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The problem of a two-dimensional dynamical dislocation in an isotropic, 

homogeneous, unbounded, elastic medium is discussed at length. Beginning with 

the known solution for a line force, the field due to a displacement dislocation is 

obtained through the Volterra relation. It is.shown that the field due to a dip-slip 

source of arbitrary dip can be expressed in terms of the field due to a vertical dip-slip 

source and that due to a 45•‹ dip-slip source. The representations of the two-

dimensional dynamical sources are obtained in terms of the vector solutions of the 

Navier equation and in terms of the source potentials. The potential representation 

is used to get the field due to an arbitrary line source buried in a uniform half-space. 

1. Introduction 

Inspired by the pioneering work of STEKETEE (1958) on the geophysical 

applications of the elasticity theory of dislocations, MARUYAMA (1963) obtained the 

Green's functions for a three-dimensional dynamical dislocation in an infinite 

medium. BEN-MENAHEM and SINGH (1968) obtained the corresponding results for a 

layer over a half-space. Since then, several investigators have considered the 

problem of a three-dimensional dynamical dislocation in a layered half-space. 

BOORE et al. (1971) discussed the antiplane strain problem of a two-dimensional 

moving dislocation representing a strike-slip fault. NIAZY (1973) obtained analytical 

expressions for the displacements in an infinite medium caused by a two-

dimensional dislocation. GELLER (1974) integrated the three-dimensional solution 

to obtain the Green's function for a two-dimensional shear dislocation. The analytic 

solutions obtained have been evaluated numerically for a propagating ramp source 

function. 

In the present paper, we discuss in detail the problem of a two-dimensional 

dynamical dislocation in infinite and semi-infinite media and indicate how the 

results for a multilayered half-space can be obtained. Both plane strain and 

antiplane strain problems are considered. The problem of a two-dimensional static 

dislocation has been discussed earlier by MARUYAMA (1966), RYBICKI (1971), SINGH 

and GARG (1985, 1986), and others. 
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2. Basic Solution 

 Let us consider a homogeneous, isotropic, unbounded, elastic medium of 

density p and Lame's constants ƒÉ,ƒÊ. We are interested in a two-dimensional 

approximation in which the field equations, body force density and boundary 

conditions are all functions of only two Cartesian coordinates xƒ¿ (ƒ¿ = 1, 2), so that 

c /x3, = 0. Under this assumption, the plane strain problem (u3 = 0) and the antiplane 

strain problem (uƒ¿=0) are decoupled and, therefore, can be tackled separately. 

 Assuming a harmonic time-dependence exp(-iƒÖt), the equations of motion 

may be written in the form

(1) 

(2) 

where 

(3) 

The summation over repeated suffixes is understood (the Greek subscripts can 

assume the values 1 and 2 only while the Latin subscripts can assume the values 1, 2, 

and 3), co is the angular frequency and f (x1, x,) is the body force per unit volume. 

For a line force of magnitude Fi per unit length acting at the point P(y1, y2) in the 

xi-direction, we have 

(4) 

where 6(_x) is the Dirac delta function. 

 Let Ga(Q, P) denote the xx component of the displacement at the point 

Q(x1, x2) caused by a line force of unit magnitude acting at the point P(y1, y2) in the 

xƒÀ-direction. G33(Q, P) is similarly defined. The solutions of Eqs. (1) and (2) with f 

of Eq. (4) are (ERINGEN and SUHUBI, 1975; p. 435) 

(5) 

(6) 

where Hm(x) __ H(1)m(x) is the Hankel function of the mth order and first kind, (54 is 

the Kronecker delta and 

R2 = (x1-y1)2 + (x2-y2)2 , Kƒ¿=ƒÖ/cƒ¿, 

c1=[(ƒÉ+2ƒÊ)/ƒÏ]1/2 , c2= (ƒÊ/ƒÏ)1/2.(7)

 Equations (5) and (6) are the fundamental solutions of the equations of motion 

from which the field due to higher order sources, e.g., single couple, double couple, 

dipole, etc., can be obtained by simple differentiation and superposition.
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3. Displacement Dislocations 

 Taking the x3-axis along the strike of the fault and the x2-axis vertically 
downwards, it has been shown by MARUYAMA (1966) that the displacement field due 
to a long displacement dislocation can be expressed as line integrals:

(8) 

(9)

where ƒ¢ui is the relative slip vector and nƒÀ is the unit normal to the fault section L. 

