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1. Introduction and historical background

The subject of completely integrable models is fascinating. Decades of research in this
area has led to several new physical and mathematical developments which are quite
beautiful and which unify various aspects of physical problems that appear to be
desperate. Mathematically, we encounter new concepts such as complete integrability,
Lax pair, solitons and so on and several new methods have been developed. Among them
-~ the Painlevé singularity structure analysis is one of the systematic and powerful method
in nonlinear science to identify the integrability case(s) and the complete integrability
properties of nonlinear systems. From the physics point of view, the models discussed in
this article describe physical phenomena in such diverse areas as nonlinear optics,
hydrodynamics, condensed matter, plasma physics, relativistic theory and so on. In this
review article we will discuss the Painlevé analysis of various nonlinear models which are
completely integrable. These models describe systems of nonlinear differential equations
which can be solved exactly. Most of these models would be continuum models (both one
and higher dimensions as well as autonomous and nonautonomous)although we will also
investigate the Painlevé analysis of the Toda lattice and some nonintegrable systems.
Before analysing the singularity structure analysis of these equations, first we will briefly
discuss the historical background of Painlevé analysis. [ T
Determining whether or not a given system of nonlinear ordinary or partial differential
equations is integrable raises many fundamental issues. In particular there is the issue of
what is meant by ‘integrability’ and the issue of how that integrability can best be
determined without having to resort to a complete solution - of the problem. For
‘Hamiltonian systems the notion of integrability is well defined, i.e. the existence of as
many involutive first integrals as there are degrees of freedom. For non-Hamiltonian
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systems things are less clearcut. Clearly the existence of integrals can lead to a reduction
of the order of the system and hence to a solution in terms of an ‘integration by
quadratures’. However, this is clearly not the whole story since there are simple,
apparently ‘integrable’, equations such as the Painlevé transcendents which do not have
algebraic integrals and for which an integration by quadratures is not possible.It now
seems that it is possible to identify many different classes of integrable systems on the
basis of their analytic structure, i.e. the types of singularities exhibited by their solutions
in the complex domain. The techniques for doing this can be applied to both the ordinary
and partial differential equations and furthermore can be extended to provide, in many
cases, explicit solutions to the systems in question. It also turns out that the complex
domain of nonintegrable systems also contains much valuable information and overall it
would seem that the study of analytic structure can provide a wide-ranging and unified
treatment for a large class of nonlinear problems. Historically, the first application of
these ideas is due to Kovalevskaya [1] in her famous work on the rigid body problem.
This concemed the then popular problem of trying to find a general solution to the Euler—
Poisson equations which describe the motion of a top spinning about a fixed point. Her
approach was mainly to determine the conditions under which the only movable
singularities, i.e. those singularities whose positions are initial-condition-dependent,
exhibited by the solutions to the equations of motion, in the complex plane, are ordinary
poles. She found that this only occured for four special combinations of the adjustable
system parameters (the moments of inertia and the position of the centre of gravity). She
was, able to identify the known integrable cases and one new one. Following
Kovalevskaya came the extensive work of Painlevé [2] and co-workers to determine
the categories of second order equations whose only movable singularities are ordinary
poles. Working with the general class of equations

d? a
= F |2, M

where F is analytic in x and rational in y and dy /dx, Painlevé found that there were 50
types which had the desired analytical property. Forty-four of these equations are solvable
in terms of known functions. The reamining six equations, referred to as the Painlevé
transcendents [3], have transcendental meromorphic solutions for which convergent
expansions are explicitly known. Despite their mathematical interest it appeared, for
many years, that the Painlevé transcendents were devoid of physical content. However,
in the last two decades or so they have started to reappear in various important physical

contexts such as the work of Wu et al [4] which showed that two-point correlation

function of the Ising model satisfied the third Painlevé transcendent. In the last few
years there is a growing very large number of literature on the Painlevé property as a
means of identifying integrable cases of nonlinear ordinary, differential difference and
partial differential equations. For example, this approach has been used successfully to

predict integrable cases of a variety of systems such as the Lorentz equations [5], the

