J. Phys. Earth, 37, 239-249, 1989

ON TWO-DIMENSIONAL DYNAMICAL DISLOCATIONS: THEORETICAL SEISMOGRAMS

Sarva Jit SINGH and Jitander Singh SIKKA

Department of Mathematics, Maharshi Dayanand University, Rohtak-124001, India

(Received August 3, 1988; Revised July 26, 1989)

The problem of a two-dimensional dynamical dislocation in an isotropic, homogeneous, unbounded, elastic medium has been discussed by the present authors in a recent paper (SINGH and SIKKA, 1988), assuming harmonic time-dependence. The aim of the present paper is to generalize the results to arbitrary time-dependence. Explicit theoretical expressions for the displacement and the stress components for a two-dimensional dislocation source have been obtained. These expressions can be used to calculate the theoretical seismograms due to a two-dimensional dislocation in an unbounded medium.

1. Introduction

The problem of a two-dimensional dynamical dislocation in a uniform unbounded medium has been discussed by several investigators (see, e.g., BOORE *et al.*, 1971; NIAZY, 1973; GELLER, 1974; BOORE and ZOBACK, 1974). In a recent paper (SINGH and SIKKA, 1988; hereinafter referred to as Paper I), we considered in great detail the problem of a two-dimensional dynamical dislocation in infinite and semi-infinite media, assuming harmonic time-dependence. In the present study, we extend the results of Paper I to arbitrary time-dependence of the source.

2. Basic Equations

We consider a homogeneous, isotropic, unbounded, elastic medium of density ρ and elastic parameters λ , μ . Assuming a harmonic time-dependence $\exp(-i\omega t)$, the equations of motion in two-dimensions may be expressed as follows:

$$(\lambda + \mu)\partial_{\alpha}\partial_{\beta}u_{\beta} + \mu\nabla^{2}u_{\alpha} + f_{\alpha} + \rho\omega^{2}u_{\alpha} = 0, \qquad \text{(Plane strain)} \tag{1}$$

$$\mu \nabla^2 u_3 + f_3 + \rho \omega^2 u_3 = 0, \qquad \text{(Antiplane strain)} \tag{2}$$

where

$$\partial/\partial x_3 \equiv 0$$
, $\partial_i \equiv \partial/\partial x_i$, $\nabla^2 \equiv \partial_\alpha \partial_\alpha$. (3)

The summation over repeated suffixes is understood. The Greek subscripts can assume the values 1 and 2 only while the Latin subscripts can assume the values

1, 2, and 3, f_i is the body force per unit volume, and u_i are the displacement components.

Let $G^{\alpha}_{\beta}(Q, P)$ be the x_{α} -component of the displacement at the point $Q(x_1, x_2)$ caused by a line force of unit magnitude acting at the point $P(y_1, y_2)$ in the x_{β} -direction. $G^{3}_{3}(Q, P)$ is similarly defined. Then, displacement field due to a long displacement dislocation can be expressed as line integrals (see Paper I):

Dip-slip

$$u_{\gamma}(Q) = \int_{L} b \left[G_{12}^{\gamma} \cos 2\delta + \frac{1}{2} (G_{22}^{\gamma} - G_{11}^{\gamma}) \sin 2\delta \right] \mathrm{d}s , \qquad (4)$$

Strike-slip

$$u_{3}(Q) = \int_{L} b(G_{32}^{3} \cos \delta - G_{31}^{3} \sin \delta) \,\mathrm{d}s \,. \tag{5}$$

In Eqs. (4) and (5), L is the fault section, b is the magnitude of the dislocation, δ is the dip angle and

$$G^{\gamma}_{\alpha\beta}(Q,P) = -\lambda \delta_{\alpha\beta} \partial_{\varepsilon} G^{\gamma}_{\varepsilon} - \mu (\partial_{\alpha} G^{\gamma}_{\beta} + \partial_{\beta} G^{\gamma}_{\alpha}) , \qquad (6)$$

$$G^3_{3\beta}(Q,P) = -\mu \partial_\beta G^3_3.$$
⁽⁷⁾

For the stress field, we have the following results:

Dip-slip

$$p_{\gamma \varepsilon}(Q) = \int_{L} b \left[G_{12}^{\gamma \varepsilon} \cos 2\delta + \frac{1}{2} (G_{22}^{\gamma \varepsilon} - G_{11}^{\gamma \varepsilon}) \sin 2\delta \right] \mathrm{d}s , \qquad (8)$$