The Green's functions GƒÁƒ¿ƒÀ and G33ƒÀ are given by 

(10) 

(11) 

 From Eqs. (5), (6), (10), and (11), we find

(12) 

(13)

where A = (2 + p)/(), + 2 i). 

 If, in Eq. (8), the slip vector ƒ¢uƒ¿ is along the normal nƒÀ, we have a tensile 

dislocation while if ƒ¢uƒ¿ is perpendicular to nƒÀ, we have a shear dislocation. In the 

latter case, the shear dislocation is of the dip-slip type because the slip is 

perpendicular to the strike direction. Denoting the dip angle by 6 and the magnitude 

of the slip vector by b, we have, for a dip-slip dislocation 

ƒ¢u1=b cos ƒÂ, ƒ¢u2=bsin ƒÂ, 

n1=-sin ƒÂ, n2=cos ƒÂ.(14) 

Therefore, for a dip-slip dislocation, Eq. (8) takes the form

(15)

It is now apparent that G12 represents a vertical dip-slip dislocation and 

(1/2)(G22-G11) represents a dip-slip dislocation on a 45•‹ dipping fault. 

 Because the slip ƒ¢u3 is perpendicular to the normal nƒÀ, Eq. (9) corresponds to a 

strike-slip dislocation. Putting 

ƒ¢u3=b, n1=‚“in ƒÂ, n2= cosƒÂ,(16)
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Eq. (9) becomes

(17)

Therefore, the Green's function G331 represents a vertical strike-slip dislocation and 
G332, represents a horizontal strike-slip dislocation. 

 The stresses corresponding to the displacements of Eqs. (8) and (9) are given by

(18) 

(19)

where

(20) 

(21)

From Eqs. (12), (13), (20), and (21), we obtain

(22)

(23)

 Using the recurrence and differential relations for the Hankel functions, Eqs. 

(5), (6), (12), (13), (22), and (23) yield

(24) 

(25)

(26)
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(27)

(28) 

(29)

where 

 Xƒ¿= (xƒ¿-yƒ¿)/R , Xƒ¿Xƒ¿=1 ,(30) 

(31) 

(32) 

(33) 

4. Potential Representation 

 Let 

X1=(x1-yi)/R= cosƒÆ, X2=(x2-y2)/R= sinƒÆ,(34) 

and 

(35) 

(36) 

The potentials ƒ³ and ƒµ, (ƒÐ=c or s) satisfy the two-dimensional Helmholtz 

equation: 

(37)
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 From Eqs. (24), (25), (34), and (35), we find

(38) 

(39) 

(40) 

(41)

Similarly, Eqs. (26), (27), and (34)—(36) yield

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48)

5. Vector Representation For a plane strain problem (uƒ¿= uƒ¿(x1, x2), u3 = 0), two independent solutions 

of the homogeneous Navier equation 

(49) 

may be taken in the form

(50)
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(51)

where 

 eR = e1cosƒÆ+e2 sinƒÆ, 

e0=e2cosƒÆ-e1 sinƒÆ,(52) 

ez=e3 , 

and ei is the unit vector in the xi-direction. 
 We define 

(53) 

with 

(54) 

The vector Go is defined similarly. Equations (38)—(41), (42)—(47), and (50)—(54) 

yield

(55) 

(56) 

(57) 

(58) 

(59) 

(60)

6. Source Potentials 

 For a plane strain problem, we define the potentials ƒ³S, and ƒµS through the 

equations 

(61), 

Equations (55)-(61) then yield the following expressions for the potentials for 

various sources considered:
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(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73)

where the functions ƒ³ and ƒµ, are defined in Eqs. (35) and (36), respectively. 

