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The problem of a two-dimensional dynamical dislocation in an isotropic, 

homogeneous, unbounded, elastic medium has been discussed by the present authors 

in a recent paper (SINGH and SIKKA, 1988), assuming harmonic time-dependence. 

The aim of the present paper is to generalize the results to arbitrary time-dependence. 

Explicit theoretical expressions for the displacement and the stress components for 

a two-dimensional dislocation source have been obtained. These expressions can 

be used to calculate the theoretical seismograms due to a two-dimensional 

dislocation in an unbounded medium. 

1. Introduction 

 The problem of a two-dimensional dynamical dislocation in a uniform 

unbounded medium has been discussed by several investigators (see, e.g., BOORE et 

al., 1971; NIAZY, 1973; GELLER, 1974; BOORS and ZOBACK, 1974). In a recent paper 

(SINGH and SIKKA, 1988; hereinafter referred to as Paper I), we considered in great 

detail the problem of a two-dimensional dynamical dislocation in infinite and 

semi-infinite media, assuming harmonic time-dependence. In the present study, we 

extend the results of Paper I to arbitrary time-dependence of the source. 

2. Basic Equations 

 We consider a homogeneous, isotropic, unbounded, elastic medium of density 

p and elastic parameters A,, pl. Assuming a harmonic time-dependence exp(—iƒÖt), 

the equations of motion in two-dimensions may be expressed as follows:

(1) 

(2)

where

(3)

The summation over repeated suffixes is understood. The Greek subscripts can 
assume the values 1 and 2 only while the Latin subscripts can assume the values 
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1, 2, and 3, f is the body force per unit volume, and u, are the displacement 

components. 

 Let Gap(Q, P) be the x.-component of the displacement at the point Q(x1,x2) 

caused by a line force of unit magnitude acting at the point P(y1, y2) in the 

xƒÀ-direction. G33(Q, P) is similarly defined. Then, displacement field due to a long 

displacement dislocation can be expressed as line integrals (see Paper I): 

 Dip-slip

(4)

Strike-slip

(5)

In Eqs. (4) and (5), L is the fault section, b is the magnitude of the dislocation, 6 
is the dip angle and

(6) 

(7)

For the stress field, we have the following results: 

 Dip-slip

(8)

Strike-slip

(9)

In Eqs. (8) and (9),

(10) 

(11)

Explicit expressions for G7ƒ¿ƒÀ, etc., in terms of the Hankel functions of the first kind 

Hm(x)= H(x) have been obtained in Paper I. 

3. Theoretical Seismograms 

 The expressions for the Green's functions GƒÀƒ¿, G33, G3ƒ¿ƒÀ,G, and Grp given 

in Paper I are valid for a harmonic time-dependence, exp(— iƒÖt). We next generalize 

these results to an arbitrary time-dependence. In the following, if g(co) is the harmonic 

solution, the corresponding time-domain solution is denoted by g(t f), assuming
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the time-dependence of the source to be f(t). Let

(12)

However, we know that (MAGNUS et al., 1966; p. 81)

Therefore, assuming that co is complex with very small imaginary part which is 

positive, we obtain

(13) 

(14)

where S= R cosh u. Using the integral representation (14) of the Hankel function 
of the first kind and order m, we have

(15)

It is now apparent that corresponding to the harmonic solution gm(R, ca; co), the 
time-domain solution is given by

(16)

Putting S/Cƒ¿ = t', Eq. (16) becomes

(17)

Therefore, gm(R, ca; t I f) can be regarded as the convolution off (t) with the function

(18)

where H(t) denotes the Heaviside unit-step function. 
 If the source acts only for a finite time, so that f(t)= 0 except in the interval

(19)
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Equation (19) gives the well-known "tail" typical to two-dimensional wave 

propagation.

(20)

 The time-domain expressions for the displacement components for a line force, 

 Gƒ¿ƒÀ and G33, the displacement components for a displacement dislocation, Gaff and 

G33ƒÀ, and the stress components for a displacement dislocation, Gap and G 3p` can 

now be obtained from Eqs. (24)—(29) of Paper I. We find

(21) 

(22)

(23) 

(24)
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(25) 

(26)

where a prime denotes differentiation with respect to the argument. Moreover,

The symbols ƒ°ƒÆE6,05yE, etc., are defined in Paper I. 

 In the derivation of Eqs. (23)—(26), we have made use of the results that the 

time-domain solution corresponding to — iƒÖg(R, ca; co) is g(R, ca; t|f') and the 

time-domain solution corresponding to

 For vertical dip-slip and vertical strike-slip dislocations, Eqs. (20), (23), and 

(24) yield the following explicit expressions representing displacements:

(27 a)
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(27 b) 

(28)

where

It can be easily seen that

corresponds to the displacement field due to a dilatational line source. From Eqs. 

(20) and (23), we find

(29)

Equation (29) represents P waves with purely radial displacements. 
 Consider the particular case in which f(t) = H(t). Equations (27)—(29) then yield

(30 a)

(30 b) 

(31) 

(32)
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where we have used the relations

Taking the limit as t—> •‡, Eqs. (30)—(32) give

(33) 

(34) 

(35)

Equations (33)—(35) coincide with the corresponding statical results. 

 The displacement G331(t|H) in Eq. (31) falls from co at t= R/c2 and approaches 

the static limit (1/2ƒÎR) cos ƒÆ at t—•‡. Writing

(36)

we get, for small values of s2 = c2ƒÑ2/R,

(37)

The displacement consists of a sudden jerk at t = R/c2, followed by a gradual 

recovery, which is incomplete. 

 For small values of s1= c1ƒÑ1/R, Eq. (30 a) yields, for the P pulse,

(38)

Similarly, for small values of s2 = c2ƒÑ2/R, we find, for the S pulse,

(39)

 In this case, the displacement consists of a sudden jerk at t= R/c1 (P pluse), 
another sudden jerk at t = R/c2 (S pulse), followed by a gradual recovery, which is 
incomplete. 

 Figure 1 shows the variation of G331 with t for 0= 0°. Figures 2, 3, and 4 show 

the variation of G .2 with t for 0=0°, 30°, and 60°, respectively, for the Poisson 

case c1=•ã3 c2. When 0=0°, G 12 increases from 0 to - •ã 6 /3ƒÎR as t increases
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Fig. 1. Variation of G331 with t for 0=0°.

Fig. 2. Variation of G?2 with t for 0=0°.
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Fig. 3. Variation of G212 with t for 0=30°. 

Fig. 4. Variation of G212 with t for 0=60°. 

from R/c1 to R/c2. There is a sudden jerk at R/c2 followed by a gradual recovery 

to the static limit l/6ƒÎR. For 9=30°, there is a sudden jerk at R/cl followed by 

another jerk at R/c2. For 0=60°, - CO as t—*R/c2 + 0. Thus, we notice that 

the behaviour of G?, strongly depends upon the angle 0. The variation of G 12 is
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similar to the variation of G212. The following relations follow from Eqs. (30 a) 
and (30 b).

 Neglecting 1/R3/2 and higher powers of l/R, we have the following far-field 
approximations obtained from Eqs. (30 a, b):

(40) 

(41)

Therefore,

The first term in Eq. (42) corresponds to P waves and the second term corresponds 

to S waves. The far-field displacements decay with distance as R-1/2. Moreover, 

the ratio of the far-field S wave amplitude to the far-field P wave 

amplitude is about (c1/c2)5/2, which is roughly equal to 4, if ƒÉ = ƒÊ. 

 The authors are thankful to the Council of Scientific and Industrial Research, New 

Delhi, for financial support through the research project "Seismic Source Studies." 
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