Strike-slip

$$p_{3\alpha}(Q) = \int_{L} b(G_{32}^{3\alpha} \cos \delta - G_{31}^{3\alpha} \sin \delta) \,\mathrm{d}s \,. \tag{9}$$

In Eqs. (8) and (9),

$$G_{\alpha\beta}^{\gamma\varepsilon} = \lambda \delta_{\gamma\varepsilon} \partial_{\theta} G_{\alpha\beta}^{\theta} + \mu (\partial_{\gamma} G_{\alpha\beta}^{\varepsilon} + \partial_{\varepsilon} G_{\alpha\beta}^{\gamma}) , \qquad (10)$$

$$G_{3\beta}^{3\alpha} = \mu \partial_{\alpha} G_{3\beta}^{3} . \tag{11}$$

1.00

Explicit expressions for $G_{\alpha\beta}^{\gamma}$, etc., in terms of the Hankel functions of the first kind $H_m(x) = H_m^{(1)}(x)$ have been obtained in Paper I.

3. Theoretical Seismograms

The expressions for the Green's functions G^{β}_{α} , G^{3}_{3} , $G^{\gamma}_{\alpha\beta}$, $G^{3}_{3\beta}$, $G^{\gamma\epsilon}_{\alpha\beta}$, and $G^{3\alpha}_{3\beta}$ given in Paper I are valid for a harmonic time-dependence, $\exp(-i\omega t)$. We next generalize these results to an arbitrary time-dependence. In the following, if $g(\omega)$ is the harmonic solution, the corresponding time-domain solution is denoted by $g(t \mid f)$, assuming

the time-dependence of the source to be f(t). Let

$$g_{\rm m}(R, c_{\alpha}; \omega) = \frac{i}{4} e^{m\pi i/2} H_{\rm m}(K_{\alpha}R) e^{-i\omega t}, K_{\alpha} = \omega/c_{\alpha}.$$
(12)

However, we know that (MAGNUS et al., 1966; p. 81)

$$\pi H_{\rm m}(z) = -2i \mathrm{e}^{-m\pi i/2} \int_0^\infty \mathrm{e}^{iz \cosh u} \cosh\left(mu\right) \mathrm{d}u \,. \qquad (0 < \arg z < \pi)$$

Therefore, assuming that ω is complex with very small imaginary part which is positive, we obtain

$$e^{m\pi i/2}H_{\rm m}(K_{\alpha}R) = \frac{2}{\pi i} \int_0^\infty e^{iK_{\alpha}R\cosh u} \cosh mu \,\mathrm{d}u \tag{13}$$

$$= \frac{2}{\pi i} \int_{R}^{\infty} \frac{\mathrm{e}^{iK_{\alpha}S}}{(S^2 - R^2)^{1/2}} \cosh[m \cosh^{-1}(S/R)] \,\mathrm{d}S\,, \quad (14)$$

where $S = R \cosh u$. Using the integral representation (14) of the Hankel function of the first kind and order *m*, we have

$$g_{\rm m}(R, c_{\alpha}; \omega) = \frac{1}{2\pi} \int_{R}^{\infty} \frac{{\rm e}^{-i\omega(t-S/c_{\alpha})}}{(S^2 - R^2)^{1/2}} \cosh[m\cosh^{-1}(S/R)] \, {\rm d}S \,. \tag{15}$$

It is now apparent that corresponding to the harmonic solution $g_m(R, c_{\alpha}; \omega)$, the time-domain solution is given by

$$g_{\rm m}(R, c_{\alpha}; t \mid f) = \frac{1}{2\pi} \int_{R}^{\infty} \frac{f(t - S/c_{\alpha})}{(S^2 - R^2)^{1/2}} \cosh[m \cosh^{-1}(S/R)] \, \mathrm{d}S \,. \tag{16}$$

Putting $S/c_{\alpha} = t'$, Eq. (16) becomes

1.20

$$g_{\rm m}(R, c_{\alpha}; t \mid f) = \frac{1}{2\pi} \int_{R/c_{\alpha}}^{\infty} \frac{f(t-t')}{(t'^2 - R^2/c_{\alpha}^2)^{1/2}} \cosh[m \cosh^{-1}(c_{\alpha}t'/R)] dt' \,. \tag{17}$$

Therefore, $g_{\rm m}(R, c_{\alpha}; t \mid f)$ can be regarded as the convolution of f(t) with the function

$$\frac{1}{2\pi} H\left(t - \frac{R}{c_{\alpha}}\right) \frac{\cosh[m\cosh^{-1}(c_{\alpha}t/R)]}{(t^2 - R^2/c_{\alpha}^2)^{1/2}},$$
(18)

where H(t) denotes the Heaviside unit-step function.

