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in field-induced barrier penetration in
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Quantum signatures of the Kolmogorov-Arnold—
Moser (KAM) transition from the regular to chaotic
classical dynamics of a double-well oscillator in the
presence of an external monochromatic field of diffe-
rent amplitudes are analysed in terms of the corres
ponding Bohmian trajectories. It is observed that the
classical chaos generally enhances the quantum fluc-
tuations, while the quantum nonclassical effects try to
suppress classical stochasticity.

THE study of quantum domain behaviour of classically
chaotic systems has seen an upsurge of interest in recent
years"™. It has been shown that the classical sto-
chasticity enhances the quantum fluctuations, while the
guantum nonclassical effects tend to suppress classi-
cal chaos™. An invariant Kolmogorov—Arnold—Moser
(KAM) torus characterizes an integrable classical system
in the presence of a weak perturbation. If the strength of
the external destabilizing field is increased®, the phase
space reveals chaotic dynamics as the sufficiently irra-
tional KAM tori break down into cantori®®, so that the
corresponding quantum system gets stabilized'®™?®. In
order to have a better understanding of these aspects we
study in the present work, the quantum signature of the
classical chaos in a double-well oscillator in the presence
of an external monochromatic field of varying intensity.
This problem has been studied in detail in recent years'®™®
because of its importance in several areas of chemical
dynamics™. In this case, the classical chaos and quantum
tunnelling occur simultaneously to give rise to the cohe-
rent oscillatory nature of the quantum diffusion between
two stable KAM tori.

Description of classically chaotic systems in the quan-
tum domain has been studied successfully*® using
quantum potential-based theories like quantum fluid
dynamics (QFD)? and quantum theory of motion (QTM)*.,
In QFD?, the quantum dynamics is understood in terms
of the motion of a probability fluid having density r (r, t)
and velocity u(r,t) moving under the influence of the
external classical potential augmented by a quantum
potential. An equation of continuity and an Euler-type
equation of motion comprise the fundamental equations
of QFD?. These equations can be written'® in the form of
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Hamilton's equations of motion with a properly defined
Hamiltonian functional and by considering r (r,t) and
(=c(r, 1)) as canonicaly conjugate variables, c(r,t) being
the velocity potential (u(r, t) = Nc(r, t)). Quantum chaos
in a Henon—Heiles oscillator has been studied™ through
r(r,t) versus (—c(r,t)) plots and time evolution of
several time-dependent density functionals. On the other
hand, both wave and particle pictures are made use of for
the complete description of a physical system in QTM*?,
in the sense of classical interpretation of quantum mecha-
nics”® as developed by de Broglie and Bohm. The wave
motion is governed by the time-dependent Schrodinger
equation (TDSE), while the particle motion is characte-
rized by the velocity defined in terms of gradient of the
phase of the wave function. Phase-space distance between
two initially closed Bohmian trajectories and the asso-
ciated Kolmogorov—Sinai (KS) entropy provide impor-
tant insights into quantum domain chaotic dynamics™ .
Behaviour of a single-well oscillator in the presence of an
oscillating electric field has also been studied® using
QTM.

In the present work QTM is applied in analysing the
gquantum analogue of the KAM transition from a toroidal
motion to a chaotic motion associated with the pene-
tration of a barrier in a double-well potential in the
presence of a monochromatic external field with increas-
ing amplitude. A theoretical background of the present
work is given first followed by computational details.
Then results and discussion and some concluding remarks
are presented.

The classical Hamiltonian of a double-well oscillator
under the influence of an external oscillating driving
forceis given by

2
H= p_ +al—bx+ gXx cos(Wot). (1)
2m

This Hamiltonian has been used as a mathematical model
in understanding many physico-chemical problems such
as buckled beam®, plasma oscillations®, inversion of
pyramidal molecules like ammonia or phosphine®’,
hydrogen transfer in atoms and molecules along chemical
bonds®, transport of hydrogen isotopes or muons
between interstitial sites in metals®, macroscopic quan-
tum coherence phenomena in SQUIDS™, etc. For a given
set of parameter values, the classical Hamilton's equa-
tions of motion can be solved**®*° to generate the phase-
space trajectories. The nature of the phase space depends
on initial position and momentum values and one may
obtain stable regions in phase space bounded by KAM
surfaces or a chaotic sea extended over the whole phase
space.