Henon-Heiles system [6], the three ‘particle Toda lattice [7], many systems in soliton

theory [8-14], etc. It has also been observed that there are integrable systems with

movable rational branch points. This has led to the concept of a so-called ‘weak Painlevé
property’ [8].
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For partial differential equations (PDE) ‘complete integrability’ is usually taken to
mean the existence of an infinite number of conservation laws. As is well known such
systems can sometimes exhibit N-soliton solutions and be solved by the inverse scattering
transform(IST) method [9]. As with ODEs there is also important question of finding
direct tests of complete integrability. Constructive approaches include using the method
of differential forms, the use of Hirota’s direct method [10] for constructing N-soliton
solutions and certain criteria based on the properties of ODEs obtained by various
reductions of the PDEs in question. This latter approach has been developed by Ablowitz,
Ramani and Segur [11] and is based on the idea that all the ODEs obtained by similarity
and travelling wave reductions from the PDE, should possess the Painlevé property. This
conjecture has proved to be quite valuable, although there are clearly certain drawbacks
such as the difficulty of identifying all possible reductions of the PDEs to ODEs and
inability of the conjecture to provide further information about actual solutions to the
equation in hand. In order to overcome these difficulties Weiss, Tabor and Carnevale [12]
who have formulated a Painlevé (P-) type test that can be applied directly to PDEs
without any need for reductions. This approach does seem to provide a valuable first test
and, in addition, seems to be capable of yielding other important informations such as
Biécklund transformations, Lax pair, rational solutions etc. The major difference between
the P-analysis of ODEs and PDEs is that the singularities of the latter are in general not
isolated but lie on some analytic manifold, the singular manifold, determined by
conditions of the form

¢(x1,xz,...,x,,) =0, l (2)

where ¢ is analytic in the neighbourhood of that manifold. To show that a given equation,
say

QtzK(Q)aq=Q(xat)7 (3)

possesses the generalized P-property requires a demonstration that the solutions may be
expanded locally in a Laurent-like series about the singular manifold in the complex
hyperspace, i.e. an expansion of the form

gt = 670 ) S g0 D (1), (@)
=0

where « is some(integer) leading order and the g;(x,#) a set of expansion coefficients
analytic in the neighbourhood of the singular manifold ¢(x,?) = 0. Such an expansion
will have certain values of j, termed ‘resonances’, at which the corresponding g; should be
arbitrary. One resonance always occurs at j = —1 and corresponds to the arbitrariness of
¢ itself and the positions of the other resonances are determined by the nonlinearities in
K(q). |

By Cauchy-Kovalevskaya’s theorem such an expansion of the general solution must
have sufficient number of arbitrary functions equal to that of the order of the PDEs.
Furthermore, depending on the form of K(g), the equation may also have different
leading orders, each one of which will have its own resonance structure. We usually call
the leading order corresponding to the general solution the ‘principle branch’ and the
others (with less arbitrary functions) as ‘lower branches’. If, at a resonance (of any
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branch) the associated g; fails to be arbitrary, terms of the form ¢/ In ¢ must be included
in the expansion. This makes the solution multi-valued about the singular manifold and
hence the P-property is lost.There are essentially four steps involved in the P-analysis of
PDEs: (i) Determination of the leading-order behaviours; (ii) Identification of the powers
at which arbitrary functions can enter into the Laurent series called resonances; (iii)
Verifying that at each resonance values sufficient number of arbitrary functions exist
without the introduction of movable manifolds; (iv) Establishing connections with. the
Lax pair, Backlund transformation (BT), bilinear form and other integrability properties.

2. Painlevé analysis of autonomous nonlinear partial differential equations

2.1 Painlevé analysis of modified Korteweg de Vries equation
A simple illustration is provided by the MKDV equation [12]
Qt—6429x+‘1xxx=0- | : (5)

- The leading order is easily determined to be —1 with go = ¢,. For finding the resonances,
we substitute :

q= Z qubjml: ' (6)

=0
into (5) and equating the coefficients of ¢/~* , we get the resonance values in the form
J=-13,4. , (7)

The resonance j = —1 represents the arbitrariness of the singular manifold ¢(x,?) = 0.
From the other powers of ¢, one finds that

J=0; qo= ¢y (8)
i1 g Om
J= 1; q1 = 2¢x, . (9)
. 2 3¢, |
J=2; ¢—6gr¢* - ot o = 0; - (10)
Ox

j=3;qs arbitrary if
0 302 .
(4o - Lo p); (1)

J=4; qq4 arbitrary. Clearly the ‘compatibility condition’ at j =3 is always satisfied by
virtue of the relations found at J = 2. Thus the expansion (6) is valid and we can say that
the MKDV equation passes the P-test. To simplify the computations one can use a
modification of this method proposed by Kruskal [13]. This consists of expanding ¢
about the singular manifold in the form $(x,1) = x +4/(1), such that ¢ (¢ (x, t)) =0, and
setting g; = g;(z). For the MKDV equation this reduced approach yields

g0 =1,q1 = 0,9, =,/6, g3 arbitrary, g4 arbitrary. From the point of view of the ‘test’
alone, this modification is rather useful.
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from the Laurent series and to analyse the P-property of the inhomogeneous, mainly
spatial dependent, we have to consider the general manifold expansion. Similarly the
KDV equation

gr +129gx + gux = 0 (12)
is easily shown to pass the Painlevé test [12-15]. The leading order is —2 and the
resonances occur at j = —1,4, 6. The truncated expansion then takes the form