If the source acts only for a finite time, so that f(t)=0 except in the interval $0 < t < \tau$, Eq. (17) reveals that, for $t - \frac{R}{c_{\pi}} \gg \tau$,

$$g_{\rm m}(R, c_{\alpha}; t \mid f) = \frac{1}{2\pi} H\left(t - \frac{R}{c_{\alpha}}\right) \frac{\cosh[m \cosh^{-1}(c_{\alpha}t/R)]}{(t^2 - R^2/c_{\alpha}^2)^{1/2}} \int_0^\tau f(T) \, \mathrm{d}T \,. \tag{19}$$

Equation (19) gives the well-known "tail" typical to two-dimensional wave propagation.

If f(t) = 0 for t < 0, Eq. (16) should be replaced by

$$g_{m}(R, c_{\alpha}; t \mid f) = \frac{1}{2\pi} H\left(t - \frac{R}{c_{\alpha}}\right) \int_{R}^{c_{\alpha}t} \frac{f(t - S/c_{\alpha})}{(S^{2} - R^{2})^{1/2}} \cosh[m \cosh^{-1}(S/R)] \, \mathrm{d}S \,. \tag{20}$$

The time-domain expressions for the displacement components for a line force, G^{β}_{α} and $G^{3}_{3\beta}$, the displacement components for a displacement dislocation, $G^{\gamma}_{\alpha\beta}$ and $G^{3}_{3\beta}$, and the stress components for a displacement dislocation, $G^{\gamma e}_{\alpha\beta}$ and $G^{3\alpha}_{3\beta}$ can now be obtained from Eqs. (24)–(29) of Paper I. We find

$$G_{\alpha}^{\beta}(t|f) = \frac{1}{2\mu} \left[\left(\frac{c_2}{c_1} \right)^2 \{ \delta_{\alpha\beta} g_0(R, c_1; t| f) - (\delta_{\alpha\beta} - 2X_{\alpha} X_{\beta}) g_2(R, c_1; t| f) \} + \delta_{\alpha\beta} g_0(R, c_2; t| f) + (\delta_{\alpha\beta} - 2X_{\alpha} X_{\beta}) g_2(R, c_2; t| f) \right], \qquad (21)$$

$$G_{3}^{3}(t|f) = \frac{1}{\mu} g_{0}(R, c_{2}; t|f), \qquad (22)$$

$$G_{\alpha\beta}^{\gamma}(t \mid f) = \frac{1}{2c_{2}} \left[\left(\frac{c_{2}}{c_{1}} \right)^{3} \left\{ \left(2\frac{2A-1}{1-A} \delta_{\alpha\beta} X_{\gamma} + \sum \delta_{\beta\gamma} X_{\alpha} \right) g_{1}(R, c_{1}; t \mid f') - \left(\sum \delta_{\beta\gamma} X_{\alpha} - 4X_{\alpha} X_{\beta} X_{\gamma} \right) g_{3}(R, c_{1}; t \mid f') \right\} + \left(\sum \delta_{\beta\gamma} X_{\alpha} - 2\delta_{\alpha\beta} X_{\gamma} \right) g_{1}(R, c_{2}; t \mid f') + \left(\sum \delta_{\beta\gamma} X_{\alpha} - 4X_{\alpha} X_{\beta} X_{\gamma} \right) g_{3}(R, c_{2}; t \mid f') \right], \qquad (23)$$
$$G_{3g}^{3}(t \mid f) = \frac{1}{-1} X_{g} g_{1}(R, c_{2}; t \mid f'), \qquad (24)$$

$$T_{3\beta}^{3}(t \mid f) = \frac{1}{c_{2}} X_{\beta} g_{1}(R, c_{2}; t \mid f'), \qquad (24)$$

