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 SUPERSHEAR ACCELERATIONS AND MACH-WAVES 
 FROM A RUPTURING FRONT 

 PART I. THEORETICAL MODEL AND IMPLICATIONS 
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 Acceleration fields in 3-D elastic media due to a propagating rupture at 
 constant super-shear velocities are evaluated. The elastodynamic Green's tensor 

 and its gradient are obtained in closed-form for arbitrary compressional and shear 
 Mach-numbers and arbitrary source time-function. It is found that the acceleration 

 field consists of three main phases: a Mach-wave, a starting phase, and a stopping 
 phase. The stationary phase approximation is used to obtain the explicit de-

 pendence of the Mach-wave peak amplitude on the source, propagation, and media 
 elements. It is shown that the Mach-wave plays a dominant role in the acceleration 

 signal of the near-field zone. 

1. Introduction 

 Observations and data analyses of ground accelerations in the near-field region 
of earthquake faults suggest that high local accelerations may be due to Mach-
waves prdduced by ruptures propagating with supershear velocities (MuRRAY, 1973; 
ARCHULETA, 1984). Moreover, observations of high-frequency near-field displace-
ments, velocities and accelerations disclose that the near-field motion is governed by 
irregularities of the slip-function and that localized details rather than global 
averages are responsible for the peak accelerations and velocities in the near-field 
(CLOUD and PEREZ, 1971; DAS and AKI, 1977). 

 Theoretical simulations of realistic earthquake sources can be grouped into a 
number of categories. BEN-MENAHEM (1961) promoted 3-D kinematic propagating 
fault models in which the source is represented as a superposition of point 
dislocations. A dislocation segment begins to move at a constant subshear velocity 
V at t= 0 and stops at a finite distance L from the point of rupture initiation. While 
moving, it separates the area of the fault surface which has slipped from that which 
has not. An approximation for the far supersonic radiation field was given by
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SAVAGE (1971). EASON et al. (1956) obtained explicit expressions for the displace-

ments due to a single localized force moving with a subshear velocity in a 3-D elastic 
medium. PAYTON (1963) generalized Eason's solution for a source that starts at a 

given time and derived the field for arbitrary Mach-numbers. Two-dimensional 
plain-strain problems with a fixed subshear source-velocity were discussed by 
FRANK (1949), ESHELEY (1949), and BURRIDGE (1973). 

 A different approach, based upon dynamical fracture mechanics, was applied 

to earthquake fault models by MADARIAGA (1983). The basic idea here is that the 
radiation of high-frequency waves is controlled by the motion of the slip-velocity 
concentrations. 

 In the present paper, we blend a new source model which is a hybrid of the 
above models. Consequently, we employ a kinematic source regime in which the 
ensuing radiation field is governed by the source's slip velocity rather than the slip 

itself. 
 In our analysis we found it more convenient to solve the inhomogeneous 

Navier vector equation with an appropriate moving-source term. We derive closed-
form expressions for the accelerations, inside and outside the shear and compres-
sional Mach-cones for an arbitrary source time-function. 

 We discuss in detail the special case of a finite line source which starts and stops 
and show that the acceleration field is composed of three main waves: the starting 

phase, the stopping phase, and the Mach-wave. The stationary phase approxi-
mation is used to obtain the explicit dependence of the Mach-wave peak amplitude 
upon the source, propagation, and the media elements. 

2. The Elastodynamic Green's Tensor in the Time Domain 

 Consider a concentrated force in a homogeneous, isotropic, unbounded, elastic 

medium, acting in the direction of the unit force a and moving along the x-axis 
with a uniform velocity V. The ensuing displacement field is a solution of the 

equation

(2.1)

where ƒ¿, ƒÀ are the intrinsic wave velocities of the medium, p is the mass density and 

Q(t) is the source time-function. In order to solve Eq. (2.1), we decompose both the 

displacement field and the source term into their irrotational and solenoidal parts in 

the form (BEN-MENAHEM and SINGH, 1981; p. 152)

(2.2) 

(2.3)
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where

Using the representations (2.2) and (2.3), we find that Eq. (2.1) is identically satisfied 

if the potentials F_c (c= ƒ¿,ƒÀ) satisfy

(2.4)

Defining the Fourier transforms

(2.5) 

(2.6) 

(2.7)

(2.8)

We note that

(2.9)

(2.10)

