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 Closed-form analytic expressions for the displacements and stresses at any point 
 of a two-phase medium consisting of a homogeneous, isotropic, perfectly elastic 

 half-space in welded contact with a homogeneous, orthotropic, perfectly elastic half-space 
 caused by two-dimensional seismic sources located in the isotropic half-space are 

 obtained. The method consists of first finding the integral expressions for two half-spaces 
 in welded contact from the corresponding expressions for an unbounded medium by 

 applying suitable boundary conditions at the interface and then evaluating the integrals 
 analytically. Numerical computations indicate that the deformation field due to a source 

 in an isotropic half-space in welded contact with an anisotropic half-space may differ 
 substantially from the deformation field when both the half-spaces are isotropic. 

1. Introduction 

 Maruyama (1966) calculated the Green's functions for two-dimensional elastic 
dislocations in a semi-infinite medium. Freund and Barnett (1976) obtained two-
dimensional surface deformation due to dip-slip faulting in a uniform half-space, 
using the theory of analytic functions of a complex variable. Rybicki (1971) obtained 
closed-form analytic solution for the elastic residual field due to a long strike-slip fault 
in a half-space in the presence of a horizontal or a vertical discontinuity. In a subsequent 
paper, Rybicki (1978) derived closed-form analytic expressions for the surface 
displacement field due to a long strike-slip fault in a half-space in the presence of two 
parallel vertical discontinuities. 

 Singh and Garg (1986) obtained the integral expressions for the Airy stress function 
in an unbounded medium due to various two-dimensional seismic sources. Beginning 
with these expressions, Rani et al. (1991) obtained the integral expressions for the Airy 
stress function, displacements and stresses in a homogeneous, isotropic, perfectly elastic 
half-space due to various two-dimensional sources by applying the traction-free 
boundary conditions at the surface of the half-space. The integrals were then evaluated 
analytically, obtaining closed-form expressions for the Airy stress function, the 
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displacements and the stresses at any point of the half-space caused by two-dimensional 
buried sources. Singh et al. (1991) followed a similar procedure to obtain closed-form 
analytic expressions for the displacements and stresses at any point of either of two 
homogeneous, isotropic, perfectly elastic half-spaces in welded contact due to two-
dimensional sources. 

 In this paper, we study the static deformation caused by various two-dimensional 
seismic sources located in a homogeneous, isotropic, perfectly elastic half-space lying 
over a homogeneous, anisotropic, perfectly elastic half-space with which it is in welded 
contact. Most anisotropic media of interest in seismology have, at least approximately, 
a horizontal plane of elastic symmetry. The most general system with one plane of 
elastic symmetry is the monoclinic system. A material having three mutually 

perpendicular planes of elastic symmetry at a point is said to possess orthotropic or 
orthorhombic symmetry. This symmetry is exhibited by olivine and orthopyroxenes, 
the principal rock-forming minerals of the deep crust and upper mantle. Therefore, we 
assume that the lower half-space is orthotropic. 

 In an orthotropic material, there are nine elastic constants. The results for a 
tetragonal material with six elastic constants, for a transversely isotropic material with 
five elastic constants and for a cubic material with three elastic constants can be derived 
as particular cases. We have verified that the results of Singh et al. (1991) for two 
isotropic half-spaces in welded contact follow from the results of the present paper 
when the lower orthotropic half-space is replaced by an isotropic half-space. 

 Wu and Chou (1982) applied the generalized method of images to obtain the elastic 
field of an in-plane line force acting in a two-phase orthotropic medium. Singh (1986), 
Garg and Singh (1987), and Pan (1989a) studied the static deformation of a transversely 
isotropic multilayered half-space by surface loads. The problem of the static deformation 
of a transversely isotropic multilayered half-space by buried sources has been discussed 
by Pan (1989b). Static deformation of an orthotropic multilayered elastic half-space 
by two-dimensional surface loads has been investigated by Garg et al. (1991). 

