope curve

(in case of T>10K) and/or virgin curve (in case of T≤10K)] is not completely restored back,

with the result that a ”open hysteresis loop” is being obtained. Similar behaviour was found

in virgin curve initiated in negative H direction for T≤10K (Ref.[36]). This indicates that

FM phase persists in some finite quantity even at zero field after being cycled from +Hmax

or -Hmax. It is to be recalled here that although similar open hysteresis loops were also

reported for Nd0.5Sr0.5MnO3 (Ref.[36]), the hysteresis loops in case of Pr0.5Sr0.5MnO3 did

not display any such open hysteresis loop (Ref.[37]).

At lower temperatures, the anomalous open hysteresis loop in the ρ(H) behaviour is

manifested in the form of another anomaly below 10K, in that the virgin resistivity curve lie

outside the butterfly shaped (envelope) hysteresis loop (e.g., Fig.4a, the resistivity along the

virgin ρ(H) curve remains (upto Hm or so) distinctly above both the envelope H-increasing as
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well as H-decreasing ρ vs. H curves.). In case of magnetisation measurement, this anomaly

is observed in the form of virgin M(H) curve lying outside the butterfly (envelope) hysteresis

loop35,36. We would come back to this anomalous result below Hm a little later. We are un-

aware of any such comparison based on the resistivity measurements in all the three protocols

(i.e., along the virgin, field-increasing envelope, and field-decreasing envelope curve) exists

for either Nd0.5Sr0.5MnO3, Nd0.25Sm0.25Sr0.5MnO3 and/or Pr0.5Sr0.5MnO3 (Refs.[37-39]).

D. Limits of metastability: effect of magnetic field on the temperature dependence

of resistivity

It is important here to recall that there exists a limit of metastability47,48, below (above)

the first order transition line (in our case, the Hm(T) or TN (H)) upto which one can supercool

(superheat) the high (low) field phase. Outside these two bounds (designated as T∗(H) for

supercooling, and T∗∗(H) for superheating) on either side of the transition line, no metastable

behaviour, and hence no superheating and/or supercooling can be observed. (Recall that

like TN (H), as stated earlier these two bounds T∗(H) and T∗∗(H) should be represented by

the bands in the present case of polycrytalline Ce(Fe0.96Al0.04)2 sample.). It is also known

that the metastable region widens with increase (decrease) of field (temperature). Natural

question at this moment is - do we see such features of FOT in the present ρ(H,T) data of

Ce(Fe0.96Al0.04)2 sample?

The comparison of the resistivity behaviour recorded on the Ce(Fe0.96Al0.04)2 sample un-

der different protocols (ZFC, FCC, and FCW) has turned out to be very interesting, and

displays almost all the above mentioned generic features of a first order phase transition.

We find that the magnetic field has a very drastic effect on the ρ(T) behaviour, e.g., with

increasing magnetic field,

(a) the completion of FM to AFM transition while cooling the sample (which marks the

lower limiting value of T∗(H)-band, and is inferred by the temperature below which the

FCC and FCW-resistivities merge) is suppressed much faster than the decrease in the onset
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of AFM to FM transition temperature while warming the sample (i.e., the upper limiting

value of T∗∗(H)).

(b) the hysteretic regime is substantially enhanced in temperature across the transition, and

(c) most importantly, the low temperature reversible ρ(T) regime (with respect to the over-

lapping ZFC and FCC) disappears by H≥0.7T.

These results ((a) and (b) above) clearly imply that with the increase in H, the lower

limit of metastability, T∗(H) band (below which one should see the reversible response of the

stable AFM phase) gets suppressed (towards lower temperature) even faster in comparison

to T∗∗(H) band, and the metastable regime (existing between lower limiting value of T∗(H)

band and the upper limiting value of T∗∗(H) bands) thus widens with the decrease in T or

with increase in H. This is further supported from the isothermal ρ vs. H data, where the

hysteretic field regime drastically increased at low temperatures (Fig.4a). Based on these T

dependence of resistivity in differents fields, a phase diagram using the mid point of T∗(H)-

and T∗∗(H)-band has been shown in our preliminary work36.

Along the FCW curve, the resistivity rising past this merger point of FCW and FCC

exhibits the superheating of low temperature AFM phase. The FCW curve finally merges

with the ZFC curve at a temperature where the supercooled (metastable) FM-phase formed

during the FCC-protocol vanishes. Above this field dependent merger temperature of FCW

and ZFC resistivities, the sample comprises of three fractions;

1. stable transformed/nucleated FM phase,

2. superheated metastable AFM phase, and

3. stable AFM phase which has not yet transformed in FM-phase becuase of the distribu-

tuion in the TN ’s in the sample.

