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Spatial Solitons in Bulk Cubic-Quintic Media with
Multiphoton lonization Effect
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Abstract—Propagation of a high intensity cylindrically symmetric beam ~ sities. Nonideality of the nonlinear optical response is known
in a material characterized by cubic-quintic nonlinearity is studied both  fgr semiconductor-doped glasses, PTS and varriommjugated

analytically and numerically. In this case we have to consider the self- . . L .
defocussing effect of free electrons caused due to plasma formation. Vari- polymers. In this types of materials the refractive index, n, is of

ational method is used to study the system analytically. Finite Differ- the form
ence Beam Propagation Method is used for the numerical analysis. Stable

(2 4+ 1) D spatial solitons are observed. The analytical results are in very

good agreement with the numerical results.

Keywords—finite difference beam propagation method, spatial solitons, where,I is the beam intensity,, n, andn, are nonlinear coef-
variational method ficients withn, > 0 andn, < 0, i.e., the higher order nonlinear-
ity is of the saturating kind. The propagation of spatial solitons
|. INTRODUCTION in a PTS like medium has been studied by various groups [5] -

The idea that an optical beam can induce a waveguide dfli In the present work, we have studied the propagation of a
guide itself in it was first suggested by Askaryan in 1962. A lightigh intensity laser beam through a PTS like medium. In this
beam travelling in either vacuum or in a medium always broafigh energy regime, we have to consider the phenomenon of
ens because of the light's natural wave property of diffractioRlasma generation through multiphoton absorption. Multipho-
But if the beam is shone into a bulk nonlinear material, such ¥4 absorption is a nonlinear process, in contrast with the one-
silica glass, it changes the material’s refractive index. The cdoton absorption process. It has a self defocussing effect on
sequent variation of the light's velocity across the beam’s waVée material. The study of spatial solitons in a bulk Kerr medium
front focusses the beam as if it were passing through a lens. i multiphoton ionization has been carried out by Hermann et
earliest experimental observation of the self-focussing of opfl[8]- o
cal beams was in 1964. If the beam’s diffraction can be com-The refractive index now takes the form,= no + nal +
pensated by beams self-focussing, we get the so called spatidi’ — Ve/2n0Ner, Ne is the number density of free electrons
solitons. This effect was discovered in 1964 [1]. and N, is the critical plasma density. o _

The idea of controlling light with light by taking advantages The beam evolution is studied using the cubic-quintic nonlin-
of nonlinear optical effects, is a topic of interest to many r&ar Schrodinger Equation with th(_e effect of muIUphoton ioniza-
searchers and scientists. The fundamental benefit is in the #¥1- We analyzed the problem using both numerical and analyt-
sibility of avoiding any opto-electronic conversion process, angfl methods. o _ _
hence increasing the device speed and efficiency. It is in this/Ve used the variational method [9] with a Gaussian ansatz for
scenario, the self-guided beams called “spatial solitons” find iffle analytical analysis. The Finite Difference Beam Propagation
portance. The areas of application include all optical switchidgéthod (FD-BPM) was used for the numerical analysis [10].
devices [2], optical computing, all optical polarization modulaStability of the solitons are studied by numerical and analytical
tors [3] logic gating etc. methods and they are found to be stable.

The prospec_t of forming aII_-optlcaI SW|tches_ anq logic gates . ANALYTICAL APPROACH
presents promise for generations of novel optical interconnects
for computing and communications. The perfect balance be-The dynamics of the amplitud& of a high intensity laser
tween diffraction and self-focussing that exists in spatial solteam in a PTS like medium is governed by the cubic-quintic
tons has been found to occur in either one or two transversanlinear Schrodinger Equation with additional term for the
dimensions, and the solitons are nangéd + 1) or (2D + 1) multiphoton ionization and has the form,
accordingly. These spatial solitons have been found to occur in
a variety of materials like Kerr materials, photorefractive mate- A
rials, liquid crystals etc. Recently, Peccianti et al [4] set up an izka— + V2A + 2kkons |A\2 A+ 2kkony |A\4 A (2)
experiment to demonstrate all-optical switching and logic gate o .
blocks using spatial solitons in liquid crystals. —paA/ |A(t’)|2" dt' =0