 The potentials given in Eqs. (62)-(73) can be used for solving boundary-value 

problems involving cylindrical or plane-parallel boundaries in a plane strain 

problem. However, in an antiplane strain problem, Eqs. (41) and (48) can be used 

directly. 

7. Plane Waves 

 The solutions obtained in Secs. 4-6 are in the form of cylindrical waves 

emanating from a line source. At large distances from the source, a cylindrical wave 

can be regarded as approximately a plane wave. In fact, it is possible to express the 

scalar and vector cylindrical wave functions as integrals over plane waves, the
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representation being valid for all distances. 

 A longitudinal plane wave whose propagation vector is 

 K1=K1p= K1(e1cosƒÀ+e2sinƒÀ) 

can be represented by

(74) 

where /3 is the angle which the direction of propagation makes with the x1-axis and 

R=(x1-y1)e, +(x2-y2)e2= R(e1cosƒÆ+e2 sinƒÆ) . 

Similarly, a transverse plane wave can be represented by 

(75) 

The potentials and 0 satisfy the equations 

(76) 

 Two independent solutions of the vector Navier Eq. (49) representing plane 

longitudinal and transverse waves can be constructed from 0 and 0, respective-

ly, as follows:

(77) 

(78)

 The cylindrical wave potentials ƒ³m and ƒµ‚• defined in Eqs. (35) and (36) can be 

expressed in terms of the plane wave potentials fi and /i. We have (STRATTON, 1941, 

p. 396; BOSTROM et al., 1981)

(79)

i.e.,

(80) 

(81)

The contour C+ (for x2 > y2) in the complex /ƒÀ-plane begins at i•‡, runs along the 

imaginary axis up to the origin, then along the real axis up to )6= n and finally 

parallel to the imaginary axis to n—i•‡. In contrast, the contour C- (for x2 <y2) 

begins at it + i•‡, runs parallel to the imaginary axis up to /3 = n, then along the real
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axis up to 13=27r and finally parallel to the imaginary axis to 2ƒÎ-i•‡. Thus, if 

/3 E C+, then cos /3 is real and Im(sin /3) > 0 and, if $ e C-, then cos # is real but 

Im(sin /3) O. Consequently, exp[iKƒ¿(x2-y2) sin /3] is bounded for x2 y2 (x2 <y2) 

when /3 EC (fi E C- ). 

 Taking the gradient and the curl of the relevant functions, the vector cylindrical 

waves can be expressed in terms of vector plane waves. Equations (50), (51), and 

(77)—(81) yield

(82) 

(83)

Let us introduce the change of variable K= K„ cos /3. Then,

(84)

on C±. Thus, the exponential term in the plane wave solutions can be written as 

(85) 

where 

 = (K2 — K,e2)1/2 for K> Kc, 

(86) 

Therefore, if we agree to write O(K) for ƒÓ(ƒÀ(K)) and ƒÕ(ƒÀ(K)) for 1P(#(K)), we have 

(87) 

(88)

(89) 

(90)

valid for x2y2. 
 With the change of variable K= K1 cos Eq. (80) becomes

(91)

and the path of integration in the complex K-plane is simply the real axis. Similarly, 

Eqs. (81)—(83) become
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(92) 

(93) 

(94)

In the right-hand sides of Eqs. (91)—(94), cosmƒÀ and sinmƒÀ must be expressed in 

terms of K through the relations IC cosƒÀ = K and Kƒ¿sinƒÀ=•}iaƒ¿ for x2 > y2, where 

a =1 for Eqs. (91) and (93) and a =2 for Eqs. (92) and (94). 

 Equations (91) and (92) can be used to express the source potentials obtained in 

Sec. 6 in terms of the plane wave potentials ƒÓ(K) and ƒÕ(K). Similarly, Eqs. (93) and 

(94) can be used to express the displacement field due to various line sources 

obtained in Sec. 5 in terms of the plane wave solutions 1(K) and n(K). 

 From Eqs. (62)—(73), (91), and (92), we find that the source potentials 01, 

etc., can be expressed as Fourier integrals in the form

(95) 

(96)

where we have taken y1= 0. The source coefficients A0, B0, C0, and D0 obtained for 

various sources are given in Table 1. The results for the centre of dilatation are 

obtained by superposing the corresponding results for the sources (11) and (22). In 

fact, source (11) is equivalent to the centre of dilatation plus a dipole in the x1-

direction, of suitable strengths. A similar interpretation can be given for the source 

(22). 