It is now quite evident that the present study of ρ(T) under different histories of applied

magnetic field (i.e., ZFC, FCC, and FCW) in Ce(Fe0.96Al0.04)2 has an edge over the previous

work on Nd0.5Sr0.5MnO3, Nd0.25Sm0.25Sr0.5MnO3 and/or Pr0.5Sr0.5MnO3, where resistivity

data is compared only during FCC with FCW37–39.

From the thermomagnetic irreversibility increasing with the field as observed in the DC-
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magnetisation data of the same Ce(Fe0.96Al0.04)2 sample35,36, it was argued that the hysteresis

in the magnetisation vs. field was entirely due to the first order nature of the magnetic

transition rather than arising due to pinning of the domians formed in the FM state. All the

results of present magnetotransport study are in excellent agreement with those observed in

the DC-magnetisation studies35. This is so because, the hysteresis observed in the present

bulk magnetotransport behaviour can not be again related with the domain formation, since

the domain size is normally much greater than the mean free path of the carriers46.

E. Anomalous aspects of thermomagnetic history effects across the AFM to FM

transition

We once again recall here that in case of first order transition, the free energy barrier

between the stable AFM phase and the metastable FM phase ceases to exists just below the

T∗(H), and any infinitesimal fluctuations can drive the entire sample to stable AFM below

the T∗(H) line/band47. But, a few questions still remain unanswered in this picture:

1. Why does not the resistivity of the sample recorded in FCC and FCW protocol restore

back to that recorded in ZFC protocol at lower temperatures (e.g., at 5K) for H ≥ 0.7T?

(We tend to believe that similar feature would appear in case of resistivity behaviour in

Nd0.5Sr0.5MnO3 and Pr0.5Sr0.5MnO3.) In our magnetisation studies on same Ce(Fe0.96Al0.04)2

sample35,36, this anomaly is reflected in the observation that the FC magnetisation curve

MFC(T) lie above the MZFC(T).

2. Why does the virgin ρ vs. H curve lie outside the envelope butterfly ρ(H) loop at lower

temperatures, T≤10K?

3. Why is the full AFM resistivity not distinctly restored at H=0 on the envelope H-

decreasing ρ vs. H curve?

It is once again to be remembered that structural transition in Ce(Fe1−xAlx)2 system for

0.2≤x≤0.08 from cubic to rhombohedral accompanies the AFM/FM transition12. We now

argue here that every structural transition is characterized by a characteristic relaxation
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time, which increases with decreasing temperature due to reduction in the displacive motion

of the atoms49. A typical example is the supercooled liquid-to-glass transition. It is our

conjecture that in the present case of Ce(Fe0.96Al0.04)2 sample, this characteristic relaxation

time at low temperature may become much larger than the actual experimental time scale

with the result that kinetics of transition gets hindered. Within this picture, the anomalies

enumerated above can be explained as follows. When the temperature is lowered, some

high temperature high field metastable FM phase remains frozen-in resulting in the arrest

of FM to AFM transition at low temperature. In the ρ vs. H cycling, due to the low

temperature, a finite amount of supercooled FM phase continues to exist even when the

applied field is reduced to zero. (Note that the magnetic field also induces the structural

transition in Ce(Fe0.96Al0.04)2 (Ref.[4]).) This metastable FM phase is then carried over

when the direction of field is changed, and results in an H-decreasing (increasing) envelope

curve that lie below the virgin curve recorded in the negative (positive) H direction. As

expected, such hysteresis loops are not seen at higher temperatures (>10K).

Another evidence supporting the presence of hindered kinetics which, if not considered

properly, might tempt one to draw false conclusion about the lower limit of metastable

behaviour, comes from the results of Fig.5. As discussed above, the initial field cooling of

the sample in a magnetic field of 2.5T results into a finite fraction of high temperature FM

phase existing at 4.5K due to the hindered kinetics as mentioned in the preceeding para.

Subsequent to this FC protocol, the isothermal (i.e., at 4.5K) field reduction from 2.5T to

0.7T yielded a resistivity value which is significantly smaller than either of ρ(4.5K,0.7T,ZFC)

and/or ρ(4.5K,0.7,FCC/FCW), indicating as if the metastable behaviour in the sample

existed at or below 4.5K in 0.7T field. This we believe is due to the hindered kinetics

because while cooling the sample in 2.5T a large fraction (compared to 0.7T, FCC state

at 4.5K) of supercooled high temperature FM phase is frozen, i.e., its transformation to

stable AFM phase at T∗(H) gets arrested. As a result, the resistivity of the sample at 4.5K

after the field is reduced to 0.7T is significantly smaller than the FCC/FCW resistivity in

0.7T at 4.5K. On warming the sample, this anomalously low resistivity of the sample at
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4.5K increases fast (as the sample gains energy in the warming process), and the resistivity

merges at about 20K with that of kinetically hindered resistivity curve of 0.7T. We thus say

that compared to field cooling in 0.7T to 4.5K (i.e., path II in inset of Fig.5), the kinetics

of the FM to AFM transition experienced relatively more hindrance when the sample was

field cooled to the same 4.5K, 0.7T point but following path ’I’.

