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Modulational instability of coupled Bose Einstein
condensation with three body interaction potential

R. Murali and K. Porsezian

Abstract— In this paper, we consider the coupled Gross-Pitaevskii (CGP)
equations in a quasi-one dimensional geometry, which are governed by the dy-
namics of the coupled Bose Einstein condensations (BECs) in the presence of
the three body interaction potential. Using the linear stability analysis (LSA),
we obtain the dispersion relation for the system of coupled BECs. Analyti-
cally, we obtain a new explicit expression for the growth rate. Besides, we
investigate the modulational instability (MI) criterion ofconstant amplitude
of both uncoupled and coupled BECs for different values of the three body
interaction potential. Finally, we compare our results of both uncoupled and
coupled BECs in the presence and absence of three body interaction term.

I. INTRODUCTION

In recent times, the study of solitons, MI and coherent struc-
tures in BEC has come to the forefront of experimental and the-
oretical efforts in soft condensed matter physics, drawingthe
attention of atomic and nonlinear physicists alike. In 1995, the
first realization of BEC in dilute atomic gases exploited thepow-
erful method for cooling of alkali metal atoms by using laser. At
low temperature, high density BEC cannot be produced by the
laser cooling method alone, it is followed by evaporative cooling
state. In evaporative cooling state the more energetic atoms are
removed from the trap, there by cooling the remaining atoms.
Using this method, BEC was first realized experimentally in di-
lute alkali elements like7Li, 23Na and87Rb [1], [2]. BEC in
dilute atomic gases is a macroscopic quantum phenomenon with
similarities to superfluidity, superconductivity and the laser [3].
The macroscopic behavior of the BEC near zero temperature is
modeled very well by the Gross-Pitaevskii (GP) equation which
is time dependent nonlinear Schrodingör equation with external
potential [4].

The dynamical (”modulational”) instabilities of BEC have
been investigated by both experimentally and theoretically [5],
[6], [7]. L.D. Carr et al. have studied MI of a non-uniform
initial state in presence of a harmonic potential both analyti-
cally and numerically in the context of mean-field approxima-
tion BEC [8]. The MI is a general feature of continuum as well
as of discrete nonlinear wave equations and manifest in diverse
fields ranging from fluid dynamics [9] and nonlinear optics [10]
to plasma physics [11]. The recent experimental investigation
of BEC is formed in optical lattice, and its dynamical proper-
ties are discussed [12], [13]. In addition, several papers have
also reported the theoretical investigation of the linear proper-
ties of such lattices [14], [15]. Smerzi et al [16] proposed an
experiment to observe a superfluid-insulator mean field transi-
tion, which is due to a discrete MI. Recently, Rapti et al [17]
examined the modulational and parametric instabilities arising
in a non-autonomous, discrete Nonlinear Schrodingör equation
setting for deep optical lattice in the context of BEC.
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In Ref. [18], Ya Li et al, have analyzed the effect of three
body recombination losses on a condensates tunnel coupled by
a double-well potential based on a simplified two mode approx-
imation. In this way, they have reported the stationary and non-
stationary features of the system through analytical and numeri-
cal methods. The creation, propagation, interaction and stability
of dark solitions in two component condensates have been ana-
lyzed [19].

It is well known that the MI causes an exponential growth
of small perturbation of a carrier wave which is a result of the
interplay between the dispersion and nonlinearity. In Ref.[20],
Weiping Zhang et al have studied MI of the single BEC in the
presence of the three body interaction potential through analyt-
ical and numerical methods. Recently, Kourakis et al, exam-
ined the MI for the collision of two BECs in the absence of the
three body interaction potential [21]. Motivated by the above
two work, we give the simple treatment of MI for the two cou-
pled BECs in the presence of the three body interaction poten-
tial. Analytically, we obtain the dispersion relation withthe help
of linear stability analysis, which is appropriate for investigating
the MI of constant amplitude of the coupled BECs. Finally, we
obtain explicit expression for the growth rate of the instability.
The aim of this paper is to investigate the MI of the quasi- 1D
coupled Gross-Pitaevskii (CGP) equations for the two coupled
BECs in the presence of the three body interaction potential.