2. Theory 

 Let the Cartesian co-ordinates be denoted by (x, y, z)-=(xl, x2, x3) with z-axis 
vertically upwards. Consider two homogeneous, perfectly elastic half-spaces which are 
welded along the plane z= 0. The upper half-space (z> 0) is called medium I and the 
lower half-space (z<0) is called medium II. Medium I is assumed to be isotropic with 
stress-strain relation

(1)

Medium II is assumed to be orthotropic with stress-strain relation
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(2)

 We consider a two-dimensional approximation in which the displacement com-

ponents (u1, u2, u3) are independent of x so that •Ý/•Ýx_??_0. Under this assumption the 

plane-strain problem (u1= 0) and the antiplane-strain problem (u2 = u3= 0) are 

decoupled and, therefore, can be solved separately. The plane-strain problem for an 

isotropic medium can be solved in terms of the Airy stress function U such that

(3) 

(4)

The plane-strain problem for an orthotropic medium can be solved in terms of the Airy 
stress function U* such that (Garg et al., 1991)

(5) 

(6)

where

(7)

For an isotropic medium

(8)

This yields a2 =b2 =1 and Eq. (6) reduces to Eq. (4). 

 Let there be a line source parallel to the x-axis passing through the point (0, 0, h) 

of the upper half-space z>0. As shown by Singh and Garg (1986), the Airy stress 

function U0 for a line source parallel to the x-axis passing through the point (0, 0, h) 

in an unbounded, isotropic medium, with Lame constants ƒÉ1, ƒÊ1, can be expressed in 

the form
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(9)

 where the source coefficients L0, M0, P0, Q0 are independen of k. Singh and Garg 
(1986) have obtained these source coefficients for various seismic sources. These are 
listed in Table l for ready reference. We use the notation of Ben-Menahem and Singh 

(1981) for labeling various sources. Thus, (23) denotes the single couple in the x2x3-plane 
with forces in the x2-direction, and F23 is the corresponding moment; (23) + (32) denotes 
the double couple in the x2x3-plane; (32)-(23) denotes the center of rotation in the 
x2x3-plane; (22) denotes the dipole in the x2-direction of strength F22; (22) + (33) denotes 
the center of dilatation and (33)-(22) denotes the double couple whose forces bisect the 
angles between the dipoles (22) and (33). In Table 1, we have included the source 
coefficients for a tensile dislocation as well. A tensile dislocation in the x2-direction is 
equivalent to a dipole in the x2-direction with 

Table 1. Source coefficients for various sources.
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together with a dipole in the x3-direction with

where b is the slip and ds is the width of the dislocation plane. Similar relations hold 

for a tensile dislocation in the x3-direction. In Table 1, we have used the notation 

 To = ƒÊ1bds in the source coefficients for a tensile dislocation. 

 For a line source parallel to the x-axis acting at the point (0, 0, h) of medium I 

(z > 0) which is in welded contact with medium II (z <0), the Airy stress function in 

medium I is a solution of Eq. (4) and may be taken to be of the form

(10)

The Airy stress function in medium II is a solution of Eq. (6) and is of the form 

(assuming a•‚b)

(11)

The superscript (1) denotes quantities related to medium I and the superscript (2) denotes 

quantities related to medium II. The constants L1, M1, L2, M2 etc. are to be determined 
from the boundary conditions. 

 Since the half-spaces are assumed to be in welded contact along the plane z =0, 
the boundary conditions are

(12)

at z = 0. The stresses and the displacements for the isotropic medium I in terms of the 
Airy stress function U(1) are given by (Rani et al., 1991)

(13) 

(14)

where

(15)

The stresses and the displacements for the orthotropic medium II are given by (Garg 
et al., 1991)
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(16) 

(17)

where

(18)

From Eqs. (9), (10), (13), and (14), we obtain

(19)

(20) 

(21) 

(22)
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(23)

In Eqs. (20) and (23), the upper sign is for z>h and the lower sign is for 0 <z < h. 
 Similarly, from Eqs. (11), (16), and (17), we obtain

(24) 

(25) 

(26) 

(27) 

(28)

where

(29) 

(30)

and A is given by Eq. (18). 
 It is noticed from Table 1 that the coefficients L0, M0, P0, and Q0 might have 

different values for z_??_h; let L-, M-, P-, and Q- be the values of L0, M0, P0, and 

Q0, respectively, valid for z < h. The boundary conditions (12) give the following system 
of equations:

(31)
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Solving the system for L1, M1, P1, Q1, L2, M2, P2, Q2, we get

(32)

where

(33)

 Putting the values of the constants L1, M1, P1, etc. in Eqs. (10) and (11), we get 

the integral expressions for the Airy stress function in the two media. These integrals 

can be evaluated analytically using the formulae given in the Appendix. The 

displacements and stresses can be obtained similarly. Using the notation (z•‚h, az•‚h, 

bz•‚h)

(34)

the final results are given below. 