The above classical Hamiltonian is directly quantized
in order to get a quantum mechanical description of
this problem. The pertinent TDSE can be written as
(in au)
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- é 2 U x =Nc (X, ) lex » 3
Hy (x, t) =& %d—2+ax4 - bx® + gx cos(Wot)dy (, t) O Dbext ®)
e " dx g where ¢ is the velocity potential which appears as the
phase of the wave function written in the following polar
iy (x) @ form:
it y (% t) = 1 Y3(x, t) explic(x, 1)] . (4)
and the velocity which governs the motion of a point  Now, an ensemble of particle motions guided by the
particle guided by the wave is given by same wave can be constructed by varying initial positions
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Figure 1. Classical and quantal phase space trajectories for a double-well oscillator in the presence of an external field with g =5, 10, 20 and 40
with initial condition xo = — 2.0 and po = 0.0. Parameter values are: a = 0.5, b = 10.0 and wy = 6.07.
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in such a way that the probability of the particle being in
this ensemble between x and x + dx at a time t is given
by r (x, t)dx, where r (x, t) is |y (x, t)[>. Solution of eg. (3)
with various initial positions would yield the so-called

A generalized quantum Lyapunov exponent has also
been defined as follows™ in the same spirit as in classical
dynamics,

‘Bohmian trajectories’. In order to study the gquantum L= iim Lp&b®u ©)
signature of chaos through sensitive dependence on initial DO®0 t eeD(O)H
conditions, a phase space distance function'** can be ©
defined as Corresponding K S entropy can be defined as®
D(t) = [(xa(t) — Xa(t)* + (py, (1) - Py, (1))%1V2, 5
. 2 H=3§L,. 7)
where (X, py) refersto apoint in phase space. L.>0
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Figure 2. Classical and quantal stroboscopic plots for a double-well oscillator in the presence of an external field. See caption of Figure 1

for details.
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Chaotic quantum dynamics is characterized by a positive
K S entropy™.

The phase space volume is defined as™

Vis(t) = [Ax - &) Rdp, - .Y (8)

A sharp increase in V,s implies a chaotic motion™*°. This
quantity is same as the associated uncertainty product
which can be used as a measure of quantum fluctu-
ations'’, Classical chaos generally enhances quantum
fluctuations'>'>181°,

The double-well potential used in the present problem
isgiven by

V(x, t) = ax* — bx® + gx cos(Wot), 9)

where the parameter values are taken as follows':
a=0.5 b=10.0 and wy=6.07 with initial condition
(X, Px)li=o = (— 2.0, 0.0). In order to understand the break-
down of KAM tori with increasing amplitude of the
external field and a possible quantum suppression of the
classical chaos, four different g values, viz. g =5, 10, 20
and 40 comprising a completely integrable to a strongly
chaotic classical dynamics, are considered. In order to
have a better understanding of the behaviour of the sys-
tem when it goes from subbarrier to superbarrier situ-
ations we have aso studied the QTM of the various cases
studied by Reichl and Zheng™. For the sake of complete-
ness, we also generate the classical ‘bifurcatio

and its quantum analogue for the quartic oscillator with
a=1.0, b=8.0 and wy = 6.07 with the initial condition
(X, Px)lt=0o = (— 2.0, 0.0), which corresponds to a stable
fixed point for this set of parameter values. To under-
stand the classical regular/chaotic motion associated with
the field-induced barrier penetration in a quartic poten-
tial, the relevant classical Hamilton’s equations of motion
are solved using a fourth-order Runge—Kutta method up
to 10° time-steps.
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Figure 3. Time evolution of classical (H) and quantal (H™) KS
entropies for a double-well oscillator in presence of external field. See
caption of Figure 1 for details.
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The numerical solution for the quantum dynamics
problem starts with the propagation of a Gaussian wave
packet under the influence of the quartic potential. For
this purpose the pertinent TDSE (eg. (2)) is solved
to monitor the temporal evolution of y(x,t) using a
Peaceman—Rachford-type finite difference algorithm with
the Cayley form of the associated unitary operation® %,
The details of the numerical technique are available else-
where®3. The algorithm used here is stable* because of
the presence of i = O— 1. As a further check of the nume-
rical accuracy of the scheme, we have verified the con-
servation of the norm and the energy as well as the
reproduction of the initial wave packet through forward
propagation up to the end of the simulation followed by
back evolution®®. Mesh sizes adopted are Dx = 0.1 and
Dt = 0.02. Calculation is carried out for — 15 £ x £ 15 and
for 10° time-steps.

Once y(x,t) is obtained at a time t, eg. (3) can be
rewritten as

X = NC (X, t)|><:x(t) = Reg IN_yg,
e Y u

(10)

which is solved using a second-order Runge-Kutta method
to generate the Bohmian trajectories.