$$G_{\alpha\beta}^{\gamma\varepsilon}(t|f) = \frac{\mu}{6c_2^2} \left[-3\left(\frac{c_2}{c_1}\right)^4 \left\{ 2\frac{2A-1}{1-A} \left(\frac{c_1}{c_2}\right)^2 \delta_{\alpha\beta} \delta_{\gamma\varepsilon} \right. \right. \\ \left. + \sum \delta_{\alpha\beta} \delta_{\gamma\varepsilon} \right\} g_0(R, c_1; t|f'') \\ \left. + 4\left(\frac{c_2}{c_1}\right)^4 \left\{ 3\frac{2A-1}{1-A} \left(\delta_{\alpha\beta} \delta_{\gamma\varepsilon} - \delta_{\alpha\beta} X_{\gamma} X_{\varepsilon} - \delta_{\gamma\varepsilon} X_{\alpha} X_{\beta} \right) \right. \\ \left. + \sum \delta_{\alpha\beta} \delta_{\gamma\varepsilon} - \sum \delta_{\alpha\beta} X_{\gamma} X_{\varepsilon} \right\} g_2(R, c_1; t|f'')$$

On Two-Dimensional Dynamical Dislocations

$$-\left(\frac{c_{2}}{c_{1}}\right)^{4} \left(\sum \delta_{\alpha\beta} \delta_{\gamma\varepsilon} - 4\sum \delta_{\alpha\beta} X_{\gamma} X_{\varepsilon} + 24 X_{\alpha} X_{\beta} X_{\gamma} X_{\varepsilon}\right) g_{4}(R, c_{1}; t \mid f'')$$

$$-3 \left(\sum \delta_{\alpha\beta} \delta_{\gamma\varepsilon} - 2 \delta_{\alpha\beta} \delta_{\gamma\varepsilon}\right) g_{0}(R, c_{2}; t \mid f'')$$

$$+2 \left(\sum \delta_{\alpha\beta} \delta_{\gamma\varepsilon} - 3 \delta_{\alpha\beta} \delta_{\gamma\varepsilon} + 3 \delta_{\alpha\beta} X_{\gamma} X_{\varepsilon} + 3 \delta_{\gamma\varepsilon} X_{\alpha} X_{\beta}\right)$$

$$-\sum \delta_{\alpha\beta} X_{\gamma} X_{\varepsilon}\right) g_{2}(R, c_{2}; t \mid f'')$$

$$+ \left(\sum \delta_{\alpha\beta} \delta_{\gamma\varepsilon} - 4\sum \delta_{\alpha\beta} X_{\gamma} X_{\varepsilon} + 24 X_{\alpha} X_{\beta} X_{\gamma} X_{\varepsilon}\right) g_{4}(R, c_{2}; t \mid f'')\right], \qquad (25)$$

$$G_{3\beta}^{3\alpha}(t|f) = \frac{\mu}{2c_2^2} \left[-\delta_{\alpha\beta} g_0(R, c_2; t|f'') + (\delta_{\alpha\beta} - 2X_{\alpha} X_{\beta}) g_2(R, c_2; t|f'') \right], \quad (26)$$

where a prime denotes differentiation with respect to the argument. Moreover,

$$\delta_{\alpha\beta} = \text{Kronecker delta},$$

$$R^{2} = (x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2},$$

$$X_{\alpha} = (x_{\alpha} - y_{\alpha})/R,$$

$$c_{1}, c_{2} = \text{P and S wave-velocities},$$

$$A = (\lambda + \mu)/(\lambda + 2\mu).$$

The symbols $\Sigma \delta_{\alpha\beta} \delta_{\gamma e}$, etc., are defined in Paper I.

In the derivation of Eqs. (23)-(26), we have made use of the results that the time-domain solution corresponding to $-i\omega g(R, c_{\alpha}; \omega)$ is $g(R, c_{\alpha}; t | f')$ and the time-domain solution corresponding to

$$-\omega^2 g(R, c_{\alpha}; \omega)$$
 is $g(R, c_{\alpha}; t \mid f'')$.

