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Quantum domain behaviour of classically chaotic
systems is studied using the quantum theory of motion
in the sense of classical interpretation of quantum
mechanics as developed by de Broglie and Bohm.
Dynamics of quantum Hénon-Heiles oscillator, Bar-
banis oscillator and CTW oscillator are analysed with
the help of quantum Lyapunov exponent and Kolmo-
gorov-Sinai entropy defined in terms of the distance
between two initially close Bohmian trajectories. Stand-
ard diagnostics of quantum chaos like autocorrelation
function and the associated power spectrum, nearest-
neighbour spacing distribution, phase space volume,
spectral rigidity, etc. support these results. Quantum
theory of motion provides an alternative route for
understanding quantum chaos. Nonlinear dynamics of
integrable systems in quantum domain is also properly
taken care of within this framework
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Or late, the quantum domain behaviour of classically
chaotic systems has seen a great upsurge of interest'™.
Quantum dynamics of anharmonic oscillators like Hénon—
Heiles system has been studied®' extensively for this
purpose. Wave packet dynamics'® has been shown to
be appropriate in analysing quantum manifestations of
classical regular or chaotic dynamics. Various quantities
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which reveal the signatures of chaotic behaviour of a

‘quantum system can be calculated once the wave packet,
y(r, 1), i1s obtained at different time steps as a solution

to the pertinent time-dependent Schrédinger’s equation
(TDSE), viz.
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where the potential V- for a generalized Hénon-Heiles
system takes the following form,

o

V(x,y =-%(sz+ By?) + A

(Cy + 13) )-3]. (2)

\

In eq. (2) 4 is a parameter which measures the degree
of nonlinearity and nonintegrability and may be treated
as a time-like quantity?®*>, In the conventional Hénon-
Heiles potential A=A=B=C=1 and D=~ 1. However,
it is not sacrosanct that one has to resort to the value
of A as unity only. In fact one can either take A=1
and vary A, or set i =1 and vary A to obtain similar
results, viz. the system in higher energy levels exhibiting
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chaos while lower energy levels are similar to those of
independent harmonic oscillators®. This problem involves
two parameters. A and 71 . While 4 is a classical parameter
of nonhnearity, 7 takes care of the quantum aspects.
In the classical hmit, 7 goes to zero and in this timit
one recovers the classical regular or chaotic behaviour
of the corresponding quantum system. But one cannot
vary i and A simultaneously because the generalized
Hénon—Heiles Hamiltonian needs three physical con-
stants. viz. mass, frequency and length in order that it
represents a real nonlinear system’. Hence, the parameter
A now fixes the length scale as it varies inversely with
length and it no longer provides the strength of nonlinear
coupling between the motions along x and y directions.
Oscillators having the same generalized potential form
(eq. 2). which have been studied for various purposes,
include a) Harmonic oscillator; A=B=1, A=0; b)
Hénon-Heiles oscillator: 4#0, A=B=C=1 and
D =- 1; ¢) Barbanis oscillator*: 120, A=B=C=1 and
D=0, and d) Chang-Tabor-Weiss (CTW) oscillator?’:
A20, A=C=1. B=D=16. It may be noted that a is
lincar, b and ¢ are both nonlinear and nonintegrable
and d is nonlinear but integrable. Making use of ¥ (r, 1)
from eq. (1), chaotic dynamics of a Hénon—Heiles system
has been analysed” in terms of phase space trajectories,
aulocorrelation function and the associated power spec-
trum as well as the volume of the phase space. Short-
and long-range correlations have also been studied™® via
the behaviour of nearest-neighbour spacing distribution,
P(s), and spectral rigidity”, A,. Another recently devel-
oped approach of analysing quantum chaos is through
guantum theory of motion (QTM)*" in the spirit of the
causal interpretation of quantum mechanics as introduced
by de Broglie’® and Bohm’. Quantum fluid dynamics
(QFD) of Madelung® has also been used for this pur-
pose'™'". Quantum standard map*, Weigert’s quantum
cat map’’, Rydberg atoms in external fields®® and a
quantum Hénon—Heiles oscillator'” have been studied
successfully using QTM. Quantities calculated for this
purpose are'’*?* — phase space distance function and the
associated Kolmogorov-Sina: (KS) entropy, de Broglie
wavelength and a return map. To our knowledge QTM
has been used for the first time in the current work in
analysing the guantum domain behaviour of a nonlinear
integrable osctllator. This study may suggest whether
QTM can be applied in understanding the nature of
‘quantum solitons’.

