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The effect of the source-depth and the dip of the fault on the surface displacement 

field due to a long thrust fault embedded in an elastic half-space is studied. It is found 
that, for small dip angles, the displacement field is highly asymmetric about the fault 

strike, the displacement of the footwall is very small, and the horizontal displacement 
of the hanging wall shows a wavy pattern. The vertical displacement of the hanging 

wall is an uplift near the fault. For small dip angles, this uplift is maximum at a point 
almost vertically above the upper edge of the fault. As we go away from the fault strike, 

the vertical displacement changes sign, i.e., it becomes subsidence. For small dip angles, 
this subsidence is maximum at a point roughly vertically above the lower edge of the 

fault. Steeper fault dips decrease the subsidence relative to the uplift. For a vertical 
dip-slip fault, the horizontal displacement is completely symmetric about the fault strike 
and the vertical displacement is completely antisymmetric. 

The variation of the coseismic and postseismic shear stresses and shear strains for 

a surface-breaking long thrust fault with depth is studied for a viscoelastic half-space. 
It is found that, while the coseismic and postseismic shear stresses are of opposite signs, 
the coseismic and postseismic shear strains are of the same sign.

1. Introduction 

Two-dimensional dip-slip dislocation models have been used extensively to model 
the crustal deformations associated with thrust faulting at subduction zones (see, e.g., 
Cohen (1992) and the references listed therein). Savage et al. (1992) modelled the strain 
accumulation across the Wasatch fault near Ogden, Utah (U.S.A.) by a two-dimen-
sional listric fault. Rani and Singh (1992) obtained closed-form analytical expressions 
for the displacements and stresses at any point of a homogeneous, isotropic, perfectly 
elastic half-space caused by a long dip-slip fault of finite width. Singh and Rani (1993) 
obtained the corresponding strains. 

In order to study the effect of the source-depth and the dip of the fault, we compute 
the surface displacements caused by a long dip-slip fault of finite width placed in 
a homogeneous, isotropic, perfectly elastic half-space. Seven values of the dip angle,
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namely, ƒÂ=5•‹, 15•‹, 30•‹, 45•‹, 60•‹, 75•‹, and 90•‹, are considered. For each ƒÂ, the surface 

displacements are computed for four source locations: a surface-breaking fault and 

three buried faults. The correspondence principle of linear viscoelasticity is used to 

obtain the postseismic stresses and strains at any point of the half-space. The variation 

of the coseismic and postseismic shear stresses and strains with depth is also investigated. 

2. Surface Displacements 

 Dislocation models of faulting are often used to explain the observed coseismic 

deformations. Taking the x1-axis along the strike of the fault and the x3-axis vertically 

downwards, the surface displacements due to a two-dimensional dip-slip fault of finite 

width embedded in a uniform half-space (x3>0) are given by(Rani and Singh (1992))

(1) 

(2) 

(3)

where b is the magnitude of dislocation (slip), ƒÂis the dip angle (Fig . 1) and

(4)
We wish to examine the effect of the dip angle and the depth of the fault on the 

surface deformation due to a long thrust fault of finite width L=S2-S1 and infinite 

length embedded in a uniform half-space. For this purpose , we consider four different

Fig. 1. Geometry of a long dip-slip fault. The displacement discontinuity b is 

perpendicular to the x1-axis, but lies in the fault plane. The Cartesian coor-

 dinates of a point on the fault are (s cosƒÂ, ssinƒÂ), where ƒÂis the dip angle 

 and S1<S<2.
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positions of the fault:

Source I : s1= 0, s2 = L 

Source II : s1= L, s2 = 2L 

Source III : s1= 2L, s2 = 3L

Fig. 2(a). Variation of the dimensionless horizontal displacement (u2/b) with 

 the distance from the fault (x2) for dip angle ƒÂ=5•‹. 

Fig. 2(b). Variation of the dimensionless horizontal displacement with x2 for 

ƒÂ=15•‹.
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Fig. 2(c). Variation of the dimensionless horizontal displacement with x2 for 

ƒÂ=30•‹. 

Fig. 2(d). Variation of the dimensionless horizontal displacement with x2 for 

ƒÂ=45•‹.

Source IV: s1=3L , s2=4L .

Figure 2(a) shows the variation of the dimensionless horizontal displacement (u2/b) 

with the distance from the fault strike (x2) for ƒÂ = 5•‹. We notice that the displacement 

field for the surface-breaking fault (Source I) is altogether different from the field for
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Fig. 2(e). Variation of the dimensionless horizontal displacement with x2 for 

ƒÂ=60•‹. 

