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Spatial Solitons in Bulk Cubic-Quintic Media with
Multiphoton Ionization Effect
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Abstract—Propagation of a high intensity cylindrically symmetric beam
in a material characterized by cubic-quintic nonlinearity is studied both
analytically and numerically. In this case we have to consider the self-
defocussing effect of free electrons caused due to plasma formation. Vari-
ational method is used to study the system analytically. Finite Differ-
ence Beam Propagation Method is used for the numerical analysis. Stable
(2 + 1)D spatial solitons are observed. The analytical results are in very
good agreement with the numerical results.
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I. I NTRODUCTION

The idea that an optical beam can induce a waveguide and
guide itself in it was first suggested by Askaryan in 1962. A light
beam travelling in either vacuum or in a medium always broad-
ens because of the light’s natural wave property of diffraction.
But if the beam is shone into a bulk nonlinear material, such as
silica glass, it changes the material’s refractive index. The con-
sequent variation of the light’s velocity across the beam’s wave-
front focusses the beam as if it were passing through a lens. The
earliest experimental observation of the self-focussing of opti-
cal beams was in 1964. If the beam’s diffraction can be com-
pensated by beams self-focussing, we get the so called spatial
solitons. This effect was discovered in 1964 [1].

The idea of controlling light with light by taking advantages
of nonlinear optical effects, is a topic of interest to many re-
searchers and scientists. The fundamental benefit is in the pos-
sibility of avoiding any opto-electronic conversion process, and
hence increasing the device speed and efficiency. It is in this
scenario, the self-guided beams called “spatial solitons” find im-
portance. The areas of application include all optical switching
devices [2], optical computing, all optical polarization modula-
tors [3] logic gating etc.

The prospect of forming all-optical switches and logic gates
presents promise for generations of novel optical interconnects
for computing and communications. The perfect balance be-
tween diffraction and self-focussing that exists in spatial soli-
tons has been found to occur in either one or two transverse
dimensions, and the solitons are named(1D + 1) or (2D + 1)
accordingly. These spatial solitons have been found to occur in
a variety of materials like Kerr materials, photorefractive mate-
rials, liquid crystals etc. Recently, Peccianti et al [4] set up an
experiment to demonstrate all-optical switching and logic gate
blocks using spatial solitons in liquid crystals.

Usually, the nonlinear refractive index of the material devi-
ates from the linear (Kerr) dependence for larger light inten-
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sities. Nonideality of the nonlinear optical response is known
for semiconductor-doped glasses, PTS and variousπ conjugated
polymers. In this types of materials the refractive index, n, is of
the form

n = n0 + n2I + n4I
2 (1)

where,I is the beam intensityn0, n2 andn4 are nonlinear coef-
ficients withn2 > 0 andn4 < 0, i.e., the higher order nonlinear-
ity is of the saturating kind. The propagation of spatial solitons
in a PTS like medium has been studied by various groups [5] -
[7]. In the present work, we have studied the propagation of a
high intensity laser beam through a PTS like medium. In this
high energy regime, we have to consider the phenomenon of
plasma generation through multiphoton absorption. Multipho-
ton absorption is a nonlinear process, in contrast with the one-
photon absorption process. It has a self defocussing effect on
the material. The study of spatial solitons in a bulk Kerr medium
with multiphoton ionization has been carried out by Hermann et
al [8].

The refractive index now takes the form,n = n0 + n2I +
n4I

2 −Ne/2n0Ncr, Ne is the number density of free electrons
andNcr is the critical plasma density.

The beam evolution is studied using the cubic-quintic nonlin-
ear Schrodinger Equation with the effect of multiphoton ioniza-
tion. We analyzed the problem using both numerical and analyt-
ical methods.

We used the variational method [9] with a Gaussian ansatz for
the analytical analysis. The Finite Difference Beam Propagation
Method (FD-BPM) was used for the numerical analysis [10].
Stability of the solitons are studied by numerical and analytical
methods and they are found to be stable.

II. ANALYTICAL APPROACH

The dynamics of the amplitudeΨ of a high intensity laser
beam in a PTS like medium is governed by the cubic-quintic
nonlinear Schrodinger Equation with additional term for the
multiphoton ionization and has the form,

i2k
∂A

∂z
+∇2A + 2kk0n2 |A|2 A + 2kk0n4 |A|4 A (2)

−ρaA

∫ η

−∞
|A(t′)|2n

dt′ = 0

where,k = ω/c, k0 = n0k, n the number of quanta necessary
to ionize the molecules,η = t − z/v is the time of the moving
frame of the pulse maximum, andρ anda are constants.

Here, we are considering the propagation of the beam along
the z direction and variation along the radial direction. So we
will take cylindrical coordinates for our analysis.
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Hereλ1 = −k0n2 andλ2 = −k0n4

The time dependence of the beam is taken into account by the
ansatz,A(z, r, η) = B(z, r)T (η). T (η) is the normalized input
shape.

The Lagrangian is then given by,
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where,

g(η) =
∫ η

−∞
T 2ndt

For the solution of this problem, let us assume a trial solution
of the form,

B(z, r) = C(z) exp[− r2

2w(z)2
+ ib(z)r2] (5)

WhereC(z) is the maximum amplitude,b(z) is the curvature
parameter,w(z) is the beam radius. Ideally, the trial function
should include the possibility to model the dynamically vary-
ing radial shape function of the beam. But that will make the
variational analysis more complicated.