In the present paper we study the dynamics of four
types of quantum oscillators mentioned above (cases
a-—d) in terms of QTM. For comparison we also calculate
survival probabilily (autocorrelation function) and the
corresponding power spectrum, phase space volume,
nearest-neighbour spacing distribution (NNSD) and spec-
tral rigidity. Theoretical background of the present work
is presented in Section | while Section 2 describes the
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necessary numerical details. Section 3 contains the results
and discusston. The salient features of the present study
are summarized 1in Section 4,

1. Theoretical background

In quantum theory of motion the complete description
of a physical system involves both wave and particle
pictures. The wave motion is governed by the solution
of the TDSE eq. (1). For a given initial position. the
motion of a point particle guided by this wave 1s
represented by the velocity

r= 1 VS,

ni r=ry

(3)

where S is the phase of the wave function as appeared
In 1ts polar form as follows:

Y(rr)=R(t,r) expl(éS(r,n)/n]. (4)

Now, an ensemble of particle motions guided by the
same wave can be constructed by varying initial positions
in such a way that the probability of the particle being
in this ensemble between r and r+dr at time ¢ is given
by’ p (r, 1) dr, where p (v, 1) is 'V (r. ) 1% Solution of
eq. (3) with various initial positions would yield the
so-called ‘Bohmian trajectories’. In order to study the
quantum signature of chaos through scnsttive dependence
on initial condition a phase space distance function' ™"
can be defined as

D (1) = [(x (1) = x,() + (¥, (1) = »,(D))
+p ) =p, ) +@, MO =p, (D' (5)

where (x, p, v, p) refer 1o a point in phase space.
A generalized quantum Lyapunov exponent can atso
be defined as follows™ ™ in the same spirit as in classical

dynamics,

A= lim
ity -

f ==

"} In [D(r)/D(0)] . 6)
Corresponding KS entropy has also been defined as™"

H=) A,. (7

A >
+

It has been stated that™, ‘Quantum dynamics is chaotic,

if in a given region of phase space the low ot trajeciones,
according 1o the Hamilton-Jacobi tormulation of quantum
mechanics, has positive KS entropy’.

Other well-known quantitics used to identify chaos
and analysed in the present work are now bricfly men-
tioned. Autocorrelation function is given as®™"
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C(r)=I{(¥(r.O) I ¥(r, NI, (8)

and the comesponding power spectrum is obtained as
the following Fourier transform:

2

6= {1 fcwes af . (9)

{}

Sharp decay of C(r) and existence of many closely-spaced
lines 1n its power spectrum generally signal a chaotic
dynamics®.

Phase space volume is defined as’

V. (0 =Kx = &N (e, - @)Dy =N
x{(p, — LN . (10)

A sharp increase in V (¢) implies chaotic motion®. This
quantity is same as the associated uncertainty product
which can be used as a measure of quantum fluctuations”’.
Classical chaos generally enhances quantum fluctua-
tions™*.

Quantum domain behaviour of classically chaotic sys-
tems is studied in terms of short-range and long-range
correlations of the eigenvalues®** %, For study of the
short-range correlations, generally nearest-neighbour
spacing distribution, P(s) is used as a diagnostic. For
a classically chaotic system the level statistics i1s Wigner

in nature’, i.e.,

ol
Pw(.s-)='%5 exp( T } (11)

while a Poisson distribution is obtained for the corres-
ponding integrable counterpart’, viz.

P (s)=exp(-s) (12)

where s 1s the gap between the two nearest energy
levels properly normalized in order to have uniform™
mean density of those levels”*. On the other hand, the
long-range correlation’ is understood in terms of the
spectral rigidity, A, (L) for an energy interval L. For a
system exhibiting chaos in the classical domain, a Gauss-
ian orthogonal ensemble (GOE) represents the corre-
sponding A, behaviour’

ASE (L) == log (L) - 0.00695, (13)

while Poisson behaviour is obscrved for the classically
integrable systems,

L
P R ——
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2. Numerical solution