P :
‘4=5;C§102¢+q2 _ (13)
with

¢x¢t + 12q2¢§ + 4¢x¢m - 3¢ix = 0; ¢xt + 1242¢xx + ¢xx.x.x = 01 (14)

and
921 + 1292925 + G200 = 0. ‘ | (15)

The set of equations (14) and (15) constitute an auto BT for the KDV equation. It should
be noted that the second logarithmic derivative in (13) is reminiscent of the
transformation used in Hirota’s method [10]. By making the substitution ¢, = 1)? leads to

¢xxi+ g+ Ny =0, %+ (642 + M) + Y = 0, y (16)

which are precisely the Lax pair for the KDV equation [9]. One of the most enduring
techniques in the study of integrable nonlinear PDEs is Hirota method for constructing N-
soliton solutions [10]. The method proceeds without the knowledge of the IST and in
some cases was used to construct N soliton solutions before the scattering transform had
been found [10]. To get the bilinear transformation from the P- analysis, we have to
assume that the constant term in the expansion is equal to zero. i.e. in the case of KDV,
g2 = 0. Then, we get '

£ Freoee = U froex + 3f 2+ e —fufi =0 (17)
which can be written in terms of Hirota’s bilinear operators as

(D} +D:Dy)f -f =0, (18)
where D2(f - f) = (8, — 8¢)"f (%) f(*') | x =x'. As is well known f can be developed in
a series expansion which self truncates at each order yielding 1,2,3, ..., N-soliton

solutions. It is generally believed that if one can construct N-soliton solutions for N > 3,
then they will exist for all N and the system can be deemed integrable. It should be noted -
that many equations can be reduced to bilinear form and one can often construct one and
two soliton solutions for them by this method. However, self-truncation for all N only
seems to occur only for completely integrable systems. |

2.2 Painlevé analysis of Pohlmeyer—Lund—Regge equation

Lund et al [16] have shown that the dynamics of relativistic vortices (equivalently, strings)
interacting through a scalar field has led to a set of two coupled, Lorentz-invariant,
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nonlinear equations in two independent variables. The equations are in the form

sin®
— g —_— = 19
®,, —sinPcosd oS D ¥, U, =0, (19)

(T, tan®> @), + (¥, tan® ), = 0. (20)

Egs. (19-20) are conditions for embedding a 2-dimensional surface in a three
dimensional sphere which itself embedded in a four dimensional Euclidean space.
Egs. (19) and (20) were also derived by Pohlmeyer [17] through a study of the nonlinear
o- models of field theory.

For convenience, we use the transformation given by Getmanov [18] in the form

g = sin ® exp(i¥). (21)
Under this transformation, eqgs. (19) and (20) are transformed into
Gat e a-laP)=0. (22)

To apply P-analysis, we define g = a and g* = b. Eq. (22) in terms of these change of
variables takes the form [19]

axatb bxbta
T a(l —ab) =0, by+ T b(1—ab) =0 (23)

Leading order: o = § = —1 with agbg = —1);. Resonances: j = —1,0, 1,2. Collecting the
coefficients of ¢~* and ¢~*, we obtain

Qy +

agb1 +a1bg = 0. (24)

From eq. (24) it is clear that either a; or by is arbitrary. In a similar way proceeding
further-by collecting the coefficients of ¢~ and ¢ 3, we get

(a0b2 — boaz)yr = aohy + boay, (boaz — agby) v, = boiay + aghy,. (25)

Using (24), it is easy to show that the functions ay or b, is arbitrary. Thus the general
solution (a(x,7), b(x,t)) of eq. (22) admits the sufficient number of arbitrary functions
without the introduction of any movable critical manifold, thus satisfying the P- property
and hence the system is expected to be integrable. As eq. (22) satisfies the required
condition to be integrable, we now proceed to obtain the associated integrability
~properties of the system. Now to establish the integrability properties, the series
representation is truncated at the constant level term (aj=bj=0,j>1) as '

ap bg )
a=—+a, b=—+b, 2
s T g Th (26)

where ay and by satisfy eqs (23). Equation (26) can also be treated as an auto BT of
eq. (22). Then to find the bilinear form, we put ¢; = by = 0 and then by defining

ap _ G » _ b() G* . .
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- after some manipulations, we obtain