 The displacement components u1 and u, and the stress components p12 and p22 

can be obtained from the potentials ƒ³0 and ƒµ0 through the relations [cf., Eq. (61)]

(97) 

(98) 

(99)

Equations (95)—(99) yield

(100)
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where

(101) 

(102) 

(103) 

(104)

 A close look at the coefficients given in Table 1 reveals that, in general, u1, u2. 

p12, and p,2 are discontinuous across the plane x2 =y2. This discontinuity gives a 
representation of the source which can be conveniently used in the Thomson-
Haskell matrix formulation of the problem of a line source in a multilayered half-
space. Inserting the values of the coefficients A0, B0, C0, and D0 from Table 1 in Eqs. 

(100)-(103), we get the desired jumps in u1, u2, p12, and p22 across the plane x2 =y2. 
 The results for the antiplane strain case are much simpler. Equations (41), (48). 

(91), and (92) yield

(105) 

(106)

Table 1. Source coefficients.

 [The upper sign is for x2>y2 and the lower sign is for x2 <y2. Also, 2b= 2K2-K, 2b=2K2-K22, 

A=(ƒÉ+ƒÊ)/(ƒÉ+ƒÊ).]
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(107)

Equations (105)-(107) represent displacements. The stresses p31 and p32 can be 
obtained by simple differentiation. The jumps in u3 and p32 then follow immediately. 

 SINGH and GARG (1985, 1986) studied in detail the representation of two-
dimensional static sources and obtained the jumps in the displacements and stresses 
across the horizontal plane passing through the line source. The jumps obtained 
from Eqs. (100)-(103) and (105)-(107) coincide with the corresponding results of 
SINGH and GARG (1985, 1986). 

8. A Line Source in a Uniform Half-Space 

 Let a line source of unit strength be situated at the point (0, h) of a uniform 
half-space x2> 0. We assume plane strain and a stress-free boundary, resulting in 
the boundary conditions 

p21=p22=0 at x2=0.(108) 

The potentials P° and 'F° for the line source in an unbounded medium are given by 
Eqs. (95) and (96) with );2= h. For the line source in the half-space, we assume

(109) 

(110)

where A(K), B(K), C(K), and D(K) are unknown functions to be determined from 
the boundary conditions. We find 

(111) 

(112) 

(113) 

(114) 

where 

(115) 

It is noticed from Table 1 that the coefficients A0, B0, C0, and D0 might have 
different values for x2y2; A-, B-, C-, and D- are the values of A0, B0, C0, and 
D0, respectively, valid for x2 <y2. 

 Equations (109)-(114) give the formal solution of the problem. The surface 
displacements are found to be
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(116) 

(117)

 Equations (116) and (117) are very general. On substituting the values of the 
source coefficients A- B-, C-, and D- from Table 1, we get the surface 
displacements for different line sources. The integrals in Eqs. (116) and (117) can be 
evaluated by the Cagniard-de Hoop Technique. Alternatively, one can use 
Lapwood's method of integration (LAPwOOD, 1949) to get the various pulses 

generated by the line sources under consideration. These pulses are: the P-pulse, the 
S-pulse, the surface P-pulse, the surface S-pulse, and the Rayleigh-pulse. 

9. Conclusions 

 Let us review the importance of the various results obtained. Equation (15) 
shows that the field due to an arbitrary dip-slip dislocation can be expressed in 
terms of the field due to a vertical dip-slip and that due to a 450 dip-slip. Equations 

(55)—(60) give an elegant and compact representation of various line sources in 
terms of the vector solutions of the Navier equation. Equations (62)—(73), (95), and 

(96) yield the source potentials for various sources which can be used in solving 
boundary-value problems involving cylindrical or plane-parallel boundaries. 
Finally, Eqs. (116) and (117) give the surface displacements due to an arbitrary line 
source buried in a uniform half-space. 
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