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To model the coseismic and postseismic lithospheric deformations associated with 
faulting at a transform plate boundary, the problem of a long inclined strike-slip fault 
in a layer overlying a uniform half-space is discussed. Closed-form expressions for the 
static displacements and stresses are obtained when the two media are elastic. These 
expressions are used to study the effect of the source location and the dip of the fault 
on the surface deformation. The correspondence principle of linear viscoelasticity is 
used to obtain the quasi-static field when the layer is elastic and the half-space Maxwell 
viscoelastic. The coseismic field is modeled by the static response and the postseismic 
field is modeled by the quasi-static response minus the static response. The variation of 
the coseismic and postseismic surface displacement and shear stress with the distance 
from an inclined fault is studied for four source locations: a surface-breaking fault 
and three buried faults. Both the source location and the dip of the fault are found 
to influence the deformation field significantly. Contours of constant postseismic 
displacement and stresses on the distance-time grid are obtained. These contours are 
useful in examining the spatial and temporal dependence of the displacement and stress 
fields. It is found that while the nodal lines for the postseismic displacement are 
independent of time, the nodal lines for the postseismic shear stresses move away from 
the fault with time after the earthquake.

1. Introduction

The problem of forward modeling of transient quasi-static deformation has attracted 
the attention of several investigators. Rosenman and Singh (1973a, b) and Singh and 
Rosenman (1974) used the correspondence principle of linear viscoelasticity to obtain 
analytical expressions for the quasi-static displacements, strains and stresses due to a 
vertical rectangular fault in a viscoelastic half-space. Matsu'ura and Tanimoto (1980) 
and Iwasaki (1986) derived the corresponding results for an inclined fault. Rundle and 
Jackson (1977) developed an analytic approximation of Green's function for the dis-

placements due to a vertical strike-slip point source in an elastic layer over a visco-
elastic half-space. An approximation of Green's function is integrated analytically 
to obtain the displacements due to a finite rectangular strike-slip fault. Based on the
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Thomson-Haskell formulation developed by Singh (1970), Rundle (1978) devised a 
method for computating the displacements due to arbitrary dislocation sources in an 
elastic layer over a viscoelastic half-space. Matsu'ura et al. (1981) and Iwasaki and 
Matsu'ura (1981) presented a method for the computation of quasi-static surface 
displacements, strains and tilts due to a dislocation source in a stratified elastic half-space 
with an intervenient Maxwellian layer. Iwasaki (1985) applied the same method to study 
the quasi-static deformation due to a dislocation source in a stratified medium consist-
ing of elastic/viscoelastic layers lying over a viscoelastic half-space. 

To construct a kinematic model for the earthquake cycle at convergent plate 
boundaries, Matsu'ura and Sato (1989) modeled the lithosphere-asthenosphere system 
by a stratified semi-infinite medium under gravity, consisting of an elastic surface layer, 
an intervening Maxwellian layer and an elastic substratum, The steady motion of plate 
convergence is represented by uniform slip at a constant rate on the upper boundary 
of the descending oceanic plate. Recently, a number of investigators have used dislocation 
sources in spherical earth models to study postseismic relaxation (see, e.g., Dragoni 
and Yuen, 1983; Dragoni et al., 1986; Pollitz, 1992; Pollitz and Sacks, 1992). 

In the case of long faults, one is justified in using the two-dimensional (2-D) ap-

proximation which simplified the algebra to a great extent. Rybicki (1971) found a 
closed-form analytical solution for the problem of a long vertical strike-slip fault in a 
two-layer model of the Earth. Rybicki's solution has been used by Nur and Mavko 

(1974) and Cohen (1979), among others, to explain the postseismic surface deformation. 
While Nur and Mavko (1974) assumed the lithosphere-asthenosphere composite as an 
elastic layer overlying a standard linear viscoelastic half-space, Cohen (1979) assumed 
a standard linear viscoelastic layer overlying a Maxwell viscoelastic half-space. Savage 
and Prescott (1978) used the Nur-Mavko solution to construct a simple 2-D model of 
an earthquake cycle that takes place on a transform ,fault. Cohen (1982) used a finite 
element technique to calculate the postseismic deformation due to a long strike-slip 
fault in a multilayered model of the Earth consisting of an elastic upper lithosphere, a 
standard linear viscoelastic lower lithosphere, Maxwell viscoelastic asthenosphere and 
an elastic mesosphere. Bonafede et al. (1984) modeled a microplate as an elastic plate 
with two long strike-slip boundaries lying over a Maxwell viscoelastic asthenosphere. 