Fig. 2(f). Variation of the dimensionless horizontal displacement with x2 for 

ƒÂ=75•‹.

the other three sources. For Source I, u2 is discontinuous at x2=0. For the other three 

sources, u2 is continuous at x2=0 and vanishes at that point. The variation of u2 with 

x2 for ƒÂ=15•‹is shown in Fig. 2(b). Figure 2(c) is for ƒÂ=30•‹. For x>0, u2 is negative 

for Sources I and II, but u2 changes sign twice for Sources III and IV. Figure 2(d) is
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Fig. 2(g). Variation of the dimensionless horizontal displacement with x2 for 

ƒÂ=90•‹. The horizontal displacement is symmetric about the origin.

Fig. 3(a). Variation of the uplift (-u3) with the distance from the fault (x2) for 

ƒÂ=5•‹. The uplift is measured in units of the slip b.

for ƒÂ=45•‹. In this case, for x2>0, u2 is negative for Source I, but u2 changes sign twice 

for Sources II, III, and IV. For ƒÂ=60•‹, (Fig. 2(e)), u2 changes sign twice for x2>0 

even for Source I. For ƒÂ=75•‹, (Fig. 2(f)), even though u2 is positive for Source I near
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Fig. 3(b). Variation of the uplift with x2 for ƒÂ=15•‹.

Fig. 3(c). Variation of the uplift with x2 for ƒÂ=30•‹. 

the origin for both x2>0 and x2<0, it is discontinuous at the origin. As shown in Fig. 

2(g), u2 is completely symmetric about the origin for a vertical dip-slip fault. 

The degree of asymmetry of the horizontal displacement u2 about the origin and 

the discontinuity of u2 for the surface-breaking thrust fault at the origin is controlled 

by the dip angle ƒÂ. The horizontal displacement is highly asymmetric for small values 

of ƒÂ. The discontinuity of u2 at the origin is equal to b cosƒÂ. These observations can
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Fig. 3(d). Variation of the uplift with x2 for ƒÂ=45•‹.

Fig. 3(e). Variation of the uplift with x2 for ƒÂ=60•‹. 

be used in modelling surface deformation data. 

Figure 3(a) shows the variation of the uplift (-u3) in units of the slip b with the 

distance from the fault strike (x2) for ƒÂ=5•‹. We notice that the uplift is almost zero 

for x2<0. u3 is discontinuous at the origin for Source I, but vanishes there for Sources 

II, III, and IV. Moreover, u3 vanishes once for x2>0. Figure 3(b), 3(c), 3(d), 3(e), and 

3(f) are for ƒÂ=15•‹,30•‹,45•‹,60•‹,and 75•‹, respectively. For ƒÂ=90•‹(Fig. 3(g)), u3 is
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Fig. 3(f). Variation of the uplift with x2 for ƒÂ=75•‹. 

Fig. 3(g). Variation of the uplift with x2 for ƒÂ=90•‹. The uplift is antisymmetric 

about the origin.

antisymmetric about the origin. It is discontinuous at the origin for Source I, but 

vanishes there for Sources II, III, and IV.

 As in the case of the horizontal displacement, the degree of asymmetry of the vertical 

displacement u3 about the origin and the discontinuity of u3 for the surface-breaking 

fault at the origin are controlled by the dip angle ƒÂ. For Source I, the discontinuity of
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Table 1. Values of x2/L for which the uplift of the hanging wall is maximum, the uplift vanishes and the subsidence is

 maximum for the four sources for different values of the dip angle ƒÂ. The values of the maximum uplift/subsidence of 

the hanging wall are also given.
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u3 at the origin is b sin ƒÂ. For small values of ƒÂ, the vertical displacement of the footwall 

is very small; the uplift (or subsidence) occurring mainly on the hanging wall. Table 1 

describes the behavior of u3 for x2>0 for the four sources . This table can be used in 

modelling observed uplift data. 

3. Shear Strain 

 The shear strain e23 due to a two-dimensional dip-slip fault of finite width placed 

in a half-space (x3>0) is given by (Rani and Singh (1992))

(5)

where

(6) 

(7)

ƒÉ

,ƒÊ being the Lame constants. 

The quasi-static strain for a viscoelastic half-space can be obtained from Eq. (5) 

on replacing ba by (Singh and Singh (1990))

(8)

where i is the relaxation time. Equation (8) assumes that the medium is elastic in 
dilatation and. Maxwell viscoelastic in distortion, and that the source has unit step 
function time-dependence:

The coseismic shear strain is modelled by the static strain given by Eq. (5). The post-

seismic strain is obtained on subtracting the static strain from the quasi-static strain 

obtained on using the correspondence (8). 

