ON A QUERY OF ADRIAN WADSWORTH*

SUDESH K. KHANDUJA* AND USHA GARG

Centre for Advanced Study in Mathematics, Panjab University, Chandigarh 160014

(Received 6 November 1997; after Revision 27 July 1998; Accepted 2 December 1998)

Let v_0 be a valuation of a field K_0 with residue field k_0 of characteristic $\neq 2$. Suppose that K is a function field of a conic over K_0 and v is a prolongation of v_0 to K, whose residue field k is not algebraic over k_0 . It is well known (cf. [Residue fields of valued function fields of conics, *Proc. Edinb. math. Soc.* 36 (1993)], 469-78]) that either k is a simple transcendental extension of a finite extension of k_0 or k is a regular function field of a conic over k_0 . The paper contains the answer to a natural question posed by Wadsworth which states that if v_1 , v_2 are any two prolongations of v_0 to K with residue fields k_1 , k_2 non-algebraic over k_0 such that neither k_1 or k_2 is a simple transcendental extension of a finite extension of k_0 , is it true that k_1 is k_0 -isomorphic to k_2 .

Key Words: Valued Fields; Valuations and Their Generalizations

INTRODUCTION

Let K be a function field of a conic over a field K_0 . Let v_0 be a valuation of K_0 with residue field k_0 of characteristic $\neq 2$ and v be an extension of v_0 to K having residue field k which is not an algebraic extension of k_0 . In 1992, we proved that either k is a simple transcendental extension of a finite extension of k_0 or it is a regular function field of a conic over k_0 (cf. [2, Theorem 1.1, 1.2]). This led Wadsworth to ask the following natural question.

Let K_0 , k, v_0 , k_0 be as above and v_1 , v_2 be any two prolongations of v_0 to K with residue fields k_1 and k_2 not algebraic over k_0 . If neither k_1 nor k_2 is a simple transcendental extention of a finite extension of k_0 , does it follow that k_1 is k_0 -isomorphic to k_2 ?

In the present paper, it is shown that the answer to the above question is "yes". Indeed we prove that there exists at most one prolongation v of v_0 to K whose residue field is not a simple transcendental extension of any finite extension of k_0 but it is transcendental over k_0 . We have also given a set of necessary and sufficient conditions for the existence of such a prolongation.

1. STATEMENTS OF RESULTS

We first introduce some notation and a definition. Let (K, v) be a valued field. For any ξ in the valuation ring of v, we shall denote by ξ^* its v-residue, i.e., the image of ξ under the canonical homomorphism from the valuation ring of v onto its residue field.

We use "tr" to abbreviate transcendental, "char" to abbreviate characteristic and X, Y for indeterminates.

An extension $(K, \nu)/(K_0, \nu_0)$ of valued fields is said to be residually tr. if the residue field of ν is a non-algebraic extension of the residue field of ν_0 .

In what follows, K is a function field of a conic over a field K_0 of char $\neq 2$ i.e. K is the quotient field of a domain $K_0[X,Y]/(f)$, where f is an irreducible polynomial of degree 2 in $K_0[X,Y]$. As in [2, Lemma 2.1], it can be easily shown that there exist explicitly constructible elements $c, d \in K_0$ such that $K = K_0(x,y)$ where (x,y) satisfies the K_0 -irreducible polynomial $X^2 - cY^2 - d$, which is referred to as a defining polynomial for K/K_0 . Observe that if c_1, d_1 in K_0 are such that $c = c_1 a^2, d = d_1 b^2$ for some $a, b \in K_0$, then $X^2 - c_1 Y^2 - d_1$ is also a defining polynomial for K/K_0 , for we can write $K = K_0(x_1, y_1)$, where $x_1 = x/b, y_1 = ay/b$ satisfy $x_1^2 = c_1 y_1^2 + d_1$.