D.D/F - F = 2GG*,F[(D:D; — 1)G - F] =1G*D,D,G - G. (28)

The above trilinear form was first obtained by Getmanov [18] and found 2 soliton
solution to it and also conjectured N soliton solutions. To construct the bilinear form from
(28), we define :

F*=f*f +g*g. - (29)
Under this transformation eqs (28) are transformed into the bilinear equations

Di(f*-f+g" -8)=0,(D:D;—1)f - g"=0,D:D(f" -f —¢" - 8)+2¢"g = 0.
(30)

Once the bilinear forms are known, then one can generate the soliton solutions by
expanding the dependent variables in terms of power series.

2.3 Some nontrivial equations and Painlevé condition(s)

It would seem that all the known integrable PDEs pass the Painlevé test. Some nontrivial
examples include
I. Hirota—-Satsuma equation [14]

gr — M(64gx + Gxxx) = —6ppx, Pt + 3gPx + Pre =0 (31)

which is found to pass the P-test only when A = 1.
II. Unidirectional Zakharov equation [20]

igi+qu=ap, pr+pi=(9q), (32)
III. Nonlinear Schrédinger-Maxwell Bloch equations [21]
gx = ikge —ig | q > g +20a(p), pr=iwp-+fan, m =2f(ap*+4q'p).

(33)
Painlevé condition: —2f%k = g.
IV. Higher order nonlinear Schrodinger equation [22]
iq; + a1gn + oy | q |2 q— ia[“s‘]m + 044(‘124*), + aS‘I(qq*)z] =0. (34)

Painlevé conditions:an = 20,03 tag a5 =1:6: =3,

2.4 Non-Painlevé property of the integrable extended nonlinear Schrédinger equation

Recently Liu et al [23] have shown that the extended nonlinear Schrédinger equation is a
completely integrable system and constructed the N-soliton solutions through Hirota’s
bilinear method. The equation is of the form

lq*q
2

1 . . :
s+ 5 n + ~ i6gy + 2icn | q [ gi+ion g P gf=0.  (35)
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To apply P-analysis, we substitute g = a and g* = b in (35), then the resulting equations
are [24]

ia; + % ae + %azb + i[~8ax; + 2c1abay, + aya’by] = 0, (36)
— iby + L by + 1 ab? — i 6y + 201abb, + a1b%a,] = 0. (37)
Leading Order: o = 8 = —1; aghy = %f Resonances: j = —1,0, 3,3, 3,4. The resonance

‘~1" corresponds as usual to the arbitrariness of the singular manifold and ‘0’
corresponds to the fact that either ay or by is arbitrary as seen from the leading order
coefficient. As the system admits more resonances at j=3,3,3 than the required
arbitrary functions, we conclude that eq. (35) fails to satisfy the Painlevé test.

In the cases considered so far reveals that if the P-property is satisfied, then the
equation is completely integrable. Thus it is conjectured that this property indicates the
solvability of a field equation. On the other hand we cannot conclude, in general, that a
PDE which is completely integrable has the P-property. Examples are the Harry Dym
equation g; = g°gy and the nonlinear diffusion equation g, = (g7%q:), [14]. Both

equations are integrable. The first can be solved by the IST and the second can be
linearized to the linear diffusion equation.
2.5 Painlevé analysis of nonintegrable equations

Painlevé analysis is also very useful to understand the dynamics of the nonintegrable
evolution equations. For example, for the real Newell-Whitehead equation [25]

G = g +q—2¢° \ (38)

the leading order is —1 and the resonances are —1 and 4. For simplicity, we define new
variables w = ¢, /@y , v = ¢z /¢ and from the arbitrary analysis, we find

j=0:40=¢x5 (39)
J=1:q1=%w—-3v), (40)
. 1 ‘
J:ZZqzzag;(Vx—Wx'*—l'—% 2"*%\/'2), (41)
. 1
i=3:q3 =—2;‘E(»wt+2wn+%wwx—2w+§w3

— Var 30 + 20 =V — 2ow, — lwv), (42)
. 1 .
J=4:0000) = g5 (w4 = ). (43)

From eq. (43), it is clear that the Laurent expansion fails the WTC test since g4 is found
not to be arbitrary. We therefore have the following “consistency condition” (assuming

¢: # 0): '