II. BASIC FORMALISM

We recall that, in the mean field approximation, the three di-
mensional CGP equations for the wave functionsψ1(r, t) and
ψ2(r, t) of nonlinearly interacting coupled BECs, generalized
to include three body interaction is given by [18], [19], [20]

ı~
∂ψ1

∂t
= − ~

2

2m
∇2ψ1 + V (r)ψ1 + [g11|ψ1|2

+g12|ψ2|2]ψ1 + γ1|ψ1|4ψ1 − µ1ψ1, (1)

ı~
∂ψ2

∂t
= − ~

2

2m
∇2ψ2 + V (r)ψ2 + [g22|ψ2|2

+g21|ψ1|2]ψ2 + γ2|ψ2|4ψ2 − µ2ψ2. (2)

We assume both the components are having same mass, where
~ is the Plank’s constant,gjj (j=1 for first BEC species and j=2
for second BEC species) characterizes the effective nonlinear
parameter which describes the interaction between the bosons
in condensates, andgjl (j,l=1,2 but j 6= l) characterizes the
nonlinear coupling parameter.γj represents the coefficient of
three body interaction potential.µj are the chemical potentials.
Both the components are trapped by the same potential, whichis
given byV (r) = Vz(z)+V⊥(x, y) = 1

2
m[ω2z2+ω2

⊥
(x2+y2)].
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In general, three dimensional CGP equations of coupled
BECs can be approximately considered as quasi one dimen-
sional as long as the transverse trapping potential is so tight and
longitudinal trapping potential is so loose. In this description,
the transverse dimension of the condensates is much smaller
than the healing length. Accordingly, the results of BECs are
found to be ‘cigar shaped’, where the bosonic interaction can be
effectively described by one dimensional modes [22], [23].In
this paper, we consider ‘cigar shaped’ BECs because the atomic
fields are tightly confined in the transverse dimension but free to
move in the third direction such that motional degrees of free-
dom in the x-y plane are frozen. Then the model for quasi-1D
CGP equations can be derived in the following way. The wave
function can be expressed asψj(r, t) = ρj(x, y)φj(z, t). Sub-
stituting the values ofψj(r, t) andV (r) in Eqs.(1) and (2),ρj

andφj approximately satisfies

− ~
2

2m
∇2

⊥ρj + V⊥ρj = E⊥ρj , (3)

−ı~∂φ1

∂t
− ~

2

2m

∂2φ1

∂z2
+ Vz(z)φ1 + [G11|φ1|2 +

G12|φ2|2]φ1 + η1|φ1|4φ1 − µ1φ1 = −E⊥φ1, (4)

−ı~∂φ2

∂t
− ~

2

2m

∂2φ2

∂z2
+ Vz(z)φ2 + [G22|φ2|2 +

G21|φ1|2]φ2 + η2|φ2|4φ2 − µ2φ2 = −E⊥φ2, (5)

Eqn.(3) can be solved analytically and its average over the first
transverse mode eigen function is given by

ρj =

√

mω⊥

π~
exp[−(

mω⊥

2~
)σ2], (6)

with the eigen valueE⊥ = ~ω⊥, whereσ2 = x2 + y2. By
integrating over the x-y plane with the transformationφj(z, t) =
Uje

−iω⊥t, Uj satisfies the above Eqs.(4) and (5)

ı
∂U1

∂t
+

~

2m

∂2U1

∂z2
− 1

~
Vz(z)U1 −

1

~
[G11|U1|2 +

G12|U2|2]U1 −
η1
~
|U1|4U1 +

µ1

~
U1 = 0, (7)

ı
∂U2

∂t
+

~

2m

∂2U2

∂z2
− 1

~
Vz(z)U2 −

1

~
[G22|U2|2 +

G21|U1|2]U2 −
η2
~
|U2|4U2 +

µ2

~
U2 = 0, (8)

where reduced interbosonic interaction coefficients areGjj =
2ajj~ω⊥, Gjl = 2ajl~ω⊥, andηj =

γj

3
(mω⊥

~
)2. The Eqs.(7)

and (8) represent the quasi-one dimensional CGP equations for
the system of coupled BECs.