It is to be noted here that results obtained follwoing path-I experimental protocol (Fig.5)

are similar to the results of magnetic annealing effect reported in the Cr-doped manganite

crystals of Nd0.5Ca0.5Mn1−yCryO3 (See Fig.2b of ref.[50]). [We believe that the value of

magnetisation at 5K in their sample at the annealing field of 7T (which is not shown in

Ref.[50]) would be much larger than the value obtained after field was reduced to 0.5T

at 5K (See Fig.2b of Ref.[50]).] The authors of ref.[50] explained their data on the basis

of random field quenching due to Cr-substitution which produced the FM-microembryos.

Our experimental results of magnetotransport studies (Fig.5) are ascribed with arresting of

the first order transition process at low temperature and high magnetic field. We further

wish to point here that we have confirmed the magnetotransport results of Fig.5 by DC-

magnetisation measurement (which are not shown here for the sake of concizeness) following

similar path-I as indicated in the inset of Fig.5.

In the Ref.[36], the hindrance to the kinetics of the transition has been indicated on the

H-T phase diagram through a (Hk,Tk) band (see Fig.3b of Ref.[36]). The reader is referred

to Fig.3c of Ref.[36] and the related text for a more illustrative understanding of hindered

kinetics in the present case of Ce(Fe0.96Al0.04)2.

V. CONCLUSION

The magnetotransport behaviour across the first order phase transition from low field

and low temperature antiferromagnetic state to high field and high temperature ferromag-

netic state has been studied in Ce(Fe0.96Al0.04)2 polycrystalline sample. This study on

Ce(Fe0.96Al0.04)2 has clearly demonstrated the various generic features of a first order phase
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transitions, viz., hysteresis, phase coexistence, field dependent limits and existence of the

metastable supercooled and superheated phases across the transition boundary in a mag-

netic system. These results of magnetotransport study not only supported our previous

work of dc-magnetisation study on the same sample, but also provided new results extend-

ing to relatively higher magnetic field and low temperature regime on the H-T phase space.

We found some unusal magnetoresistance behaviour (most interesting one is the virgin re-

sistivity curve lying outside the envelope resistivity loop) at lower temperatures. Based on

the observed magnetotransport behaviour using an unconventional history of application of

magnetic field, we have ascribed the origin of these unusal features with the arresting of the

transition at lower temperature.
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FIGURES

FIG. 1. Resistivity vs. temperature plot for Ce(Fe0.96Al0.04)2 sample recorded during the initial

cooling (filled square symbols) from above 290K to 4.5K, and subsequent warming cycle (open

square symbols). The inset shows a temperature dependence of DC-magnetisation on the same

sample recorded in a field of 2.0mT.

FIG. 2. Effect of magnetic field on the ρ vs. T plots for Ce(Fe0.96Al0.04)2 sample recorded under

different measurement protocols, viz. ZFC (open square symbols), FCC (open triangle symbols)

and FCW (filled triangle symbols); (a) 0.7T, (b)1.5T, (c) 2.5T, and (d) 4.0T.

FIG. 3. The minor hysteresis loops for Ce(Fe0.96Al0.04)2 sample initiated from the envelope

warming curve (open square symbols) at 44.5K (filled up-triangle symbols), and from the envelope

cooling curve (open up-triangle symbols) at 60K (cross symbols), 75K (open down-triangle symbols)

and 84K (filled square symbols). Refer text for more details.

FIG. 4. The isothermal ρ vs. H plots for Ce(Fe0.96Al0.04)2 sample recorded at (a) 2K and

(b) 100K. The three different histories of H and T in the ρ vs. T behaviour (at 2K), i.e., virgin

resistivity curve (starting from H=0 after initially cooling the sample to the desired temperature in

zero field), envelope H-decreasing resistivity curve and the envelope H-increasing resistivity curve

are shown respectively using the filled triangle, open square and open triangle symbols. See text

for details.

FIG. 5. The ρ vs. T plot (filled down-triangle) for Ce(Fe0.96Al0.04)2 sample recorded during a

heating cycle initiated from a starting point (0.7T,4.5K) represented as point ’B’ in the main panel

following path-I (shown in the inset). Path-I involved two steps. While the first step (basically a

FCC protocol in 2.5T) is shown by filled circle symbols, the second step involving the isothermal

field reduction from 2.5T to 0.7T is shown by an arrow (from point ’A’ to point ’B’ in the main

panel of the figure). For the purpose of comparison, the ρ vs. T plots recorded for ZFC (open

square symbols), FCC (filled square symbols) and FCW (open up-triangle symbols) protocols for

H=0.7T are also shown in the figure.
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