The reduced Lagrangian is then given by,
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Lrdr (6)
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Now we can find the variation of〈L〉 with respect to the vari-
ous Gaussian parametersC(z), C(z)∗, w(z) andb(z).
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Subtracting (9) from (8), we get

iT

2
CC∗z w3 +

iT

2
C∗Czw

3 = 0

=> |C|2 = y (a constant)

=> w(0)2 |C(0)|2 = w(z)2 |C(z)|2 = E0 (10)

Adding (8) and (9) we obtain,
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Now, the variation of〈L〉 with respect tow(z) is given by
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From this we can write,
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This implies:
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dz
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Comparing (11) and (12) we obtain,
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Now, combining it with the derivative form of (14), we obtain
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Here|C|2 has been eliminated by using the fact thatw2 |C|2 =
E0

Now, on integrating the above equation, we get an equation
for the variation ofw(z) as

1
2
(
dw

dz
)2 + Π(w) = 0 (18)

This is analogous to the equation of a particle moving in a
potential well. The potentialΠ(w) is given by

Π(w) = − 10
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The phaseφ(z) of C(z) (C(z) = |C(z)| exp[iφ(z)]) is obtained
from (11) and also using (16).
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For further analysis of (18) and (19), we introduce the normal-
izationw(z)/w0 = y(z). Substituting in (18) we get,1

2 (dy
dz )2 +
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Now, assume that the beam at z = 0 hasa(0) = a0 and
[da(z)

dz ]z=0 = 0. This givesK = −(µ + ν + ξ).
Depending on the values ofµ, ν andξ we can identify four

different regimes:
1) µ+ν

ξ > 0 This condition implies defocussing due to both
third and fifth order nonlinearity as well as the nonlinearity due
to the multiphoton effect. We can clearly see from figure 1 that
the beam diffracts faster than in the purely linear case.

2) −1 < µ+ν
ξ < 0 This condition implies focussing due to

the third order nonlinearity and defocussing due to a weak fifth
order nonlinearity. The multiphoton effect is also of defocussing
nature. We can see (figure 2) that the nonlinearity is trying to
focus the beam.

3)−2.5 < µ+ν
ξ < −1 In this case the third order nonlinearity

is of the focussing case and there is a strong fifth order nonlin-
earity. A potential well has been created. The spreading of the
beam is stopped at the zeros of the potential function (figure 3).
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Fig. 1. Qualitative plot of the potential function when all the nonlinearities are
of defocussing nature. Dotted line represents the linear case.
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Fig. 2. Qualitative plot of the potential function when third order nonlinearity
is of focussing nature and all other nonlinearities are of defocussing nature
(weak fifth order). Dotted line represents the linear case.

4) µ+ν
ξ = −2.5 This is the limit case. The potential well has

degenerated into a single point. The diffraction of the beam is
exactly compensated by the focussing effect of the nonlinearity
and beam propagates without any change in its shape (figure 4).

III. NUMERICAL ANALYSIS

Equation (2) is numerically studied using the Finite Differ-
ence Beam Propagation Method (FD-BPM). It is a cylindrical
partial differential equation that can be “integrated” forward in
z by a number of standard techniques. In this approach, the field
in the transverse plane is represented only at discrete points on
a grid, and at discrete planes along the propagation directionz.
Given the field at one z plane, we can find the field at the next
z plane. This is then repeated to determine the field throughout
the structure.

Let Ψs+1
i denote the field at transverse grid pointi and lon-

gitudinal planesi , and assume that the grid points and planes
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Fig. 3. Qualitative plot of the potential function when third order nonlinearity
is of focussing nature and all other nonlinearities are of defocussing nature
(strong fifth order). Dotted line represents the linear case.
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Fig. 4. Qualitative plot of the potential function when focussing due to the third
order nonlinearity is completely balanced by the defocussing due to the fifth
order nonlinearity and multiphoton ionization. This is the limit case. Dotted
line represents the linear case.

are equally spaced by∆r and∆z apart, respectively. The radial
and longitudinal dimensions are discretized by the valuesri and
zs according to the relations

ri = i∆r andzs = s∆z
We get a tridiagonal matrix of the form,

−c1Ψs+1
i+1 + dΨs+1

i − c3Ψs+1
i−1 = c1Ψs

i+1 + c2Ψs
i + c3Ψs

i−1

This can be easily solved using Thomas Algorithm [11]. Once
the field ats is known, we can determine the field ats + 1 and
so on.
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Numerical Integration of (2) using as initial
conditions the solutions obtained from
 the variational approach. 

Fig. 5. Numerical Integration of (2).

We integrated (2) using the result obtained from the varia-
tional analysis as initial condition. The numerical parameters of
the simulation has been choosen so as to fit the usual experimen-
tal configurations. Here, we have choosenn0 = 1.6755, n2 =
2.2× 10−12cm2/W andn4 = −8× 10−22cm4/W 2 which are
the nonlinear coefficients of PTS at wavelength1600nm [12].
Similarly, for AlGaAs, withn0 = 3, n2 = 1.5×10−13cm2/W ,

n4 = −5 × 10−23cm4/W 2 at wavelength1550nm [12]. The
outcome of these simulations (see figure(6)) agrees very well
with that obtained from the variational approach. The beam
propagates without any change in shape.

IV. RESULTS AND CONCLUSION

In this work we have studied, both analytically and numer-
ically, the propagation of a high energy laser beam through a
medium characterized by both third and fifth order nonlinear-
ity. We have to consider the self-defocussing effect caused by
plasma generation through multiphoton ionization. Approxi-
mated solutions are obtained using the variational formulation.
All the basic parameters of the self trapped beam are calculated.
The multiphoton ionization helps in containing the catastrophic
breakdown of the beam and helps in forming a stable soliton.
We could show both numerically and analytically the formation
of stable solitons.
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