III. LINEAR STABILITY ANALYSIS

In this section, we investigate the MI of constant amplitude
coupled BECs in the presence of three body interaction under
the linear stability analysis (LSA). We study the MI for ‘cigar
shaped’ BEC then the longitudinal trapping potential is switched

off (V (z) = 0), and the transverse trapping potential is fixed
because the motion of the BEC is along the longitudinal dimen-
sion. According to LSA, we perturb the system slightly as fol-
lows

Uj = (χj0 + εj)e
ıϕjt, (9)

where χj0 is real constant amplitude andϕj is real phase.
Whereεj << χjo, which is a complex number. Substituting
Eqn.(9) in Eqs.(7) and (8), we obtain the first order approxima-
tion,

ı
∂ε1
∂t

+
~

2m

∂2ε1
∂z2

− 1

~
[G11|χ10|2 + 2η1|χ10|4]A1

−G12

~
χ10χ20A2 = 0, (10)

ı
∂ε2
∂t

+
~

2m

∂2ε2
∂z2

− 1

~
[G22|χ20|2 + 2η2|χ20|4]A2

−G21

~
χ10χ20A1 = 0, (11)

whereAj = (εj + ε∗j ). Substitutingεj = (αj + ıβj) in
Eqs.(10) and (11) respectively and separating the imaginary and
real parts, we get

∂αj

∂t
+

~

2m

∂2βj

∂z2
= 0, (12)

−∂β1

∂t
+

~

2m

∂2α1

∂z2
− 2

~
[G11|χ10|2 + 2η1|χ10|4]α1

−2G12

~
χ10χ20α2 = 0, (13)

−∂β2

∂t
+

~

2m

∂2α2

∂z2
− 2

~
[G22|χ20|2 + 2η2|χ20|4]α2

−2G21

~
χ10χ20α1 = 0. (14)

The general solution of Eqn.(12) can be obtained analytically by
assumingαj = αj0 exp[i(kz − Ωt)] as

βj = −2imΩ

~k2
αj , (15)

whereΩ andk are the frequency and propagation constant of
the modulated wave. Now substituting the values ofαj andβj

in Eqs.(13) and (14), we obtain the despersion relation.

(Ω2 − Ω2

1
)(Ω2 − Ω2

2
) − Ω4

c = 0, (16)

whereΩ2

j = 2eΓj , Γj = [ e~
2

2
+Gjj |χj0|2 +2ηjj |χj0|4], Ω2

jl =

2eΓjl, Γjl = Gljχl0χj0, e = k2/2m andΩ4

c = Ω2

12
Ω2

21
.

IV. M ODULATIONAL INSTABILITY OF UNCOUPLEDBECS

We consider the general case where the nonlinear coupling
parameterGjl → 0, thenΩc → 0, the dispersion relation (16)
takes the form

(Ω2 − Ω2

1
)(Ω2 − Ω2

2
) = 0, (17)

and the general solution of the above equation

Ω2 = Ω2

j . (18)
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A. Repulsive BEC (Gjj > 0)

First, we consider the general case where the effective nonlin-
ear parameterGjj is greater than zero (Gjj > 0) describes the
repulsive bosonic interaction BEC. As a result, the solution of
the Eqn.(17) turns out to be positive (Ω2 > 0). Therefore both
the uncoupled BECs are stable with the inclusion of three body
interaction parameterηj .

B. Attractive BEC (Gjj < 0)

Next, we consider the case for whichGjj is less than zero
(Gjj < 0). It is well known that the conditionGjj < 0 rep-
resents the attractive bosonic interaction BEC. As a result, the
solution of the Eqn.(17) turns out to be negative (Ω2 < 0).
Therefore both the uncoupled BECs are unstable below a criti-
cal wavenumberkc. At a critical conditionk = kc, we obtain
the critical wave numberkc from Eqn.(18) in the form

kc =
2
√
m

~
[|Gjj ||χj0|2 + 2|ηjj ||χj0|4]

1

2 . (19)

The gain of the MI is described byG = ı
√−Ω2

j . Fig.(1) shows
the gain spectrum of MI for the uncoupled BECs.
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Fig. 1: MI gain spectrum of uncoupled BEC whenGjj = −0.3 andχj0 =

1.0 for the values of three body interaction parameterηj = −0.06 (dotted line)
andηj = 0 (solid line) .
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V. M ODULATIONAL INSTABILITY OF COUPLED BECS

Now, we consider another general case for which the non-
linear coupling parameterGjl > 0, thenΩc 6= 0. From this
condition, the dispersion relation can be written as

Ω4 − Ω2(Ω2

1
+ Ω2

2
) + Ω2

1
Ω2

2
− Ω4

c = 0. (20)

the solution of Eqn.(20) is

Ω2

± =
1

2
[(Ω2

1
+ Ω2

2
) ±√

(Ω2

1
− Ω2

2
)2 − 4Ω4

c ]. (21)

In Eqn.(21), we note that the decrement quantityD = (Ω2

1
−

Ω2

2
)2 − 4Ω4

c is positive/negative, then the right-hand side of
Eqn.(21) is real/complex.