In the present paper, Rybicki's solution is generalized to a fault of arbitrary dip. 
The correspondence principle of linear viscoelasticity is used to obtain the quasi-static 

field when the layer is elastic and the half-space is Maxwell viscoelastic. The static field 
is used to model the coseismic deformation following a strike-slip earthquake at a 
transform plate boundary and the quasi-static field minus the static field is used to 
model the postseismic deformation. The effect of the source location on the coseismic 
and postseismic deformations is studied by performing detailed numerical computations 
for four positions of the fault: one surface-breaking fault and three buried faults. It 
was found that the field caused by a surface-breaking fault is characteristically different 
from the field caused by a fault at depth. Graphs showing the effect of the dip angle 
on the variation of the coseismic and postseismic displacement and shear stress with 
distance from the fault are presented. Contour maps for the postseismic displacement 
and stresses on the distance-time grid are obtained. These maps display the spatial 
and temporal dependence of the postseismic deformation field. The main advantage
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Deformation Associated with Strike- Slip Faulting 199

Fig. 1. Geometry of a long strike-slip fault situated in a layer of uniform thickness 

Hlying over a half-space. The displacement discontinuity on the fault is parallel 

.to the x1-axis. The sign _??_ indicates displacement in the direction of the 

x1-axis, the sign _??_ in the opposite direction. The cartesian coordinates of a 

point on the fault are (y2, y3) and its polar coordinates are (s, ƒÂ), where ƒÂ is 

the dip angle.

of considering the 2-D problem of a long strike-slip fault in an elastic layer over a 

viscoelastic half-space instead of the corresponding 3-D problem is that we are in a 

position to obtain a closed-form analytical solution of the problem. In the 3-D case, 

one is forced either to use approximate Green's functions (Rundle and Jackson, 1977) 

or to resort to numerical integration (Rundle, 1978). 

We consider an Earth model consisting of a homogeneous, isotropic, elastic layer 

of thickness H lying over a homogeneous, isotropic, Maxwell viscoelastic half-space 

(Fig. 1). We place the origin of a Cartesian coordinate system (x1, x2, x3) at the free 

surface and the x3-axis is drawn into the medium. A long inclined strike-slip fault, with 

strike along the x1-axis, is situated in the layer and (y1, y2, y3) is any point on the fault 

(0_??_y3<H). Let ƒÊ1 and ƒÊ2 be the rigidities of the layer and of the half-space, respectively. 

The superscript (1) denotes quantities related to the layer and the superscript (2) denotes 

those related to the half-space. We first obtain the static response to a long inclined 

strike-slip fault in the corresponding elastic model. The correspondence principle of 

linear viscoelasticity is then used to obtain the quasi-static response.

2. Elastic Solution

Consider an antiplane strain problem for which the displacement components are 
of the form 

u=u(x2, x3) , v=w=0 .(1) 

For zero body forces, the equilibrium equations reduce to 

(2) Vol. 42, No. 3, 1994
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The nonzero stresses are given by 

(3) The displacement field due to an inclined strike-slip line dislocation can be expressed 

in terms of the displacements due to a horizontal strike-slip line dislocation and a 

vertical strike-slip line dislocation in the form (Singh and Garg, 1985) 

u=cosƒÂuI-sinƒÂuII, (4) 

where ƒÂ is the dip angle (Fig. 1), uI is the displacement for a horizontal strike-slip line 

dislocation and uII is the displacement for a vertical strike-slip line dislocation. Using 

the results for the horizontal and vertical strike-slip line dislocations given by Garg and 

Sharma (1992) in Eq. (4), we obtain

(6)

where

r = (ƒÊ1-ƒÊ2)/(ƒÊ1+ƒÊ2) 

R2 = (x2 - —y2)2 + (x3 - y3)2 , 

S2 = (x2 - y 2)2 + (x3 + y3)2 , 

T2 = 

(x2 - y 2)2 + (2nH-x3-y3)2 , U2 = (x2 - y 2)2 + (2nH-x3+y3)2 , 

V2 = (x2 - y 2)2 + (2nH+x3-y3)2 ,

W2 = (x2 - y 2)2 + (2nH+x3+y3)2 , (7)

b is the slip and ds is the width of the line dislocation. 
Changing to polar coordinates (Fig. 1)
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y2=scosƒÂ, y3 =s sinƒÂ (8)

in Eqs. (5) and (6) and integrating over s between the limits (s1, s2), we obtain the 
following expressions for the displacements due to a long inclined strike-slip fault of 
finite width s2—-s1:

(9)

(10)

where

(11)

From Eqs. (3), (5), and (6), we get the following expressions for the stresses 
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(12)

(13)

(14)

(15)

where

(16)

3. Numerical Results for the Elastic Solution

We wish to examine the effect of the dip angle and the location of the fault on the 

elastic deformation at the surface due to a strike-slip fault of finite width and infinite 

length embedded in an elastic layer lying over an elastic half-space. For this purpose, 

we assume ƒÊ1/ƒÊ2=1/2 and consider four different positions of the fault:

Source I: S1=0, s2=H/4
Source II: s1=H/4, s2=H/2
Source III: s1=H/2, s2=3H/4Source IV: s1=3H/4, s2=H.

