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Modulational instability of coupled Bose Einstein
condensation with three body interaction potential

R. Murali and K. Porsezian

Abstract— In this paper, we consider the coupled Gross-PitaevskiGe) In Ref. [18], Ya Li et al, have analyzed the effect of three
eq“?‘“c’”? ig aq“asli'gnBedimg_”SiO'?a' ge%me”yv_Whiiggfg g}:md by the dy'f body recombination losses on a condensates tunnel coupled b
namics of the coupled Bose Einstein condensations s)ie presence o : : i
the three body intFe)raction potential. Using the linear sitity analSsis (LSA), a do_uble-welll potential based on a simplified tW(.) mode approx
we obtain the dispersion relation for the system of coupleB®s. Analyti- imation. In this way, they have reported the stationary am-n
cally, we obtain a new explicit expression for the growth eat Besides, we stationary features of the system through analytical amadenii
investigate the modulational instability (MI) criterion otonstant amplitude cal methods. The creation, propagation, interaction atuility

of both uncoupled and coupled BECs for different values ofetlihree body .. .
interaction potential. Finally, we compare our results of Houncoupled and  Of dark solitions in two component condensates have been ana

coupled BECs in the presence and absence of three body imtizva term. lyzed [19].
It is well known that the Ml causes an exponential growth
. INTRODUCTION of small perturbation of a carrier wave which is a result & th

In recent times, the study of solitons, M and coherent strulit€rPlay between the dispersion and nonlinearity. In [26f,

tures in BEC has come to the forefront of experimental and th¥’6iPing Zhang et al have studied MI of the single BEC in the
oretical efforts in soft condensed matter physics, dravifrg Presence of the three body interaction potential througtyan

attention of atomic and nonlinear physicists alike. In 1988 !cal and numerical me_thods. Recently, _Kourakls et al, exam-
first realization of BEC in dilute atomic gases exploitedpoe- N€d the Mi for the collision of two BECs in the absence of the
erful method for cooling of alkali metal atoms by using lager three body interaction potential [21]. Motivated by the wbo
low temperature, high density BEC cannot be produced by t¥° Work, we give the simple treatment of MI for the two cou-
laser cooling method alone, itis followed by evaporativelingy  P!€d BECS in the presence of the three body interaction poten
state. In evaporative cooling state the more energetic st t'al_' Analytlca_ll_ly, we obt_aln th? d|§per5|on rt_alatlon vvttie h_elp
removed from the trap, there by cooling the remaining atonfd.inear stability analysis, which is appropriate for istigating
Using this method, BEC was first realized experimentallyiin dth€ M! of constant amplitude of the coupled BECs. Finally, we
lute alkali elements likéLi, 28Na and®7Rb [1], [2]. BEC in obtain explicit expression for the growth rate of the ingigb

dilute atomic gases is a macroscopic quantum phenomenbn wWif'® @im of this paper is to investigate the Ml of the quasi- 1D
similarities to superfluidity, superconductivity and tlasér [3]. coupled Gross-Pitaevskii (CGP) equations for the two cedipl

The macroscopic behavior of the BEC near zero temperaturéfsCS in the presence of the three body interaction potential

modeled very well by the Gross-Pitaevskii (GP) equationcivhi
is time dependent nonlinear Schrodimgquation with external

potential [4]. _ _ N We recall that, in the mean field approximation, the three di-
The dynamical ("modulational”) instabilities of BEC havemensional CGP equations for the wave functiengr, ) and
been investigated by both experimentally and theoreyid&ll,  ,(r,t) of nonlinearly interacting coupled BECs, generalized

[6], [7]. L.D. Carr et al. have studied Ml of a non-uniformig include three body interaction is given by [18], [19], ]20
initial state in presence of a harmonic potential both aialy