Usually, the nonlinear refractive index of the material devi- —o0
ates from the linear (Kerr) dependence for larger light inten-

n =ng + nol + ngl? (1)

wherek = w/¢, kg = nok, nthe number of quanta necessary
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The time dependence of the beam is taken into account by the
ansatzA(z,r,n) = B(z,7)T(n). T(n) is the normalized input  Subtracting (9) from (8), we get

shape. _ .
The Lagrangian is then given by, ECO*wg’ i EC*O w3 =0
27 2 =

=> |C)? = y (a constant)

L = it <BaaB B*%B)T é%—Baf (4)
4 4 T T
A A B2t =>w(0)*|C(0)] =w(2)*|C(z)]" =E,  (10)
+r71 |BI* T3 + r? |B|®T* + r%| |+ —Tg(n)  Adding (8) and (9) we obain,
n

Whel’e, ; ) 2 |C‘ ) )
() :/ T2n gt i(CC; — C*C,) = —2b, |C]" w { + 4% }w” (11)
> 2 4\ 4 ag(n|CP"+?
For the solution of this problem, let us assume a trial solution —721 cltr? — 3\; icl°r ka %
of the form,
) Now, the variation of L) with respect tav(z) is given by
B(z,7) =C(2) exp[—m +ib(2)r?] (5)
wiz o(L) 3. . |c’T
WhereC(z) is the maximum amplitudeyz) is the curvature —p,~ = 571 (CC: = C7C2) + 5b. c? T7 +— (12
parameterw(z) is the beam radius. Ideally, the trial function 3\
should include the possibility to model the dynamically vary- +10 |C|? sz* + Wi O T*w? + 3\[ C° Tw?
ing radial shape function of the beam. But that will make the S
variational analysis more complicated. 3pa_|C] To(n)w?
The reduced Lagrangian is then given by, 2k (n+1)5/2
oo and
(L) = / Lrdr (6)
0 o{L) _ d 502
4b =0=— 13
= SAb|C w —@loP)  @’)
<L>:¢Zj 080 _(ﬁgg uﬁglz+bﬁcfiw5£i From this we can write,
0z 0z 4 8
dw _ 4bw (14)
2wt Sf This implies:
2n+2 kdlnw
A2\ 6 pa, 3 VT \C\ 3 VT b(z) = = 15
Ziofr T Y- z) (15)
Ty lOf T 123 + o 2k (n+1)5/2 gmw”= _ 2 dz
Comparing (11) and (12) we obtain,
2,,,2
Now we can find the variation dfL) with respect to the vari- bow? + > 5 + 407w 9>\1 C|* T2 (16)
ous Gaussian paramete&i$z), C'(z)*, w(z) andb(z). 2w 2k Q\f ,
10/\2 6(2n + 1)pa |C|™"
( 5 CI' T + g(n) =0
c% = izC'C:w‘3 +b, \C\QTw— (8) "33 EETCES) (n+1)5/2
2 w5 Now, combining it with the derivative form of (14), we obtain
CI°T p2 33
e 4 5[ T
o O dPw 20 36MT2E,  40MT°E]
1P T 4+ G o e Talw® 2 T TERRT T akv2ud  GhvBu
f ok (n+1)5/
24(2n + 1)pag(n) Eg (17)

and T (2k)2(n + 1)5/22n 1
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Here|C|” has been eliminated by using the fact thét|C|* =

Eo Pot ent i a\l %w
Now, on integrating the above equation, we get an equation 10
for the variation ofw(z) as
10
1, dw. 4
—(— II =0 18 -20
S () + Tl(w) (18) 2
This is analogous to the equation of a particle moving in a 20

potential well. The potentidll(w) is given by

9 3 12 Fig. 1. Qualitative plot of the potential function when all the nonlinearities are
H(w) _ 10 18MTEy _ 10AT EO (19) of defocussing nature. Dotted line represents the linear case.

(2k)2w?  4kv2w?  6ky/3wh
24(2n + 1)pag(n) Ey

— +c Potenti a 127 Y <0
2n(2k)2(n + 1)/2w2n 15, ¢
10 }
The phase(z) of C(z) (C(z) = |C(z)| expligp(2)]) is obtained 5
from (11) and also using (16).
-5
d¢ 4 TN e SAe as 10
-— = +—=[CI"T"+ —=[C|"T® (20 -15
dz 2kw?  24/2 ©] 3\/§| | (20) =20
2(7n + 4)pa_g(n|CI*"
(n+1)2k (n+ 1)5/2 Fig. 2. Qualitative plot of the potential function when third order nonlinearity

is of focussing nature and all other nonlinearities are of defocussing nature
For further ana'ysis of (18) and (19)’ we introduce the normal- (weak fifth order). Dotted line represents the linear case.
izationw(z) /wo = y(z). Substituting in (18) we ge}(9¥)2 +
II(y) = 0 where,