The numerical solution starts with the propagation of a
Gaussian wavepacketunder theinfluence ofthe potential
corresponding to a given oscillator. For this purpose the
pertinent TDSE eq. (1) is solved to monitor the temporal
evolution of W(r, ) using a Peaceman—Rachford type
finite difference algorithm™. The formal solution to
TDSE eq. (1) can be written as®™

A
VYix,y,ty=exp(—itHANY (x,y,1=0), (15)

where EI is the Hamiltonian operator and fi=2m=1.
The Cayley form of the unitary approximation to eq.
(15) can be written as™
(1 -i0x/e) @), =(1+idy/e) ¥ , (16)

where 11, 1<m<M, ;:'m=‘{’((1—])ﬂ.x,
(m-1)Ay, nAt), e=2Ax*/At, ® is an intermediate
function and dx* and dy* are central difference operators
in x and y directions respectively’’. The details of the
numerical technique are available elsewhere. The nu-
merical algorithm used here is stable™ because of the
presence of I =v— 1. As a further check of the numerical
accuracy of the scheme we have verified the conservation
of the norm and the energy as well as the reproduction
of the initial wave packet through forward propagation
up to the end of the simulation followed by back
evolution®.

The boundary conditions for this problem are as
follows

V(too vy t)=0 oy, ¢, (17a)
¥(x,te,1)=0 ox, L. (17b)
The initial condition, however, has been chosen

depending on the problem concerned, viz.

cases a, b, ¢;
1/2

¥Y(x,y,t=0)= (}515)

X eXp [— 'i-l'ﬁ [(x=x,) +(y - }'.,):])*

(18a)
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Mesh sizes adopted are Ax=Ay=0.1, At=0.02. Cal-
culation is carried out for —6<x, y<6 and for 2.5 x 10*
time steps.

Once we know YW (x,y, 1) we can rewrite €q. (3) as

i‘=—-l—- VSt —Rei—mvlp.,
mY

" r=r()

(19)

which can be solved with different initial conditions to

obtain ‘Bohmian trajectories’. Here we have used a

second order Runge-Kutta method. While case a has
zero A value, for all other cases A has been taken® as
0.1118034. Three initial positions® have been considered,
viz. (1.36719, 1.36719) for cases a and b and (2.929688,
1.953125), (1.25, 0.5) for cases ¢ and d respectively.

3. Results and discussion

Temporal behaviour of the distance function D is depicted
in Figure 1. Unless otherwise specified, figures a to d
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Figure 1. Time evolution of phase space distance, D for () harmome
oscillator with x, = 1.36719, y,= 136719, {b) Hénon-Heiles ostillator,
with A= 01118034 and x, = 1.36719, y,= 136719, (¢) Barbanis oscil-
lutor, with A =0.1118034 and x,=2.929688, y, = 1.953125, (d) CTW
oscillator, 4 =0.1118034 und x,=1.25, y,=0.5. Figures d and b ame
presented together as s the case with Figures ¢ and d.
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represent cases a to d respectively. Initial very small
value of D does not change with time for the harmonic
oscillator (case a). For the classically chaotic cases, ViZz.
Hénon—Heiles (case b) and Barbanis (case ¢) oscillators
D oscillates and becomes very large at times. It is
heartening to note that the integrable CTW oscillator
(case d) maintains its initial small value.

Figure 2 presents the associated KS entropies, H. As
expected, H increases and then levels off to a small
value for classically integrable cases (a and d) and
increases abruptly to a large positive value for the
classically chaotic cases (b and c). It is transparent from
this study that two initially (¢#=0) nearby ‘Bohmian
trajectories’ remain close to each other for integrable
cases and diverge rapidly in case of classically chaotic
systems. Thus, QTM provides an alternative route In
analysing ‘quantum chaos’, especially the quantum
domain behaviour of a classically chaotic system. The
QTM of the CTW system in the present study has
confirmed that D and H do not exhibit any spurious
nonlinear behaviour (cases b and ¢) as a numerical
artifact as it does not show any chaotic signature in D
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Figure 2. Time evolution of KS untapy, Hotor cases a-d o brgrres
@ and b are presented together ns s the case with brgues ¢ and .
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and H for a highly nonlinear system whose actual
dynamics i1s nonchaotic (case d). In Figures 1 and 2
we have demonstrated the temporal behaviour of D and
H associated with the time development of an initial
(1 =0) Gaussian wavefunction. Recently two of us®® have
noticed in the context of the QTM study of quantum
chaos in Rydberg atoms in an external oscillating electric
field that the behaviour of D and H can differentiate
between a regular and a chaotic system even in case a

non-Gaussian 1nitial wavefunction is used.