 Figure 4(a), 4(b), and 4(c) show the variation of the coseismic and postseismic 

shear strains with depth (x3) for x2=L/2, L and 2L, respectively, for a surface-breaking 

fault (Source I) dipping at 30•‹in a Poissonian (ƒÉ=ƒÊ) half-space. We notice that the
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Fig. 4. (a) Variation of the coseismic 

 and postseismic shear strain (L/b)e23 

with depth (x3) for x2=L/2 for a 

 surface-breaking fault (Source I) dip-

 ping at 30•‹. CO indicates coseismic 

(static) strain. POST indicates post-

 seismic (quasi-static minus static) strain 

 and is shown for two values of the 

 dimensionless time T=t/ƒÑ, where ƒÑ is 

 the relaxation time. At T=0, the 

 postseismic strain vanishes. The ratio 

 POST/CO increases with T and•¨l/2 as 

T•¨•‡. (b) Variation of the coseismic 

and postseismic shear strain with depth 

for x2=L. (c) Variation of the co-

 seismic and postseismic shear strain 

with depth for x2=2L.
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coseismic and postseismic shear strains are of the same sign. 

4. Shear Stress 

The shear stress is obtained from Eq. (5) on using the relation

The quasi-static stress for a viscoelastic half-space can then be obtained on replacing  

bƒÊƒ¿ by (Singh and Singh (1990))

Figure 5(a), 5(b), and 5(c) show the variation of the coseismic and postseismic 

shear stresses with depth for x2 =L/2, L, and 2L, respectively, for a surface-breaking 

fault dipping at 30•‹in a Poissonian half-space. We notice that the coseismic and 

postseismic shear stresses are of opposite signs. 

5. Discussion and Conclusions 

 For a surface-breaking long thrust fault (Source I), the horizontal displacement is 

discontinuous at the origin (upper edge of the fault), the magnitude of discontinuity 

being b cosƒÂ, where b is the slip on the fault and ƒÂ is the dip angle. Similarly, the 

vertical displacement has a discontinuity of magnitude b sinb at the origin. 

 From Eq. (2) we find that, for Source I, the horizontal displacement (u2) on the 

hanging wall side has a maximum at x2 = L cos ƒÂ and a minimum at x2= L/cos ƒÂ. 

Moreover,

For small dip angles, the two stationary points are close to each other. This explains 

the short wavelength oscillations in the graphs for the horizontal displacement for 

Source I in Fig. 2(a), 2(b), and 2(c). A similar interpretation can be given to the short 

wavelength oscillations in the graphs for the horizontal displacement in respect of the 

other three sources. For example, in Fig. 2(a), the graph for Source II has two small 

wavelength oscillations, corresponding to the two edges of the fault. However, as the 

distance of the edges from the free surface increases, the stationary points separate out, 

and we get a wavy pattern (see, e.g., the graphs for Source II in Fig. 2(c), Source III 

in Fig. 2(b), and Source IV in Fig. 2(a)). 

Equation (3) reveals that, for Source I, the subsidence (u3) on the hanging wall 

side is maximum at the point x2 = L/cos ƒÂ and
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Fig. 5. (a) Variation of the coseismic 

and postseismic shear stress (L/ƒÊb)ƒÑ23 

 with depth (x3) for a surface-breaking 

 fault (Source I) dipping at 30•‹for 

x2=L/2. CO indicates coseismic (sta-

tic) stress. POST indicates postseismic 

(quasi-static minus static) stress and is

 shown for two values of the dimen-

sionless time T= t/ƒÑ, where r is relaxa-

tion time. At T=0, the postseismic 

 stress vanishes. For T>0, the co-

seismic and postseismic stresses are of 

 opposite signs. The ratio (POST/C0 

 increases with T and•¨1 as T•¨•‡. 

(b) Variation of the coseismic and 

 postseismic shear stress with depth for 

x2=L. (c) Variation of the coseismic

 and postseismic shear stress with 

depth for x2=2L.
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The maximum subsidence is a decreasing function of ƒÂ. 

Table 1 gives the values of x2/L for which the uplift of the hanging wall is maxi-

mum, the uplift vanishes and the subsidence is maximum. We note that, for small dip 

angles, the uplift for buried faults (Sources II, III, and IV) is maximum at a point almost 

vertically above the upper edge of the fault. As we go away from the fault strike, the 

vertical displacement changes. For small dip angles, this subsidence is maximum at a 

point roughly vertically above the lower edge of the fault (x2=s2/cosƒÂ is a better 

approximation). The maximum uplift is greater than the maximum subsidence. Steeper 

fault dips decrease the subsidence relative to the uplift. The results of Table 1 should 

prove useful in modelling surface deformation data. 
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