X
Quantal phase space trajectories

Figure 4. Classical and quantal phase space trajectories for a double-
well oscillator in presence of external field with g = 0.01, 0.10, 0.18,
0.20, 0.25 and 0.40 with initial condition X, =0.24 and po=0.0.
Parameter valuesarea = 1.0, b= 2.0, m= 2 and wo = 1.92.
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Figure 1 depicts the classical and quantal phase plots
for the four cases with g =5, 10, 20, 40, while the cor-
responding stroboscopic plots are presented in Figure 2.
The classical dynamics is regular for g=5 and 10 and
chaotic for g = 20 and 40. The first two cases refer to the
invariant KAM tori which break down®® for the last two
cases to open a pathway in the phase space, allowing a
fraction of the particles to migrate from one well to the
other over the top of the potential barrier'®. The presence
of both the wells in the phase space structures of g =20
and 40 is transparent. For the quantum variant a robust
coherence has already been identified, which results from
the interplay between a typical quantal phenomenon like
tunnelling and classical chaos that is also amenable to
experiments'™®. Although there is an intervening chaotic
zone, the wave packet initially launched in one of the
wells gradually leaks into the chaotic zone and reaches
the other well and eventually oscillates between two
‘stability tubes' in a coherent fashion. It has also been
shown® that for a specific set of parameter values in eq.
(2) quantum tunnelling can be completely suppressed and
the wave packet would be localized in one of the poten-
tial wells. Classical chaos enhances quantum diffusion,
but at the same time quantum nonclassical effects suppress
classical stochasticity. It appears that a cantorus-like
structure® is a quantum equivalent of a classica KAM
torus. We have not noticed any cantorus-like structure in
the underlying classical dynamics. The cantorus structure
of the quantum phase space for g = 20 is an unmistakable
signature of quantum suppression of classical chaos,
since the classical KAM torus already breaks down at
this strength of the external field. Both these aspects are
mimicked by the corresponding KS-entropy plots presen-
ted in Figure 3. The case with g =40 is associated with
very large KS entropy for both classical and quantum
dynamics, implying the effect of classical chaos in
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Figure 5. Time evolution of classica (H®) and quantal (H™) KS
entropies for a double-well oscillator in presence of external field. See
the caption of Figure 4 for details.
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enhancing quantum stochasticity. But the H® for g =20
lies closer to that for g = 40, while the H™ for g = 20 lies
closer to that for g =10, reflecting the quantum sup-
pression of chaos. Autocorrelation function and its power
spectrum and the nearest-neighbour spacing distribution
(not shown here) lend additional support.

Reichl and Zheng®® have studied the penetration of the
barrier in a double-well potential in the presence of an
external field with different amplitudes. We have studied
the QTM of all the six cases (a to f) presented by them
for the external field with frequency = 1.92, mass of the
particle =2 and amplitude = 0.01, 0.10, 0.18, 0.20, 0.25
and 0.40. As the field amplitude increases, for a given
frequency, the particle originally trapped in one of the
wells escapes the barrier.

Figure 4 presents the classica and quantal strobo-
scopic plots for various field strengths. The external field
with very small amplitude (case a) has hardly any effect
on the particle and it does not escape the well. In case b
with dlightly larger amplitude, particles with energy
greater than a specific value can cross the barrier.
However, further increase in amplitude (case c) resulted
in trapping of the particle in a quasiperiodic orbit, a part
of which lies above the barrier and a part below it. In
cases d to f we see the increasingly chaotic behaviour
with a gradual increase in the field amplitude. For the
quantal versions of cases a and c two cantorus-like
structures reaffirm the correspondence between a
classical torus and a quantum ‘ cantorus'.

Figure 5 presents the classical and quantal KS entro-
pies for the cases studied. The relative order isa<c<b
<d<e<f for both H® and H%", as expected. The plot
of the phase volume®® (or the uncertainty product)
which is a measure of quantum fluctuations'®®® is
depicted in Figure 6. This quantity mimicks the above
behaviour.

ik

0.0 T
0 300 ¢ 600

Figure 6. Time evolution of phase space volume (Vys) or the
uncertainty product associated with the quantal motion of a double-
well oscillator in presence of external field. See the caption of Figure 4
for details.
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Figure7. Classical bifurcation diagram and its quantum analogue for
a double-well oscillator in presence of external monochromatic field of
varying amplitude (g). Parameter values are a=1.0, b =8.0 and wp =
6.07. Initial condition isxg =—2.0 and po = 0.0.

A ‘classical bifurcation’ diagram for a slightly diffe-
rent set of parameter values (a=1.0, b=8.0 and wy =
6.07) for the double-well oscillator with increasing
strength of the external field and its quantum analogue
are presented in Figure 7. Difference in width for small g
values in classical and quantum cases is due to the res-
pective motions on torus and ‘cantorus’. Overall, chaotic
classical dynamics goes along with the corresponding
chaotic quantum dynamics. Periodic windows in the
classical diagram are generally of larger width, but the
number of such windows (zoomed portion in inset) is
much larger in the quantum case possibly stemming from
the suppression of classical chaos by quantum non-
classical effects. A part of this work was published
earlier’?,

Quantum theory of motion provides important insights
into the quantum manifestations of the classical regular
and chaotic dynamics of a quartic oscillator in the pre-
sence of an external field of different strengths. The
classical KAM tori break down at a strength for which
the quantal phase portrait still exhibits cantorus-type
regular islands owing to the quantum suppression of the
classical chaos. It has also been observed that the classi-
cal chaos generally enhances typical quantum features
like quantum fluctuations. The KS entropy and the uncer-
tainty product support these results.
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