Figure 2(a) shows the variation of the dimensionless parallel surface displacement 

(u/b) with the distance from the fault strike (x2) for ƒÂ=30•‹. We notice that the 

displacement field due to the surface-breaking fault (Source I) is altogether different 

from the field due to the other three sources. For Source I, u is discontinuous at x2=0; 

for the other three sources, u is continuous at x2=0. The variation of u with x2 for 

ƒÂ=60•‹ is shown in Fig . 2(b). Figure 2(c) is for ƒÂ=90•‹. In this case, u is antisymmetric 

about the origin. For Source I, u is discontinuous at x2=0. For the other three sources, 

u is continuous at x2=0 and vanishes at that point. 

Figure 3(a) illustrates the variation of the dimensionless surface shear stress P12 

[=P12/(ƒÊ1b/H)] with the distance from the, fault dipping at 30•‹. P12 is positive for 

Source I. Figure 3(b) is for ƒÂ=60•‹. The behavior of P12 for a vertical strike-slip fault 

(ƒÂ=90•‹) is shown in Fig. 3(c). In this case, P12 is completely symmetric about the origin.
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(a)

(b)

(c)

Fig. 2. Variation of the dimensionless parallel displacement (u/b) at the surface 

with the distance from the fault (x2) for ƒÊ1/ƒÊ2=1/2 and (a) ƒÂ=30•‹, (b) ƒÂ=60•‹, 

(c) ƒÂ=90•‹.

Vol.  42, No. 3, 1994
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(a)

(b)

(c)

Fig. 3. Variation of the dimensionless shear stress P12=p12/(ƒÊ1b/H) at the surface 

with the distance from the fault (x2) for ƒÊ1/ƒÊ2=1/2 and (a) ƒÂ=30•‹, (b) ƒÂ=60•‹, 

(c) ƒÂ=90•‹.
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4. Viscoelastic Solution 

We use the correspondence principle of linear viscoelasticity to obtain the 

quasi-static deformation for a model consisting of an elastic layer lying over a Maxwell 

viscoelastic half-space. For the half-space, the constitutive equations may be written 

in the foilu (Lee, 1955) 

(17) where an overbar indicates a Laplace transform, ƒÊ2*=pƒÊ2/(p+ƒÑ-1) is the transform 

rigidity, ƒÑ=ƒÅ/2ƒÊ2 is the relaxation time, ƒÅ is the viscosity and p is the Laplace trans-

form variable. The time-dependence of the dislocation source is taken to be a unit step 

function, i.e., b(t)=b0H(t), where b0 and H(t) are, respectively, the magnitude of the 

slip (dislocation) and the Heaviside unit step function. Therefore, b=b0/p. 

To obtain the Laplace transformed viscoelastic solution, it is only necessary to 

replace ƒÊ2 and b by ƒÊ2* and _??_, respectively, in the corresponding elastic solution. From 

Eqs. (9)-(16), we notice that ƒÊ2 and b occur only through Mn, Nn, and Pn,. Therefore, 

the Laplace-transformed solution of the viscoelastic problem is obtained from Eqs. (9), 

(10), and (12)-(15) on replacing Mn, Nn, and Pn by _??_, _??_, and _??_ respectively, where, 

from Eqs. (11) and (16),

(18) and

(19)

To find the inverse Laplace transforms of _??_, _??_, and _??_, we used the integral 
transform tables of Erd_??_lyi (1954). We obtain
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(20) where t > 0, n > 0, and

(21)

5. Numerical Results for the Viscoelastic Solution

We consider  the particular case when the rigidities ƒÊ1 and ƒÊ2 are  equal, i.e.,

ƒÊ1=ƒÊ2=ƒÊ(say). Equation (19) shows that, for this particular case,

A=1/2ƒÑ, B=O, C=2, D=2/ƒÊ. (22)

Equations (21) and (22) yield

(23)

We wish to compute the coseismic and postseismic surface displacement and shear 

stress. The coseismic field is modeled by the static response. The postseismic field is 

obtained by subtracting the static response from the quasi-static response. Figure 4(a) 

shows the variation of the coseismic and postseismic parallel displacement (u) at the 

surface in units of the slip b for a surface-breaking fault (Source I) dipping at 45•‹. 