For vertical dip-slip and vertical strike-slip dislocations, Eqs. (20), (23), and (24) yield the following explicit expressions representing displacements:

$$G_{12}^{1}(t|f) = \frac{1}{4\pi c_{2}} \left[\left(\frac{c_{2}}{c_{1}} \right)^{3} \sin \theta H \left(t - \frac{R}{c_{1}} \right) \int_{R}^{c_{1}t} \frac{f'(t - S/c_{1})}{(S^{2} - R^{2})^{1/2}} \left(\frac{S}{R} \right) dS + \left(\frac{c_{2}}{c_{1}} \right)^{3} \sin 3\theta H \left(t - \frac{R}{c_{1}} \right) \int_{R}^{c_{1}t} \frac{f'(t - S/c_{1})}{(S^{2} - R^{2})^{1/2}} \left(4\frac{S^{3}}{R^{3}} - 3\frac{S}{R} \right) dS + \sin \theta H \left(t - \frac{R}{c_{2}} \right) \int_{R}^{c_{2}t} \frac{f'(t - S/c_{2})}{(S^{2} - R^{2})^{1/2}} \left(\frac{S}{R} \right) dS - \sin 3\theta H \left(t - \frac{R}{c_{2}} \right) \int_{R}^{c_{2}t} \frac{f'(t - S/c_{2})}{(S^{2} - R^{2})^{1/2}} \left(4\frac{S^{3}}{R^{3}} - 3\frac{S}{R} \right) dS \right], \quad (27 a)$$

$$G_{12}^{2}(t|f) = \frac{1}{4\pi c_{2}} \left[\left(\frac{c_{2}}{c_{1}} \right)^{3} \cos \theta H \left(t - \frac{R}{c_{1}} \right) \int_{R}^{c_{1}t} \frac{f'(t - S/c_{1})}{(S^{2} - R^{2})^{1/2}} \left(\frac{S}{R} \right) dS \right]$$

S. J. SINGH and J. S. SIKKA

$$-\left(\frac{c_2}{c_1}\right)^3 \cos 3\theta H\left(t - \frac{R}{c_1}\right) \int_R^{c_1 t} \frac{f'(t - S/c_1)}{(S^2 - R^2)^{1/2}} \left(4\frac{S^3}{R^3} - 3\frac{S}{R}\right) dS + \cos \theta H\left(t - \frac{R}{c_2}\right) \int_R^{c_2 t} \frac{f'(t - S/c_2)}{(S^2 - R^2)^{1/2}} \left(\frac{S}{R}\right) dS + \cos 3\theta H\left(t - \frac{R}{c_2}\right) \int_R^{c_2 t} \frac{f'(t - S/c_2)}{(S^2 - R^2)^{1/2}} \left(4\frac{S^3}{R^3} - 3\frac{S}{R}\right) dS \right], \quad (27 \text{ b})$$

$$G_{31}^{3}(t \mid f) = \frac{1}{2\pi c_{2}} \cos \theta H \left(t - \frac{R}{c_{2}} \right) \int_{R}^{c_{2}t} \frac{f'(t - S/c_{2})}{(S^{2} - R^{2})^{1/2}} \left(\frac{S}{R} \right) \mathrm{d}S , \qquad (28)$$

where

$$X_1 = \cos \theta$$
, $X_2 = \sin \theta$.

It can be easily seen that

$$G_0^{\gamma} = G_{11}^{\gamma} + G_{22}^{\gamma} = G_{\alpha\alpha}^{\gamma}$$

corresponds to the displacement field due to a dilatational line source. From Eqs. (20) and (23), we find

$$G_{0}^{R}(t \mid f) = G_{0}^{1} \cos \theta + G_{0}^{2} \sin \theta$$

= $\frac{A}{\pi c_{1}} H \left(t - \frac{R}{c_{1}} \right) \int_{R}^{c_{1}t} \frac{f'(t - S/c_{1})}{(S^{2} - R^{2})^{1/2}} \left(\frac{S}{R} \right) dS,$ (29)
 $G_{0}^{\theta}(t \mid f) = G_{0}^{2} \cos \theta - G_{0}^{1} \sin \theta = 0.$

Equation (29) represents P waves with purely radial displacements.