We shall prove :

Theorem 1.1 — Let v_0 be a valuation of a field K_0 with residue field k_0 of characteristic $\neq 2$ and value group G_0 . Let $K = K_0(x, y)$ be a function field of a conic over K_0 with (x, y) satisfying $x^2 - cy^2 - d = 0$ for some c, d in K_0 . There exists a residually transcendental extension v of v_0 to K whose residue field is not a simple transcendental extension of a finite extension of k_0 , if and only if, the following three conditions are satisfied:

- (i) $cd \neq 0$.
- (ii) $v_0(c) \in 2G_0, v_0(d) \in 2G_0$
- (iii) The equation $x^2 = c_1^* Y^2 + d_1^*$ has no solution over k_0 , where $c_1, d_1 \in K_0$ are chosen such that c/c_1 , d/d_1 are in K_0^2 and $v_0(c_1) = v_0(d_1) = 0$.

Theorem 1.2 — Let K, K_0 , v_0 , G_0 , k_0 be as in the above theorem. Then there exists at most one residually transcendental extension v of v_0 to K, whose residue field k is not a simple transcendental extension of a finite extension of k_0 . If such a prolongation v exists, then k can be expressed as $k_0(t, u)$, with t transcendental over k_0 and t, u satisfying a relation $t^2 = c_1^* u^2 + d_1^*$, where c_1 , d_1 belonging respectively to cK_0^2 and dK_0^2 satisfy $v_0(c_1) = v_0(d_1) = 0$.

2. PROOF OF THEOREMS 1.1, 1.2

We retain the notation introduced in the first section. As in [2, §2 Notation] for a residually tr. extension v of v_0 to $K = K_0(x, y)$, we shall denote by v' its restriction to the simple tr. extension $K_0(y)$ of K_0 and by $E = E(v'/v_0)$ the number defined by $E = \min\{\{K_0(y): K_0(\xi)\} \mid \xi \in K_0(y), v'(\xi) \ge 0, \xi^* \text{ is tr. over } k_0\}.$

It can be easily seen that when E=1, then there exist $a,b\in K_0$ such that the v'-residue of z=(y-a)/b is tr. over k_0 ; in this case for any $f(y)=\sum_{i\geq 0}c_iz^i$ in $K_0[y], c_i\in K_0$, we have

$$v'(f(y)) = \min_{i} v_0(c_i);$$
 ... (1)

and the residue field of v' is the simple tr. extension $k_0(z^*)$ of k_0 .

For proving the theorems, assume first that there exists a residually tr. prolongation ν of ν_0 to K having value group G whose residue field is not a simple tr. extension of a finite extension of k_0 . As remarked in the proof of [2, Theorem 1.2], this assumption implies that $E(\nu'/\nu_0) = 1$, k_0 is algebraically closed in k and that $G = G_0$. Let $a, b \in K_0$ be such that the ν' -residue z^* of z = (y - a)/b is tr. over k_0 . Observe that $x \neq 0$, for otherwise K would be the simple tr. extension $K_0(y)$ of K_0 and the residue field of ν would be $k_0(z^*)$, contrary to the assumption. Choose $0 \neq R \in K_0$ such that $\nu(x) = \nu_0(R)$ and set

$$\eta = (cy^2 + d)/R^2 = x^2/R^2$$

It has been shown in the last paragraph of the proof of [2, Theorem 1.1] that in the present situation the residue field k of v is $k_0(z^*\sqrt{\eta^*})$. On expressing cy^2+d as a polynomial in z=(y-a)/b, we see that

$$\eta = \left(\frac{b^2 c}{R^2}\right) z^2 + \frac{2abc}{R^2} z + \frac{a^2 c + d}{R^2}.$$
 ... (2)

In view of formula (1),

$$0 = \nu(\eta) = \min \left\{ \nu_0 \left(\frac{b^2 c}{R^2} \right) \nu_0 \left(\frac{2abc}{R^2} \right) \nu_0 \left(\frac{a^2 c + d}{R^2} \right) \right\} \qquad \dots (3)$$

Therefore, (2) shows that η^* is a polynomial of degree ≤ 2 in z^* over k_0 . The assumption that k is not a simple tr. extension of k_0 together with the fact that k_0 is algebraically closed in k implies that η^* must be a polynomial of degree 2 in z^* over k_0 . So by virtue of (2),

$$v_0(b^2c/R^2) = 0.$$
 ... (4)