A. Coupling between two repulsive BECs

First, we consider the effective nonlinear parametersGjj are
greater than zero (i.e.Gjj > 0) and nonlinear coupling param-
etersGjl are greater than zero (i.e.Gjl > 0) of both BECs,
which describe the coupling between the two repulsive inter-
action BECs. Hence the solutions of the coupled BECsΩ± is
greater than zero (i.e.Ω2

± > 0). By this one can infer that the
result of coupled BECs is stable.

B. Coupling between two different BECs

We consider the case for which the coupling between two dif-
ferent BECs i.e the effective nonlinear parameter for the first
species BECG11 is less than zero (G11 < 0) and the second
species BECG22 is greater than zero (G22 > 0). The solution
of coupled systemΩ2

− is less than zero (Ω2

− < 0). Such type
of coupled BECs is unstable because in the presence of a one
attractive component BEC should be de-stabilizing its counter-
part. The gain of MI is described byG = i

√−Ω2

−. The gain
spectra of MI for the coupling of two different BECs with the
various values of physical parameters are shown in Fig.(2).
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Fig. 2: MI gain spectrum of coupled of two different BECs whenG11 =

−0.6, G22 = 0.6, |χ20|2 = 3.0 andG12 = −0.2, G21 = 0.2 for the values
of three body interaction potential coefficientsη1 = η2 = −0.06 (dotted line)
andη1 = η2 = 0 (Solid line).

figure

C. Coupling between two attractive BECs

Now, we consider the effective nonlinear parametersGjj are
less than zero (Gjj < 0) and nonlinear coupling parameters
Gjl are greater than zero (Gjl > 0) of both BECs, which de-
scribe the coupling between the two attractive interactionBECs.
Hence the solutions of coupled BECsΩ2

± is less than zero
(Ω2

± < 0). Then this type of coupled BECs is unstable. The
gain spectra of MI for the coupling of two attractive BECs with
the various values of physical parameters are shown in Fig.(3).
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Fig. 3: MI gain spectrum of coupled of two attractive BECs whenG11 =

G22 = −0.6, |χ20|2 = 3.0 andG12 = G21 = −0.2 for the values of three
body interaction potential coefficientsη1 = η2 = −0.06 (dotted line) and
η1 = η2 = 0 (Solid line).
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Finally we compare our results of both uncoupled and cou-
pled BECs in the presence and absence of three body interac-
tion potentialηj . Fig.(4) shows the growth rate of both uncou-
pled (dashed line) and coupled (solid line) in the presence and
absence ofηj . When comparing both the Figs.(4a) and (4b),
one can infer that the maximum gain is seen only in the case
of coupled BECs for both presence and absence of three body
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interaction potential. However, the maximum gain of MI is no-
ticed with the case of three body interaction potential.
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Fig. 4: Comparison of MI gain spectrum between coupled whenχ10 =

χ20 = 1.0, G11 = G22 = −0.3, G12 = G21 = −0.1 (solid line) and
uncoupled whenχ10 = 1.0, G11 = −0.3 (dashed line) BECs for the values
of three body interaction potential coefficients (a).η1 = η2 = −0.06 (solid
line) andη1 = −0.06 (dashed line); (b).η1 = η2 = 0 (solid line) andη1 = 0

(dashed line).

figure

VI. CONCLUSION

We have considered the quasi-one dimensional CGP equation
for the dynamics of the coupled BECs in the presence of three
body interaction term. We have investigated the MI of con-
stant amplitude coupled BECs using the linear stability analy-
sis. First, we have investigated the MI of uncoupled BECs when
Gjl = 0 (coupling between the two BECs are zero). Therefore,
the uncoupled BECs have been found to be stable forGjj > 0
and unstable forGjj < 0. Secondly, we investigated the MI
of coupled BECs whenGjl > 0. According to this condi-
tion, the coupled BECs have been stable forGjj > 0 and un-
stable for two different cases, one isG11 < 0 (or G11 > 0),
G22 > 0 (or G22 < 0) (coupling between attractive(repulsive)
and repulsive(attractive) BECs) and anotherGjj < 0 (coupling
between two attractive BECs). Modulationally unstable BECs
may appear in the form of either periodic or localized soli-
tary waves which can propagate through the atomic waveguide
(‘cigar shape’ BEC). Finally we compared our results of both
uncoupled and coupled BECs in the presence and absence of
three body interaction potential.
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