4) “‘5“’ = —2.5 This is the limit case. The potential well has
U v ¢ degenerated into a single point. The diffraction of the beam is
I(y) = 7 + 7 + 2 +K (21)  exactly compensated by the focussing effect of the nonlinearity
and beam propagates without any change in its shape (figure 4).
10 18\ T2E,
K= _4k2w3 - kv [1l. NUMERICAL ANALYSIS
100 T3 2 Equation (2) is numerically studied using the Finite Differ-
=-—= "9 ence Beam Propagation Method (FD-BPM). It is a cylindrical
6hv/Buw partial differential equation that can be “integrated” forward in
24(2n 4 1)pag(n) E z by a number of standard techniques. In this approach, the field
=~ 2n(2k)2(n + 1)5/202"F2 in the transverse plane is represented only at discrete points on
0 a grid, and at discrete planes along the propagation direction
K= % Given the field at one z plane, we can find the field at the next
ap z plane. This is then repeated to determine the field throughout
Now, assume that the beam at z = 0 k&) = a, and the structure. _ _
[d%(;)]mo = 0. This givesK = —(u + v + €). Let w:*! denote the field at transverse grid poirgnd lon-

Depending on the values @f v and¢ we can identify four gitudinal planes; , and assume that the grid points and planes

different regimes:
1) 2 > 0 This condition implies defocussing due to both

third and fifth order nonlinearity as well as the nonlinearity due Potential -2 5<——<-1
to the multiphoton effect. We can clearly see from figure 1 that 15 ‘
the beam diffracts faster than in the purely linear case. 10
2) —1 < £t < 0 This condition implies focussing due to 5 \ ,
the third order nonlinearity and defocussing due to a weak fifth 5 ¥oo2 3 5 FRadius
order nonlinearity. The multiphoton effect is also of defocussing 10 e
nature. We can see (figure 2) that the nonlinearity is trying to 15
focus the beam. 220

3) —2.5 < ¥ < _1 Inthis case the third order nonlinearity
IS O_f the focuss[ng case and there is a strong fifth Ord?r non"ﬂ@. 3. Qualitative plot of the potential function when third order nonlinearity
earity. A potential well has been created. The spreading of theis of focussing nature and all other nonlinearities are of defocussing nature
beam is stopped at the zeros of the potential function (figure 3). (strong fifth order). Dotted line represents the linear case.
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ng = =5 x 10723cm* /W? at wavelengthi550nm [12]. The

P°t1%“t la s outcome of these simulations (see figure(6)) agrees very well
! with that obtained from the variational approach. The beam
10 propagates without any change in shape.
5
Radi Us IV. RESULTS AND CONCLUSION
1 2 3 4 5 . . .
5 In this work we have studied, both analytically and numer-
e ically, the propagation of a high energy laser beam through a
-1ot T

medium characterized by both third and fifth order nonlinear-
ity. We have to consider the self-defocussing effect caused by
Fig. 4. Qualitative plot of the potential function when focussing due to the thig lasma generation through multiphoton ionization. Approxi-

order nonlinearity is completely balanced by the defocussing due to the fitth . ; . L .
y R one Y o fated solutions are obtained using the variational formulation.

order nonlinearity and multiphoton ionization. This is the limit case. Dotte
line represents the linear case. All the basic parameters of the self trapped beam are calculated.
The multiphoton ionization helps in containing the catastrophic
breakdown of the beam and helps in forming a stable soliton.
We could show both numerically and analytically the formation

of stable solitons.

are equally spaced h¥r andAz apart, respectively. The radial
and longitudinal dimensions are discretized by the valyesd
z according to the relations

r; = iAr andz, = sAz V. ACKNOWLEDGMENT
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Fig. 5. Numerical Integration of (2).

We integrated (2) using the result obtained from the varia-
tional analysis as initial condition. The numerical parameters of
the simulation has been choosen so as to fit the usual experimen-
tal configurations. Here, we have choosgn= 1.6755, ny =
2.2 x 107 *2em?2 /W andny = —8 x 10~22em* /W?2 which are
the nonlinear coefficients of PTS at waveleng@®0nm [12].
Similarly, for AIGaAs, withng = 3, ny = 1.5 x 10~ 13em? /W,