It is immediate from (3) and (4) that

$$v_0(2abc) \ge v_0(R^2) = v_0(b^2c)$$

Keeping in view that $v_0(2) = 0$, i.e., that char $k_0 \neq 2$, the above inequality gives $v_0(a) \ge v_0(b)$. Thus we see that $\left(\frac{y}{b}\right)^* = \left(\frac{y-a}{b}\right)^* + \left(\frac{a}{b}\right)^*$ is also tr. over k_0 . On writing

$$\eta = \frac{b^2 c}{R^2} \left(\frac{y}{b} \right)^2 + \frac{d}{R^2} ,$$

using formula (1) (with (y - a)/b) replaced by y/b) and arguing as above, we conclude that

$$v_0(b^2c) = v_0(R^2) = v_0(d).$$
 ... (5)

It is clear from (5) that $cd \neq 0$ and $v_0(c)$, $v_0(d)$ are in $2G_0$ as desired in Theorem 1.1. Observe that the residue field k of v is given by

$$k = k_0(t, u) \qquad ... (6)$$

where

$$u = \left(\frac{y}{b}\right)^*, \quad t^2 = \eta^* = \left(\frac{b^2 c}{R^2}\right)^* u^2 + \left(\frac{d}{R^2}\right)^* \qquad \dots (7)$$

As $(b^2c/R^2)^*$ and $(d/R^2)^*$ are non-zero by (5), it follows from [3, Corollary 2.9] that k_0 is algebraically closed in k (which is not a simple tr. extension of k_0) and hence condition (iii) of Theorem 1.1 is satisfied by virtue of [3, Theorem 1.4].

Since $(y/b)^*$ is tr. over k_0 and by (5), $v_0(b) = \frac{1}{2} v_0(d/c)$, we see that for any $f(y) = \sum a_i y^i$ in $K_0[y]$,

$$v(f(y)) = \min_{i} \{v_0(a_i) + iv_0(b)\}$$

is independent of the choice of the particular residually tr. prolongation v of v_0 whose residue field is not a simple tr. extension of a finite extension of k_0 . Thus v is uniquely determined on $K_0(y)$. Moreover, the restriction v' of v to $K_0(y)$ has only one prolongation to the quadratic extension K of $K_0(y)$, for otherwise in view of the fundamental inequality [1, Chapter 6, §8.3, Theorem 1(b)], the residue field of v would be the same as the residue field $k_0((y/b)^*)$ of v'. The proof of Theorem 1.2 is now complete.

To prove the converse part of Theorem 1.1, assume that the conditions (i) - (iii) of Theorem 1.1 are satisfied. Fix elements c_1 , d_1 of K_0 such that $v_0(c_1) = v_0(d_1) = 0$ and $c = c_1 a^2$, $d = d_1 b^2$ for

some $a, b \in K_0^{\times}$, this is possible in view of conditions (i) and (ii). Then $K = K_0(x_1, y_1)$ where $x_1 = x/b$, y = ya/b are related by $x_1^2 = c_1 y_1^2 + d_1$. We shall construct a prolongation v of v_0 to K such that the residue field k of v is $k_0(t, u)$, where $t = x_1^*$ (i.e., the v-residue of x_1) and $u = y_1^*$ satisfy $t^2 = c_1^* u^2 + d_1^*$.

Let v' denote the Gaussian valuation on $K_0(y_1)$ extending v_0 which is given by

$$v'(\sum a_i y_1^i) = \min_i (v_0(a_i)), a_i \in K_0.$$

Since $x_1^{*2} = c_1^* y_1^{*2} + d_1^*$ is not a square in the residue field $k_0(y_1^*)$ of v', it follows from the fundamental inequality [1, Chapter 6, §8.3, Theorem 1(b)] that v' has a unique prolongation to the quadratic extension $K = K_0(x_1, y_1)$ of $K_0(y_1)$. If v denotes this unique prolongation, then its residue field is clearly $k_0(x_1^*, y_1^*)$ which is not a simple tr. extension of k_0 in view of Theorem 1.4 of [3] and condition (iii) of Theorem 1.1.

REFERENCES

- 1. N. Bourbaki, Commutative Algebra Hermann Publishers in Arts and Science, 1972.
- 2. S. K. Khanduja and Usha Garg, Proc. Edin. math. Soc. 36(1993), 469-78.
- 3. J. Ohm, In: Algebraic Geometry and Its Applications (Ed. C. L. Bajaj) Springer-verlag, New York, Inc. 1994, pp.