 For the isotropic medium I,
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(35)

(36)
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(37)

(38)
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(39)

(40)

For the orthotropic medium II,

(41)
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(42)

(43)

(44)
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(45) 

(46)

3. Dip-Slip Dislocation 

 As shown by Maruyama (1966), the double couple (23) + (32) is equivalent to 
a vertical dip-slip line source such that

(47)

where b is the slip and ds is the width of the dislocation plane. Similarly, the double 

couple (33)-(22) is equivalent to dip-slip on a 45•‹ dipping line source such that

(48)

The Airy stress function due to dip-slip on an inclined plane can be expressed in terms 

of the Airy stress functions due to these two double-couples:

(49)

where 6 is the dip angle and U(23)+(32) and U(33)-(22) are obtained from Eq. (35) or 

(41) on inserting the values of the source coefficients L0, M0, P0, and Q0 from Table 
1 corresponding to the sources (23) + (32) and (33)-(22), (22), respectively. This yields
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(50) 

(51)

Similar expressions can be obtained for the stresses and the displacements. 

4. Discussion 

 Equations (36)-(40) and (42)-(46) constitute very general results. These yield 
closed-form expressions for the displacements and stresses at any point of a two-phase 
medium consisting of an isotropic half-space lying over an orthotropic half-space due 
to an arbitrary two-dimensional source in the isotropic half-space in terms of the source 
coefficients L0, M0, P0, Q0. The values of these source coefficients for a single couple, 
a double couple, a dipole, a center of dilatation, a center of rotation and a tensile 
dislocation are given in Table 1. 

 We have derived the results when an isotropic half-space (medium I) lies over an 
orthotropic half-space (medium II). The results when medium II is tetragonal can be 
obtained on putting

(52)

The results when medium II is transversely isotropic follow by taking

(53)

Similarly, the results when medium II is cubic are obtained on taking

(54)

When medium II is isotropic,

(55)

This is a degenerate case for which a = b =1 (see Eq. (7)). However, we have verified 
that, when medium II is replaced by an isotropic medium, the results of the present
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Fig. 1. Variation of the horizontal displacement (u2) with the distance (y) from 
 a vertical dip-slip fault for z= -h/2. u2 is measured in units of bds/h.

Fig. 2. Variation of u2 with y for z=0.
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Fig. 3. Variation of u2 with y for z=5h.

Fig. 4. Variation of the vertical displacement (u3) with y for z= -h/2.
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Fig. 5. Variation of u3 with y for z = 0.

Fig. 6. Variation of u3 with y for z =5h. 
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Fig. 7. Variation of u2 with the distance from the interface (z) for y=2h. The 
 arrow at z=h indicates the source depth.

Fig. 8. Variation of u3 with z for y=2h.
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paper, in the limit, coincide with the results of Singh et al. (1991) for two isotropic 
 half-spaces in welded contact. 

 For numerical calculations we assume that medium II is transversely isotropic and 
use the values of the elastic constants given by Anderson (1961). For beryl,

This yields a= 1.7018, b = 0.6276. For ice,

and a= 1.8019, b = 0.5402. For the isotropic medium I, we assume that ƒÉ1= ƒÊ1. We 

further assume that c44/ƒÊ1= 2. When medium II is also isotropic, we take ƒÉ2 = ƒÊ2 for 

numerical work. 

 Figure 1 shows the variation of the horizontal displacement due to a vertical dip-slip 

dislocation with the distance from the fault for z= - h/2. The displacements are given 

in units of bds/h. Figures 2 and 3 are for z= 0 and z = 5h, respectively. When z = 0, the 

receiver is at the interface. When z= -h/2, the receiver is in the transversely isotropic 

medium II and the source is in the isotropic medium I. When z = 5h, the receiver is also 

in medium I. The variation of the vertical displacement with the distance from the fault 

is exhibited in Figs. 4-6. The variation with the distance from the interface is shown 

in Figs. 7 and 8. Positive values of the distance from the interface imply that the point 

lies in the isotropic medium I, in which the source lies, whereas negative values imply 

that the point lies in the transversely isotropic medium II. The arrow at z = h indicates 

the source depth. These figures show that the displacement field for the anisotropic case 

can differ significantly from the corresponding field for the isotropic case. 

 The authors are thankful to the University Grants Commission, New Delhi, for financial 

support. 
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