Consider the particular case in which f(t) = H(t). Equations (27)–(29) then yield

$$G_{12}^{1}(t|H) = \frac{1}{4\pi} \left[\left(\frac{c_2}{c_1} \right)^2 H \left(t - \frac{R}{c_1} \right) \frac{c_1 t}{R} (c_1^2 t^2 - R^2)^{-1/2} \left\{ \sin \theta + \left(4 \frac{c_1^2 t^2}{R^2} - 3 \right) \sin 3\theta \right\} + H \left(t - \frac{R}{c_2} \right) \frac{c_2 t}{R} (c_2^2 t^2 - R^2)^{-1/2} \left\{ \sin \theta - \left(4 \frac{c_2^2 t^2}{R^2} - 3 \right) \sin 3\theta \right\} \right], \quad (30 a)$$

$$G_{12}^{2}(t \mid H) = \frac{1}{4\pi} \left[\left(\frac{c_{2}}{c_{1}} \right)^{2} H \left(t - \frac{R}{c_{1}} \right) \frac{c_{1}t}{R} (c_{1}^{2}t^{2} - R^{2})^{-1/2} \left\{ \cos \theta - \left(4 \frac{c_{1}^{2}t^{2}}{R^{2}} - 3 \right) \cos 3\theta \right\}$$

$$+H\left(t-\frac{R}{c_2}\right)\frac{c_2t}{R}(c_2^2t^2-R^2)^{-1/2}\left\{\cos\theta+\left(4\frac{c_2^2t^2}{R^2}-3\right)\cos3\theta\right\}\right],\quad(30\text{ b})$$

$$G_{31}^{3}(t|H) = \frac{1}{2\pi} H\left(t - \frac{R}{c_2}\right) \frac{c_2 t}{R} (c_2^2 t^2 - R^2)^{-1/2} \cos\theta, \qquad (31)$$

$$G_0^R(t|H) = \frac{A}{\pi} H\left(t - \frac{R}{c_1}\right) \frac{c_1 t}{R} (c_1^2 t^2 - R^2)^{-1/2}, \qquad (32)$$

where we have used the relations

$$H'(t-S/c_{\alpha}) = \delta(t-S/c_{\alpha}) = c_{\alpha}\delta(S-c_{\alpha}t) .$$

Taking the limit as $t \rightarrow \infty$, Eqs. (30)–(32) give

$$G_{12}^{1} = \frac{1}{4\pi R} [(2-A)\sin\theta + A\sin 3\theta], \qquad (33)$$

$$G_{12}^{2} = \frac{1}{4\pi R} [(2-A)\cos\theta - A\cos 3\theta], \qquad (34)$$

$$G_{31}^3 = \frac{1}{2\pi R} \cos \theta , \qquad G_0^R = \frac{A}{\pi R} .$$
 (35)

Equations (33)–(35) coincide with the corresponding statical results.

The displacement $G_{31}^3(t \mid H)$ in Eq. (31) falls from ∞ at $t = R/c_2$ and approaches the static limit $(1/2\pi R) \cos \theta$ at $t \to \infty$. Writing

$$t = \frac{R}{c_{\alpha}} + \tau_{\alpha} \qquad (\tau_{\alpha} > 0) , \qquad (36)$$

we get, for small values of $s_2 = c_2 \tau_2 / R$,

$$G_{31}^{3}(t|H) \sim \frac{\cos\theta}{2\pi R} H(\tau_{2}) \left[\frac{1}{\sqrt{2s_{2}}} \left(1 + \frac{3}{4} s_{2} \right) \right].$$
(37)

The displacement consists of a sudden jerk at $t=R/c_2$, followed by a gradual recovery, which is incomplete.

For small values of $s_1 = c_1 \tau_1 / R$, Eq. (30 a) yields, for the P pulse,

$$G_{12}^{1}(t \mid H) \sim \frac{1 - A}{4\pi R} H(\tau_{1}) \left[\frac{1}{\sqrt{2s_{1}}} \left(1 + \frac{3}{4} s_{1} \right) \sin \theta + \frac{1}{\sqrt{2s_{1}}} \left(1 + \frac{35}{4} s_{1} \right) \sin 3\theta \right].$$
(38)

Similarly, for small values of $s_2 = c_2 \tau_2 / R$, we find, for the S pulse,

$$G_{12}^{1}(t \mid H) \sim \frac{1}{4\pi R} H(\tau_{2}) \left[\frac{1}{\sqrt{2s_{2}}} \left(1 + \frac{3}{4} s_{2} \right) \sin \theta - \frac{1}{\sqrt{2s_{2}}} \left(1 + \frac{35}{4} s_{2} \right) \sin 3\theta \right].$$
(39)

In this case, the displacement consists of a sudden jerk at $t = R/c_1$ (P pluse), another sudden jerk at $t = R/c_2$ (S pulse), followed by a gradual recovery, which is incomplete.