Wwe —wwy +3w — 1w = 0. | (44)
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There are two possible ways to proceed: (i) either, introduce logarithmic psi-series, i.e.
a=>> qxp’" (¢*ng)". (45)
ik

(ii) or, force ¢ to satisfy the compatibility condition at j = 4. This takes the form of a
nonlinear PDE which can be solved exactly.This approach gives a type of conditional P-
property and can yield special type of solutions meromorphic in the singular manifold
which is now specified as opposed to being arbitrary. In view of the above facts, we can
conclude that the real Newell-Whitehead equation has the ‘“‘conditional Painlevé
property”. It is also interesting to note that some of the special techniques developed
for integrable systems are also shown to be applicable to nonintegrable equations. Let
us consider the second example from one parameter continuous (Lie) group of
transformations point of view [26]. For this, we consider the nonintegrable KdV equation
in the form

G+ 99+ G =0, n>2. (46)
Using the invariant variables
3p
¢= __(.’_‘_ZL_QT)_S (47)
(a+B)Y
and
g= _f@)z_ﬁn (48)
(ot + 6)
in eq. (46), we obtain the invariant equation in the form
rarr - (Laer) =0 (49)
Inserting
fr~oalC-6)f (50)
in eq. (49), we find that there is only one possibility
~2 —2+n)(2+2n)\ "
p=-n_,a=( ( ’22( )> | (51)

Since n > 2, eq. (49) will have a movable branch point of order —2/n provided (50) is
asymptotic near (o. To see this asymptotic nature, we define

f = v—Z/n (52)
The equation for v is
) 2, 2 2
——2-v2v'”+§<2+ 1>vv'v”—g (%—}- 1) (2+2>v’3—-~—v’-— v+ —£v2v’= 0
n n\n n\n n n n n
(53)
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There is a regular soluuon of (53), that is, regular at (o, if v({) = 0,V'(Co)+
2+n)(2+2n)/n> (V(¢))? = 0. v'(&) is a finite quantity,and v" ({o) is finite. Then
- v(¢) is analytic at (o and so (50) is asymptotic near ¢,. Thus eq. (49) is not of Painlevé

type. For more information about the P-analysis of nonintegrable systems, we refer the
reader to refs. [25, 26].

3. Painlevé property for differential-difference equations

In this section, we will briefly discuss the Painlevé analysis of the discrete systems. The
Toda lattice [27]

Qn,tt —_— eQn—l"'Qn — eQn_QM-l - : (54)
is probably the best known member of a class of differential-difference equations that are

integrable. To establish the P-property [27] we define the variables g, = Qu,,
Qn Qn+1 .
pn=c¢e ie.

Prt = Pnldn = qnt1)s  Gng = Pa-1 — Pn- (55)
A solution of these equations was found by Toda on making the substitution
) :
Pr =55 log fy (56)

which immediately leads to

- 1(;) (57)
and

n+1fn—1 i

{f +}f -1} =55 log fi. (58)

The one soliton solution corresponds to the choice £, cosh(an — (sinh @)f). These results
suggests a truncated ‘Painlevé type’ expansion of the form

0 Q) ) )

_Pn Pn ®) _da O () |
p y qn= 59
" ¢2 ¢n Pn 1 ¢n——1 d)n n ( )
from which one can easily determine that qﬁo) = P, p,(f’) =— 3,: and p,(,l) = Pu, i.€.
0? ) ¢n 1
Pn=pglogdn +p0), .= log( S ) +q) (60)
and that ]
Pnt1Pn_1 &
@) [_____"+¢%" — 1] =25 log 4. (61)

Thus, in a sense we are expanding each dependent variable p, about its own ‘singular
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manifold’ function ¢,. The same approach for the two dimensional Toda lattice,

Pnx = Pn(@n — Gn+1)s  Gng =Pn-1 —DPn: (62)
yields
Pn =75 " log b+ (63)
which immediately leads to |
gn = 3~ log <¢;nl> +4qi) (64)
and
@) [_...____qb”““;f"‘l - 1] 6?; log ¢y (65)

From the relations (63) and (64) one can easily determine Lax pairs for the corresponding
systems. For example, in the case of the 2-D lattice the scattering scheme is found to be

¢ = Olpt1Pn + BuPnr1, ant = Yp®n-1 + On—1Pn (66)

and on substituting into (65), combined with cross differentiation of (66), deduce that

B = A (spectral parameter), o, = —qS, ) and Yn = Eﬂ— . This type of P-analysis also yields
the BT’s for the Toda lattices and reveals some amusmg connections with the rational
solutions of the second Painlevé transcendent [27].