The coseismic displacement is discontinuous at x2=0 while the postseismic displacement 

is continuous at x2=0 and vanishes at x2 = 0.17H. Figure 4(b)-(d) is for Sources II, 

III, and IV, respectively. The coseismic displacement vanishes at x2=0 and the 

postseismic displacement vanishes at 'x2= 0.51H, 0.82H, and 1.09H for Sources II, 

III, and IV, respectively. We note that the distance from the fault of the point on the 

surface of the Earth at which the postseismic surface displacement vanishes is 

ndependent of time. It depends, however, on the source location and dip angle. Figure
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(b) (d)

Fig. 4. Variation of the coseismic and postseismic parallel surface displacement in units of the slip b with the distance 

from the fault (x2) assuming ƒÂ=45•‹, ƒÊ1=ƒÊ2=ƒÊ, for (a) Source I, (b) Source II, (c) Source III, (d) Source IV. 

CO indicates coseismic (static) displacement. POST indicates postseismic (quasi-static minus static) 

displacement and is shown for two values of the dimensionless time T=t/ƒÑ, where ƒÑ is the relaxation time.Vol. 42, No. 3, 1994
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(b) (d)

Fig. 5. Variation of the coseismic and postseismic parallel surface displacement in units of the slip b with the distance 

from the fault (x2), assuming ƒÊ1=ƒÊ2=ƒÊ, ƒÂ=90•‹ for (a) Source I, (b) Source II, (c) Source III, (d) Source IV.
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(b) (d)

Fig. 6. Variation of the coseismic and postseismic shear stress P12=p12/(ƒÊb/H) at the surface with the distance

from the fault (x2), assuming ƒÊ1=ƒÊ2=ƒÊ, ƒÂ=45•‹ for (a) Source I, (b) Source II, (c) Source III, (d) Source IV.

Vol. 42, No. 3, 1994
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(b) (d)

Fig.  7. Variation of the coseismic and postseismic shear stress P12 at the surface with the distance from the fault

(x2) assuming ƒÊ1=ƒÊ2=ƒÊ, ƒÂ=90•‹ for (a) Source I, (b) Source II, (c) Source III, (d) Source IV.
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(c)

(b) (d)

Fig.8.  Variation of the coseismic and postseismic parallel subsurface displacement in units of the slip b with the
distance  from the fault  (x2) assuming ƒÂ=90•‹, ƒÊ1=ƒÊ2=ƒÊ, x3=1.5H, for (a) Source I,  (b) Source II, (c) Source 

III, (d) Source IV.Vol. 42, No. 3, 1994
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(b) (d)

Fig. 9. Variation of the coseismic and postseismic shear stress P12=p12/(ƒÊb/H) in the viscoelastic half
-space below 

the elastic surface layer with the distance from the fault
, assuming ƒÊ1=ƒÊ2=ƒÊ, ƒÂ=90•‹, x3=1.5H, for (a) 

Source I, (b) Source II, (c) Source III
, (d) Source IV.J. Phys. Earth
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(b) (d)

Fig. 10. Variation of the coseismic and postseismic shear stress P13 =p13/(ƒÊb/H) in the viscoelastic half-space below 

the elastic surface layer, for (a) Source I, (b) Source II, (c) Source III, (d) Source IV.Vol. 42, No. 3, 1994
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(a)

(b)
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(c)

Fig. 11. Contours of constant postseismic parallel displacement on the distance 

from the fault-time after the earthquake grid for a surface-breaking vertical 

fault of depth H/4, assuming ƒÊ1=ƒÊ2=ƒÊ, for (a) x3=0, (b) x3=H/2, (c) x3=H.

5(a)—(d) illustrates the variation of the coseismic and postseismic displacements with the 

distance from the fault for a vertical fault. The displacement field is antisymmetric about 

the origin. The coseismic and postseismic displacements are of the same sign. The 

coseismic displacement is discontinuous at the origin for Source I and is continuous 

for the other three sources at x2 = 0 and vanishes at that point. The postseismic dis-

placement is continuous at x2 = 0 for Source I also and vanishes there. 

Figure 6(a) shows the fall-off of the dimensionless coseismic and postseismic shear 

stress P12 =p12/(ƒÊb/H) at the surface for ƒÂ=45•‹. The coseismic stress varies significantly 

in the range -H_>>?x2 < H and attains its maximum at x2 = 0.18H. Figure 6(b)—-(d)is 

for Sources II, III, and IV, respectively. The points on the surface of the Earth at which 

the postseismic shear stress vanishes move away from the fault with time. Figure 7(a)-(d) 

gives the variation of the dimensionless coseismic and postseismic shear stress P12 for 

a vertical fault. P12 is symmetric about the origin. 