Autocorrelation functions, C(f), and corresponding

power spectra I(E), are shown in Figures 3
respectively. Since the behaviour of any quantit

and 4
y 1n the

two nonintegrable cases (b and ¢) is more or less similar
as i1s also the case with the two integrable systems (a

and d) we present one plot from each category (a and

¢) in Figures 3 to 5 although we comment on

all four

cases. For the cases a and d relatively high C(t) values

designate a high degree of correlation unlike
other cases. Plots of I(E) mimic this behaviour
a relatively simple spectra with a small number

in two
through
of lines

in integrable cases and a large number of peaks in the

nonintegrable cases.
In Figure 5 we present the phase space volu

meV

It clearly demonstrates that V. value remains small all

il
W

'I-}:II,:E 51!',.
:'f!* i

aﬂiﬂ
il

-_“— — -
I
:E:Fi.
ﬂ;':_
.:E.b"’"

Piu i

1"“ “ |

03 l}lllllfllllll l"lllu 'l |li Iﬂ

0 100

i lulmi' |

1.0
0.9
08
0.7
06
0.5 |
0.4
03

02

wi ““W' ll '5,.” lhahhﬂl MIMIJ gl "

“bri i o hmmh fihwar oyl i B i

0 100 200 , 300 400

ase a

case €

I

200

Figure 3. Tinie evolution of autocorrelation, C for cases & and ¢.
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throughout for case a (and also d) but increases abruptly
to a high value for case b (and also ¢). This behaviour
is 1n conformity with that obtained by other workers
in different contexts’’. Thus classical chaos enhances
quantum fluctuations.

The nearest-neighbour spacing distribution, P(s) is

- <
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Figure 4. Power spectra, (E) for cases a and c.
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Figure 5. Time evolution ol phuse spuce volume, V for cases a
and e¢.
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Figure 6. Nearest-neighbour spacing distribution, P(s) as a function
of the spacing between consecutive energy levels s. Only case ¢ is
presented.

shown in Figure 6. For comparison we also plot the
analytical Poisson and Wigner functions. Plots of P(s)
and A,(L) for the integrable cases are not presented
because they are standard and available elsewhere®®.
For two classically chaotic cases (b and c¢) the behaviour
of P(s) is more Wigner-like while cases a and d (not
presented here), although integrable, do not exhibit a
Poisson-like statistics, a fact already noficed by Berry
and Tabor*' for harmonic oscillators. It may be noted
that a small number of energy levels in the Integrable
case also causes impediments towards a statistical
analysis.

Figure 7 depicts the spectral rigidity, A,(L) computed
from the energy level spacings of the systems under
consideration. The results are compared with the ana-
Iytical A, curves for Poisson and Gaussian orthogonal
ensembles (GOE). Classically chaotic cases (b and ¢)
follow the analytical A, curve for GOE and hence bear
the signatures of classical chaos in quantum domain.
However, cases a and d (not presented here) for the
integrable oscillators although markedly different from
the other two cases do not exhibit any clear-cut Pois-
son-like distribution probably due to the small number
of energy levels in these two cases.

4. Summary

Quantum domain behaviour of classically chaotic systems
can be studied through a causal interpretation of quantum
mechanics. In this paper the nature of ‘Bohmian trajec-
tories’ generated within the purview of the quantum
theory of motion has been analysed. Phase space distance
function and the associated KS entropy clearly reveal
the difference between classically chaotic and integrable
systems, Hénon-Hetles and Barbanis oscillators bear the
signature of classical domain chaotic dynamics whereas
harmonic and CTW systems show markedly difterent
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Figure 7. Spectral rigidity, A,(L) as a function of energy interval L.
Only case c is presented.

behaviour indicating the corresponding integrable nature.
The QTM has reproduced the integrable nature of a
quantum variant of the CTW system. Traditional meas-
ures of understanding ‘quantum chaos’, viz. autocorre-
lation function, power spectrum, phase space volume,
nearest neighbour spacing distribution and spectral ri-
gidity provide additional support towards identifying a
classically chaotic system in the quantum domain.
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