Il. BASIC FORMALISM

cally and numerically in the context of mean-field approxima I 2, )
tion BEC [8]. The Ml is a general feature of continuum as well mﬁ = _%V U1+ VI(r)r + [g11 i
as of discrete nonlinear wave equations and manifest irrstive Fgralto 2 + vl Y — it Q)

fields ranging from fluid dynamics [9] and nonlinear optic8][1

to plasma physics [11]. The recent experimental investigat

of BEC is formed in optical lattice, and its dynamical proper o 72

ties are discussed [12], [13]. In addition, several papexsh th—= = —%VQW + V()2 + [g22]tha

also reported the theoretical investigation of the linerappr- 5 4

ties of such lattices [14], [15]. Smerzi et al [16] proposed a +g21 Y1 T2 + 12ft2[ b2 — patfa. (2)
experiment to observe a superfluid-insulator mean fieldsira .
tion, which is due to a discrete MI. Recently, Rapti et al [13;1\/8 assume both the components are having same mass, where

. . . e is the Plank’s constany,;; (j=1 for first BEC species and j=2
examined the modulational and parametric instabilitiésiray . . : )
) . . . for second BEC species) characterizes the effective neanlin
in a non-autonomous, discrete Nonlinear Schrodireguation

setting for deep optical lattice in the context of BEC. parameter which descrip e_s the intgraction between- thenoso
in condensates, angl; (j,I=1,2 butj # [) characterizes the
R. Murali and K. Porsezian (corresponding author) are wigtpatment nonlinear coupling parametety; represents the coefficient of
of PhySiCS, Pondicherry Universily, Pondicherry 605 014-madl: ponz- three body interaction poten“ah] are the Chemical potentials_
sol@yahoo.com. KP wishes to thank the DST, DAE-BRNS, UGC ¢Reh Both the components are trapped by the same potential, vighich

Award) and CSIR, Government of India, for the financial supgbrough ) i > 5 P 2
projects. givenbyV (r) = V. (2)+Vi(z,y) = gmlw?z® +wi (x°+y°)].
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In general, three dimensional CGP equations of coupleff (V(z) = 0), and the transverse trapping potential is fixed
BECs can be approximately considered as quasi one dimbeeause the motion of the BEC is along the longitudinal dimen
sional as long as the transverse trapping potential is Bbdigd sion. According to LSA, we perturb the system slightly as fol
longitudinal trapping potential is so loose. In this dgsiton, lows
the transverse dimension of the condensates is much smaller Uj = (xjo + &), 9)

than the healjng length. Accordingly, the rgs.ults of BEOS Ayhere Xjo is real constant amplitude ang, is real phase.
found to be ‘cigar shaped’, where the bosonic interactionbza Wheres; << xjo, Which is a complex number. Substituting

effectively described by one dimensional modes [22], [28]. Eqn.(9) in Egs.(7) and (8), we obtain the first order appraxim
this paper, we consider ‘cigar shaped’ BECs because the@atog,
fields are tightly confined in the transverse dimension lae fo '

move in the third direction such that motional degrees of-fre Z361 h 9%,

dom in the x-y plane are frozen. Then the model for quasi-1D ot ' 2m 022

1
- ﬁ[Gll|X10|2 + 201 [x10[*] A1

CGP equations can be derived in the following way. The wave G2 A =0 (10)
function can be expressed ag(r,t) = p;(z,y)¢;(z,t). Sub- p XoXx2042 =5,
stituting the values of;(r,¢) andV/(r) in Egs.(1) and (2)p;
and¢, approximately satisfies Oe h 0% 1
s hgy 23_152 T om 3222 =+ [Gaalxa0l” + 205 |x20/ ") A2
2, _ , G
_%VLPJ +Vips = Eip;, 3) —%XszoAl =0, (11)
) o where A; = (g; + €j). Substitutinge; = (a; + 23;) in
_pd0 W0 ()1 + [Gua| a2 + Egs.(10) and (11) respectively and separating the imag s
D) 2 1 1191
ot 2m 0z real parts, we get
Gaal 2?61 + 1| o1 — pady = —EL ¢, (4) doy B P8 . w2
Y ot 2m 022
Oda  h? O*¢a 9
"ot " om g VI Gl O B o 200 P+ 2m ol
Ga1|61[%)d2 + ma2ld2| b2 — pads = —E1 62, (5) ot " 2m 922 h X0 rixora
2G12
Eqgn.(3) can be solved analytically and its average over the fi T X10X2002 = 0, (13)