4. Painlevé analysis of nonautonomous nonlinear partial differential equations

The problem of nonlinear wave propagation in dispersive and inhomogeneous media has
been of general interest and has had wide range of applications, e.g. radio waves in the
ionosphere, waves in the ocean,nonlinear optics, magnetic systems, etc, [31-35]. For the
past few years, several inhomogeneous nonlinear PDEs have been studied from the
Painlevé property and soliton point of view. In a series of papers, we have systematically
investigated the Painlevé analysis of many of these equations and explained the
construction of soliton solutions [35-40]. In this section, we will briefly discuss the P-
analysis of some nonautonomous equations. As pointed out in section I, to identify the
Painlevé condition(s) of these systems, we have to use the general manifold.

4.1 Painlevé analysis of inhomogeneous spherically symmetric nonlinear Schridinger
equation

First, we will discuss the P-analysis of the inhomogeneous spherically symmetric
nonlinear Schridinger equation of the form [35]

igr+(fg),, + (f gq) +2f g q
SN A I
o [f1arervan-n [L1ararla=o (67
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The above equation can be derived from the inhomogeneous spherically symmetric
continuum Heisenberg ferromagnet in arbitrary (n—) dimensions through moving helical
space curve [35]. Equation (67) contains the following integrable models:

@) n=0, f = constant: nonlinear Schrédinger equation
g1+ qu+2] ¢ * g = 0(—0c0 <x < 00). (68

(ii) n=1, f = ax + (: deformed nonlinear Schrédinger equation
X
ig:+ (cx+ ) (g +2 1 g P 9) +2a(qx+q/0 lq? dx’) =0. (69)
(ii) n =2, f = constant : deformed radial nonlinear Schrodinger equation
. 1 1 2 1 2 10
igi+qr+-dr——q+2|qf g+4q A ~lqfar =o. (70)

After removing the integral through new variable R and by denoting ¢ = a and g =b,
eq. (67) can be written as

iaﬁ—f(arr-l-n: 1a,-—"r_zla) +2Ra+2f.a, + [ﬁr+n; lfr}a=0,
| | (71)
—iby +f b,,+n:1b,—n;;1b) +2Rb +2f.b, + [f,,+”: lﬁ_]b:O,
| (72)
R,—2fab—f [abr-}-arb-lr-zn:lab] =0. (73)

2, Ry = —f¢?. Resonances: j = —1,
0,2,3,4. From the detailed arbitrary analysis we find that egs. (71-73) are free from
movable critical manifolds only when f is of the form:

Leading order: ao=f=~1, y= -2, aghy = ¢?

f = 617‘_2("—1) + Ezr_(n_z)’ (74)

where £, and e, are integration constants.Hence, the inhomogeneous spherically
symmetric nonlinear Schrodinger equation is expected to be integrable in arbitrary (n—)

dimensions only when the inhomogeneity is of the form (74). Working with the truncated
expansions ‘ v

) bg Ry Ry
a=-—+a;, b=—+b, R=—+—4R,, 75
3 ¢ #rothe #3)
the following overdetermined systems of equations are obtained: 0(¢73,¢73,¢07%):
abo = ¢}, Ro= —f¢2. (76)
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0(¢7%, 972, ¢72):

— ia0¢t - <2fr + E_;—lf) a0¢r ~‘f(ZClOr‘}sr + a0¢rr) -+ 2(‘10R1 + Roal) = 0,

(77)
it = (2+ 727 ) body (2D + o) + 2bnks + Robr) = O,
(78)
Ror — Ri¢ — 2 fraoho — f(aobo), — (avb1 + a1bo)¢r] — 2 z : 1fao by = 0.
(79)
O(¢7!, ¢71, ¢71):
iag + (fa),, + (f - 1a> +2(apR2 + a1R;) =0, (80)
b+ (fB),, + (f -"—Eib) 2(boRy + biRy) =0, (81)
Ry, — 2f,(a0b1 -+ albo) +f(a0b1 + albo)r -2 " : 1 f(aobl +a; + bo) = 0.