Since the stress relaxation process in the viscoelastic substratum is significantly 

different from that in the elastic surface layer, we have computed the coseismic and 

postseismic field in the underlying half-space as well at a depth of 3H/2. Figure 8(a)—-(d)

depicts the variation of the parallel displacement with the distance from the fault. Figure 

9(a)-(d) is for the shear stress P12 =p12/(ƒÊb/H) and Fig. 10(a)—(d) is for the shear

Vol. 42, No. 3, 1994
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(a)

(b)
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(c)
Fig. 12. Contours of constant postseismic shear stress p12 parallel to the fault 

for (a) x3= 0, (b) x3 = H/2, (c) x3 = H. p12 is measured in units of (ƒÊb/H)•~10-4.

stress P13 =p13/(ƒÊb/H). From these figures, we notice that the location of the fault in 

the elastic layer has only a marginal effect on the deformation field in the substratum. 

To study the spatial and temporal dependence of the postseismic deformation, 

contour maps of constant postseismic displacement and shear stress on the distance-time 

grid have been obtained. Figure 11(a) shows the contours of constant postseismic parallel 

surface displacement on the distance from the fault-time after thq earthquake grid for 

a surface-breaking vertical fault of depth H/4 (Source I). The displacement is measured 

in units of b•~10-3, distance in units of the lithospheric thickness H and time in units 

of the asthenospheric relaxation time ƒÑ=ƒÅ/2ƒÊ2. Figure 11(b) and (c) is for the subsurface 

displacements. Contours of constant postseismic'shear stress p12 are shown in Fig. 12(a) 

to (c). In these figures, the shear stress is measured in units of (ƒÊb/H)•~10-4, distance 

in units of H and time in units of the relaxation time ƒÑ. Figure 13(a) and (b) is for 

the subsurface postseismic shear stress p13. While shear stress p12 acts on planes parallel 

to the fault, shear stress p13 acts on planes parallel to the Earth's surface. Figure 12(a) 

to (c) shows that as the point of observation in the layer moves away from the surface, 

the nodal line for the shear stress p12 moves towards the fault. Furthermore, with the 

passage of time, the nodal line for p12 moves away from the fault. The same is true for 

the nodal line for shear stress p13.

Vol. 42, No. 3, 1994
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(a)

(b)

Fig. 13. Contours of constant postseismic shear stress p13 parallel to the Earth's 

surface for (a) x3= H/2, (b) x3=H. p13 is measured in units of (ƒÊbH)•~10-4.
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6. Discussion 

We have studied strike-slip faulting in the lithosphere for a long fault of arbitrary 

dip and finite width. Although a 2-D model is an oversimplification of the physical 

system, such models are useful in gaining insight into the relationship among various 

fault parameters. Moreover, there are faults, the most classic example of which is the 

San Andreas fault, which is sufficiently long and shallow that the 2-D approximation 

may be used. Detailed numerical computations reveal that the deformation field depends 

greatly on the location of the fault and its dip. The field due to a surface-breaking fault 

is basically different from the field due to a deep fault. For a surface-breaking fault, 

the surface displacement parallel to the fault is discontinuous at the fault-trace, while 

for deep faults, it is continuous there. For a surface-breaking fault, the ratio of the 

absolute displacement of the hanging wall to that of the foot wall is a sensitive indication 

of the dip angle. Similarly, the degree of asymmetry of the surface displacement field 

depends upon the dip angle. The coseismic and postseismic displacements exhibit 

different behaviors. There are regions in which the coseismic and postseismic dis-

placements (and stresses) are of different signs. The nodal lines for the postseismic dis-

placement are fixed with respect to time. In contrast, the nodal lines for postseismic 

shear stresses move away from the fault with time after the earthquake. 

The explicit analytical expressions giving the elastic as well as the viscoelastic 

solution involve infinite series. Therefore, a few remarks regarding their convergence 

are in order. From Eq. (7), we note that 

as n•¨•‡. Moreover, |r|<1. Therefore, the infinite series appearing in the right-hand 

side of Eq. (6) converge very rapidly. Numerically, we have found that the first couple 
of terms in the infinite series are adequate for most practical purposes. Similar remarks 
are also applicable in the case of the other infinite series appearing in the elastic as well 
as the viscoelastic solution. In our computations, we have taken into consideration the 
first ten terms of the infinite series.
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