transverse mode eigen function is given by
8ﬂ2 h 8202 2

mw i mw [Gazlx20® + 2m2|x20[*] 02

pi = | el (57)0%), (6) ot | 2m 922 h
. . - 2621 X10Xx2001 = 0. (14)
with the eigen valueZ, = hw,, whereo? = 22 + y2. By h
integrating over the x-y plane with the transformatioriz, ¢) =  The general solution of Eqn.(12) can be obtained analyyitsl
Uj;e~w+t U; satisfies the above Eqgs.(4) and (5) assumingy; = ag expli(kz — Qt)] as
oU,  h 9*U, 1 1 ) o 2imQ
Bt T am o~ n' AU T lenll 4 b= =T =
Gro|Us|2)U, — n—1|U1|4U1 + &Ul =0, 7) whereQ2 andk are the frequency_ ar_1d propagation constant of
h h the modulated wave. Now substituting the values.pfand 3;
in Egs.(13) and (14), we obtain the despersion relation.
0Uy h 62U2 1 1 9 9 2 2 2 4
Zﬁ—i_% 022 _ﬁvz(Z)U2_ﬁ[G2Q|U2| + (Q _Ql)(Q _92)_90_07 (16)

Gor|[UL[A)Us — 21U, 40, + 220, = o, (8) WhereQ? = 2eT';, T; = [~ + Gyj[xjo[* + 20y xyol ], 9% =
h h 26Fjl, Fj] = GlelOXjOi e = k2/2m andef = Q%QQ%
where reduced interbosonic interaction coefficientsGyg =
2a;;hw i, Gy = 2ahw,, andy; = % (™21)2, The Eqs.(7) IV. M ODULATIONAL INSTABILITY OF UNCOUPLEDBECS
and (8) represent the quasi-one dimensional CGP equations f We consider the general case where the nonlinear coupling

the system of coupled BECs. parameteG;; — 0, thenQ2, — 0, the dispersion relation (16)
takes the form

IIl. LINEAR STABILITY ANALYSIS

2 2 2 2
In this section, we investigate the Ml of constant amplitude (@7 =07 - 93) =0, (17)
coupled BECs in the presence of three body interaction un@grd the general solution of the above equation
the linear stability analysis (LSA). We study the MI for ‘eig ) )
shaped’ BEC then the longitudinal trapping potential igsheéd 0" = ;. (18)
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A. Repulsive BEC (G,; > 0) B. Coupling between two different BECs

First, we consider the general case where the effectivemonl We consider the case for which the coupling between two dif-
ear parametet;; is greater than zerd;; > 0) describes the ferent BECs i.e the effective nonlinear parameter for the fir
repulsive bosonic interaction BEC. As a result, the solutd species BEQF; is less than zerod;; < 0) and the second
the Eqn.(17) turns out to be positiv@{ > 0). Therefore both species BEQZ,, is greater than zerad,, > 0). The solution
the uncoupled BECs are stable with the inclusion of threg/bodf coupled systenf2? is less than zero> < 0). Such type

interaction parameter;. of coupled BECs is unstable because in the presence of a one
. G attractive component BEC should be de-stabilizing its ¢ten
B. Attractive BEC (Gj; < 0) part. The gain of Ml is described by = i,/—Q2. The gain

Next, we consider the case for which;; is less than zero spectra of Ml for the coupling of two different BECs with the
(Gj; < 0). Itis well known that the conditiods;; < 0 rep- various values of physical parameters are shown in Fig.(2).
resents the attractive bosonic interaction BEC. As a rethdt
solution of the Eqn.(17) turns out to be negatif®’ (< 0).

Therefore both the uncoupled BECs are unstable below a criti
cal wavenumbek,.. At a critical conditionk = k., we obtain )
the critical wave numbek, from Eqn.(18) in the form

O E N W s g o

2\/m 1
ke = T[|C”jj|l><jo|2 + 2[m;;51x0l Y- (19)

The gain of the Ml is described by = z\/—Qg. Fig.(1) shows

the gain spectrum of Ml for the uncoupled BECs. Fig. 2: MI gain spectrum of coupled of two different BECs whéh;, =
_ _ —0.6, G22 = 0.6, |x20|2 = 3.0 andG12 = —0.2, G21 = 0.2 for the values
0.4 TN of three body interaction potential coefficiemts = n2 = —0.06 (dotted line)
/ R 4 } andn; = n2 = 0 (Solid line).