(82)

By noting that (aq bo + aor bo) = —2¢,¢ and using the expression for ¢ from
eqs. (77-78) one may, after some simplifications, obtain

[GOr + 2al¢r:| — l:b{)r - 2bl¢r]

rlag m-1p,

(83)
Treating the constant of integration as the spectral parameter A and identifying ag = i7)?,
by = in)3, a1 = q, b1 = ¢*, and ¢, = —irP11)y, gives the scattering problem

P =N+ g, Yo = —qfh — I, (84)

The time dependent part of the problem may be obtained directly from equations (80-82)
by repeated use of (83) and (84), giving

e = (IR = 20 PO~V + (—uf g +ilfa), + iil—f-ifq) v2, (89)

Py = (2,\ fa' Tt +i(fgh), + i'-'-'r-"—l fq*) Wy + (—iR + 2002 2D )ahy.
| (86)

Here f is given in eq. (74) and the consistency of the linear eigenvalue problem (84) and
(85-86) is indeed the evolution equation (67) (only for the choice of f given in eq. (74)),
provided A evolves as

A= (0 +i€), = 2ne )2 (87)
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4.2 Fainlevé analysis of the generalized x-dependent MKDV equation

We consider the GMKDV equation in the form [31]
Q1119 + (U3 + pax) (Geo — 64°:)

(o]
+ (px + v1)gx + pa <3Qn: +44° — 2qx/ dX'qz> =0 (88)
X
In this equation 11,3,y and ps are real constants and q is a real. For p; = u3 =0,
eq. (88) reduces to the well known MKDV equation. If instead us # 0, eq. (88) is an
integro differential equation; it can be reduced to a pure differential equation by changing
the dependent variable from g to [2° ¢*(¥, £)d¥’ or differentiating with respect to x after
dividing by g,. However, we can remove the integral term by defining a new dependent

variable R = [ ¢%(¥, f)dx’. Now eq. (88) can be rewritten as a set of coupled equations
in the form [40] .

g + p1q + (U3 + p3x) (G — 6Rugy) + (11X + 1) g
=+ p3 (qux +49R, — 2QxR) =0, (89)
R, = q2 S ‘ (90)
to within an arbitrary function of ¢ (which occurs when (90) is integrated),which can
always be removed by a simple time dependent gauge transformation of gq. Leading order:
Resonances: j = —1, 1,3, 4. From the truncated series, we get

qO Ro
—+qi, R=—+R,. 91
& q1 ) 1 ( )

With suitable transformation for qo and g [15, 35, 40], after some simplifications, we
obtain

q:

Y= =iy, = gt + iy, (92)
Vi = A1+ By,  thyy = Cihy + Athy, (93)
where A = —4i\3(ax + vy) — 2idlps(x [ g°dX), + v3@?] + i(vy + ), B = AN (p3x

+13)q + 2N 43 (%q), + vagy ] + ps[—(xq), + 24 (c [ dx), ]+ v3[~ g + 2¢°]— (1 +

mx)g,  C =4\ (usx + va)g — 2i[us (xq), + Vsgx] + pa[—(xq),, + 2q(x [ g*dx’) ] + v
[0+ 2¢%] — (11 + p1x)g with ), = ~ A — 4ps 3.

4.3 Painlevé analysis of inhomogeneous deformed Kaup system

The deformed Kaup system is in the form [39]
q: +%‘Jz Txqqx +x1: =0, 7+ 21q + xn.q +x19x + 3G + Xy = 0
(94)

Leading order: oo = —1, = -2, gy = +2¢s, Mo = —2¢2. Resonances: j = —1,2, 3,4.

Lax pair:
Yt Up=0, o =At,+By (95)
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with
_eyiM o n_ & = g\ 4 A 96
U=X T2t -1, A=-2iA-=, B 5 (96)
The compatibility leads to eq. (94) only when ) satisfies
A= =22, (97)

4.4 Painlevé analysis of parametrically driven Sine—~Gordon equation

We consider the generalized sine-Gordon equation [41]
Gt — G +f(t) sing = 0. (98)

It is well known that the sine-Gordon equation g — gy, + sing = 0, which is completely
integrable, does not pass the Painlevé test directly, but after the transformation V = %
[13, 41]. Under this transformation, eq. (98) takes the form.

VVe— V2=V Vi + VZ+1f()(VP-V)=0. (99)

Leading order: o = —2, Vo = 4(¢2 — ¢?)/f
Resonances: j = —1,2. At the resonance j = 2 we obtain the ODE

#f  (df\?
o= (2L . 100
dr? (dt) (100)
As expected this ODE has the P-property. The general solution is given by
ft) = C1e, ' (101)

where C; and C; are integration constants.Similar type of equation with damping was
also investigated in [42].