Figure 1 shows the variation of G_{31}^3 with t for $\theta = 0^\circ$. Figures 2, 3, and 4 show the variation of G_{12}^2 with t for $\theta = 0^\circ$, 30° , and 60° , respectively, for the Poisson case $c_1 = \sqrt{3} c_2$. When $\theta = 0^\circ$, G_{12}^2 increases from 0 to $-\sqrt{6}/3\pi R$ as t increases

S. J. SINGH and J. S. SIKKA

from R/c_1 to R/c_2 . There is a sudden jerk at R/c_2 followed by a gradual recovery to the static limit $1/6\pi R$. For $\theta = 30^{\circ}$, there is a sudden jerk at R/c_1 followed by another jerk at R/c_2 . For $\theta = 60^{\circ}$, $G_{12}^2 \rightarrow -\infty$ as $t \rightarrow R/c_2 + 0$. Thus, we notice that the behaviour of G_{12}^2 strongly depends upon the angle θ . The variation of G_{12}^1 is similar to the variation of G_{12}^2 . The following relations follow from Eqs. (30 a) and (30 b).

$$G_{12}^{1}(\theta = 30^{\circ}) = G_{12}^{2}(\theta = 60^{\circ}) ,$$

$$G_{12}^{1}(\theta = 60^{\circ}) = G_{12}^{2}(\theta = 30^{\circ}) ,$$

$$G_{12}^{1}(\theta = 90^{\circ}) = G_{12}^{2}(\theta = 0^{\circ}) .$$

Neglecting $1/R^{3/2}$ and higher powers of 1/R, we have the following far-field approximations obtained from Eqs. (30 a, b):

$$G_{12}^{1}(t \mid H) = \frac{(1 - A)H(\tau_{1})}{2\pi(2c_{1}\tau_{1}R)^{1/2}}\cos\theta\sin 2\theta - \frac{H(\tau_{2})}{2\pi(2c_{2}\tau_{2}R)^{1/2}}\sin\theta\cos 2\theta, \qquad (40)$$
$$G_{12}^{2}(t \mid H) = \frac{(1 - A)H(\tau_{1})}{2\pi(2c_{1}\tau_{1}R)^{1/2}}\sin\theta\sin 2\theta + \frac{H(\tau_{2})}{2\pi(2c_{2}\tau_{2}R)^{1/2}}\cos\theta\cos 2\theta. \qquad (41)$$

Therefore,

$$G_{12}(t \mid H) = e_1 G_{12}^1(t \mid H) + e_2 G_{12}^2(t \mid H)$$

= $\frac{(1 - A)H(\tau_1)}{2\pi(2c_1\tau_1 R)^{1/2}} \sin 2\theta e_R + \frac{H(\tau_2)}{2\pi(2c_2\tau_2 R)^{1/2}} \cos 2\theta e_{\theta}.$

The first term in Eq. (42) corresponds to P waves and the second term corresponds to S waves. The far-field displacements decay with distance as $R^{-1/2}$. Moreover, the ratio of the far-field S wave amplitude to the far-field P wave amplitude is about $(c_1/c_2)^{5/2}$, which is roughly equal to 4, if $\lambda = \mu$.

The authors are thankful to the Council of Scientific and Industrial Research, New Delhi, for financial support through the research project "Seismic Source Studies."

REFERENCES

BOORE, D. M. and D. M. ZOBACK, Near-field motions from kinematic models of propagating faults, *Bull. Seismol. Soc. Am.*, **64**, 321-342, 1974.

BOORE, D. M., K. AKI, and T. TODD, A two-dimensional moving dislocation model for a strike-slip fault, Bull. Seismol. Soc. Am., 61, 177-194, 1971.

GELLER, R. J., Representation theorems for an infinite shear fault, Geophys. J. R. Astron. Soc., 39, 123-131, 1974.

MAGNUS, W., F. OBERHETTINGER, and R. P. SONI, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, New York, 1966.

NIAZY, A., Elastic displacements caused by a propagating crack in an infinite medium: An exact solution, *Bull. Seismol. Soc. Am.*, **63**, 357–379, 1973.

SINGH, S. J. and J. S. SIKKA, On two-dimensional dynamical dislocations, J. Phys. Earth, 36, 27-41, 1988.