figure

C. Coupling between two attractive BECs

Now, we consider the effective nonlinear parametgys are
less than zero(f;; < 0) and nonlinear coupling parameters
Fig. 1: Mi gain spectrum of uncoupled BEC whéh;; = —0.3andx,o = G, are greater than zer@:(; > 0) of both BECs, which de-
1.0 for the valut_es Qf three body interaction parametgr= —0.06 (dotted line)  gcribe the coupling between the two attractive interaddBCS.
andn; =0 (solid ine) . Hence the solutions of coupled BECE. is less than zero

figure (23 < 0). Then this type of coupled BECs is unstable. The
gain spectra of Ml for the coupling of two attractive BECslwit
V. MODULATIONAL INSTABILITY OF COUPLED BECs the various values of physical parameters are shown in3jig.(
Now, we consider another general case for which the non- 6
linear coupling parametet;; > 0, then{. # 0. From this 5
condition, the dispersion relation can be written as

Q' — Q2(QF + Q3) + Q503 — QF = 0. (20)

the solution of Eqn.(20) is

0% = 1107+ 93) £ V(9 - ) 40l (21)

Fig. 3: MI gain spectrum of coupled of two attractive BECs whel; =
In Egn.(21), we note that the decrement quanfity= (3 — 9 !

2\ 2 4 . . . . 22 = —0.6, |x20|? = 3.0 andG12 = Ga21 = —0.2 for the values of three
Q3)° — 4Qc is positive/negative, then the right-hand side ﬁody interaction potential coefficienty = n; = —0.06 (dotted line) and
Eqgn.(21) is real/complex. n1 = n2 = 0 (Solid line).

figure

A. Coupling between two repulsive BECs

First, we consider the effective nonlinear parametgysare Finally we compare our results of both uncoupled and cou-
greater than zero (i.&;; > 0) and nonlinear coupling param-pled BECs in the presence and absence of three body interac-
etersG;; are greater than zero (i.&+;; > 0) of both BECs, tion potentialp;. Fig.(4) shows the growth rate of both uncou-
which describe the coupling between the two repulsive integled (dashed line) and coupled (solid line) in the presemce a
action BECs. Hence the solutions of the coupled BEGsis absence of);. When comparing both the Figs.(4a) and (4b),
greater than zero (i.€22 > 0). By this one can infer that the one can infer that the maximum gain is seen only in the case
result of coupled BECs is stable. of coupled BECs for both presence and absence of three body



interaction potential. However, the maximum gain of Ml is nge]
ticed with the case of three body interaction potential. 7
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Fig. 4: Comparison of MI gain spectrum between coupled whap =
X20 = 1.0, G11 = G22 = —0.3, G12 = G21 = —0.1 (Solld Iine) and
uncoupled whery1o = 1.0, G11 = —0.3 (dashed line) BECs for the values
of three body interaction potential coefficients (). = n2 = —0.06 (solid

line) andn; = —0.06 (dashed line); (b)y1 = n2 = 0 (solid line) andp; = 0
(dashed line).

figure

VI.

We have considered the quasi-one dimensional CGP equation
for the dynamics of the coupled BECs in the presence of three
body interaction term. We have investigated the MI of con-
stant amplitude coupled BECs using the linear stabilityyana
sis. First, we have investigated the Ml of uncoupled BECsrwhe
Gj; = 0 (coupling between the two BECs are zero). Therefore,
the uncoupled BECs have been found to be stabléfor> 0
and unstable foz;; < 0. Secondly, we investigated the Ml
of coupled BECs whert7;; > 0. According to this condi-
tion, the coupled BECs have been stabledgs > 0 and un-
stable for two different cases, oneGs; < 0 (or G1; > 0),

Gaz > 0 (or Ga2 < 0) (coupling between attractive(repulsive)
and repulsive(attractive) BECs) and anotbigr < 0 (coupling
between two attractive BECs). Modulationally unstable BEC
may appear in the form of either periodic or localized soli-
tary waves which can propagate through the atomic waveguide
(‘cigar shape’ BEC). Finally we compared our results of both
uncoupled and coupled BECs in the presence and absence of
three body interaction potential.

CONCLUSION
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