4.5 Some inhomogeneous equations and Painlevé condition(s)

L. Generalized KDV equation: [43]

g +(8)94x + &(t)gux = 0. (102)

Painlevé condition: g(f) = f(t)(ao [ dsf(s) + bo), ap and by are arbitrary constants.
I. Generalized KDV equation [44]:

gt + q4x + G + a(x,1)q = b(x,1). _ ; (103)

Painlevé conditions: a, = 0, a, + 24%> — b, = 0.
III. Cylinderical KDV equation [45]

a
Gt qht gt =0 | (104)
Painlevé condition: a = 1.
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IV. Generalized nonlinear Schrédinger equation [43]
ig: + o()gu +B() | g P g =0. (105)

Painlevé condition: a(f) = B(t)(a; [ dsf(s) + b1),a; and by are arbitrary constants.
V. Damped Nonlinear Schrodinger equation [46]

ig: + ga— | ¢ | g = alx, ) + b(x, 7). (106)

Painlevé conditions: @ = x*(8;/2 — %) +xo1 -+ ag +iB,b = 0, ap(t), o1 (£) and S(t) are
arbitrary real analytic functions.
VI. Cylinderical Nonlinear Schrodinger equation [47]

igi+qatqfg=7.. (107)
VIL. Inhomogeneous nonlinear Schrédinger equation [38]
X ' )
at (ot laPar |2 [ felof avfa=0 (108)

Painlevé condition: f = ax + 3.
VII. Generalized inhomogeneous nonlinear Schrédinger equation [37]

iq:+(ax+ﬂ)(qxx+2Iqlzq)+2a(qx+q/0 lq dx’)

+ip1(xg), + iv(gea +6 | g [* g:) =0 (109)
IX. Radially symmetric nonlinear Schrédinger equation [38]:

. n—1 r
iq + g + (——r——q> +2|g P g+4(n- l)q/ Ylglfd’=0 (110)
, 0
Painlevé conditions: n = 1,2. '
X. Inhomogeneous Nonlinear Schrodinger—Maxwell Bloch equations [36]

G =tkqe —ig|q " g+ oa(x,)g + (p), pr=iwp + fan,
n =2f(ap" +4'P)- (111)
Painlevé conditions: ~2f%k = g, ay = 1/2(x + xp).

5. Painlevé analysis of some highe_r dimensional equations
5.1 Painlevé analysis of Kodomtsev—Petviashvili equation
The KP equation [12, 14]

G+ G + 9Gu + Oua + G5, =0, o==%1 | (112)

possesses the P-property. Leading order: —2 with go = —~2¢?* Resonances: -1,4,5,6.
Then equating the various powers of ¢ to zero we obtain sets of equations and one can
easily verify that the functions g4, gs and qe are arbitrary and so the P-property holds.
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From the truncated expansion, the Lax pair is found to be in the form
X
oy + Yy + g =0, Pr + 4ehuy + 6q2hx +3(qx - a/ qydx') =0 (113)

the compatibility of which is the KP eq. (112). The Painlevé analysw of similar type of
equations is also discussed in [48].

5.2 Fainlevé analysis of cylinderical Kadomtsev-Petviashvili equation

The cylinderical Kadomtsev—Petviashvili equation is of the form [49]

Gxt + qxx + @ + Qoo + a(1)gx + B()gyy = 0 (114)

Painlevé conditions: da/dt+ 2a* =0, db/dt +4ab = 0. Solving the above condi-
tions,we get a(f) = 0, b(t) = constant, or a(t) = 1/2(t — 1), b(t) = bo/(t — 19)* .

5.3 Painlevé analysis of Davey-Stewartson equation

The higher dimensional version of the nonlinear Schrédinger equation [50]
igs — 019 + gy = 02 | g [* +20109Rg, 01Rw + Ry + (| ¢ ), =0 (115)

where o; = +1, i = 1,2. Leading order: o = = —1, v = -2 with (a3 +b3) =2/0,
(0162 + ¢?), R (2/02)(1)2 Resonances: —1,0,2,3,3,4. From the truncation, the
bilinear form is constructed as '

(iD; — 01D} + D} — 02)*)g - F = 0(n D2 + D2 = 0, A)F - F = —01G - G
(116)
where A = constant.
6. Summary and conclusions
In this short review, we have briefly discussed the Painlevé analysis and integrability

properties of some autonomous and nonautonomous nonlinear partial differential
equations. For a class of physically important equations we have demonstrated that

this technique is one of the very useful and powerful method in nonlinear science to -

establish the integrability properties like Lax pair, Bducklund transformation, bilinear
form and so on. In this article, I have not included the Painlevé analysis of the coupled
nonlinear Schrédinger equations. For coupled systems, this analysis is found to be

cumbersome and the construction of Lax pair (from the truncation) is also an unsolved

problem.
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