Putting

(2.11)

Eqs. (2.7) to (2.9) show that x(r, co) satisfies the equation

(2.12)

Equation (2.10) now reveals that a particular solution of Eq. (2.12) is

(2.13)

From Eqs. (2.8), (2.11), and (2.13), we have



350 A. BEN-MENAHEM and S. J. SINGH

(2.14)

Applying the inverse Fourier transform [Eq. (2.5)] to Eq. (2.14), we obtain

(2.15)

With the help of Eq. (2.15), we can recast Eq. (2.2) in the form

(2.16)

where the Green's tensor G is given by

(2.17)

(2.18)

Iis the unit tensor, and S_ƒÀ, is given in Eq. (2.21). 

 The spectral counterpart of Eq. (2.17) is

(2.19)

For the determination of the acceleration field @/u4/@(t), it is essential to calculate the 
second time-derivative of G. From Eq. (2.17)

(2.20)

where

(2.21)

Explicitly,
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Fig. 1. A seismic source in subshear motion. The location of the observer is 

 arbitrary. The observer at P receives at time t, a shear wave which was emitted 

 by the source when it was at the point E^+_ƒÀ, at time t^+_ƒÀ and .a compressional wave 

 which was emitted by the source when it was at the point E^+_x at time t^+_x . Note 

 that since R_x>R_ƒÀ, we have ƒÕ^+_ƒ¿> ƒÕ^+_ƒÀ

(2.22)

where

(2.23)

It may be noted that

We now have two Mach-numbers, M_x = V/ƒ¿ and M_ƒÀ = V/ƒÀ . Thus, five distinct cases 

arise, depending upon the value of V. These are:



352 A. BEN-MENAHEM and S. J. SINGH

Fig. 2. A seismic source in supershear-subcompressional motion. When the point 

 P lies inside the shear Mach-cone, i.e., when ƒÓ<ƒÓ_ƒÀ= sin^<-1>(1/M_ƒÀ), two shear 

 waves and a compressional wave are simultaneously received at it. However, if 

 P lies outside the shear Mach-cone, only the compressional wave is received.

Fig. 3. A seismic source in supercompressional motion. When ƒÓ<ƒÓ_ƒÀ= 

sin^<-1>(1/M_ƒÀ), two shear and two compressional waves are simultaneously 

 received at P. When ƒÓ_ƒÀ=sin^<-1>(1/M_ƒÀ)<ƒÓ<ƒÓ_ƒ¿=sin^<-1>(1/M_ƒ¿), only two com-

 pressional waves are received. Note that ƒÕ^-_ƒ¿<ƒÕ^-_ƒÀ.

 The geometry of the subshear motion (M_ƒÀ<1) is depicted in Fig. 1. Since 

M_ƒ¿<M_ƒÀ it is clear from Eq. (2.17) that R_ƒ¿> R_ƒÀ. Two waves are simultaneously 

received at the point P; one shear wave emitted by the source at time t^ƒÑ^+_ƒÀ (see list 

of symbols) when it was at E^+_ƒÀ and the other a compressional wave emitted by the 

source at time t-ƒÑ^+_ƒ¿ when it was at E^+_ƒ¿. The time for the shear wave from E^+_ƒ¿ to P is ƒÑ^+_ƒ¿

ƒÑ^+_ƒÀ and the time for the compressional wave from E^+_ƒ¿ to P is ƒÑ^+_ƒ¿. 

 The geometry of the supershear-subcompressional motion (M„<1 <M/3) is 

given in Fig. 2. A point P inside the shear Mach-cone [ƒÓ<ƒÓ_ƒÀ=sin^<-1>(1/M_ƒÀ)] receives 

simultaneously three waves: a shear wave emitted at time t-ƒÑ^-_ƒÀ when the source 

was at Et j , another shear wave emitted at time t-ƒÑ^+_ƒÀ when the source was at Ell , 

and a compressional wave emitted at time t-ƒÑ^+_ƒ¿ when the source was at E~;_ƒ¿. The 

point P lies on the intersection between two spherical phase surfaces which are both 

tangent to the Mach-cone and have their centres at E^-_ƒÀ and E^+_ƒÀ. Figure 3 is for the 

supercompressional motion (M_ƒ¿>1). 

 The evaluation of S_c(r, t) on the Mach-cone is given in the Appendix. 

 Consider, for example, a source with a unit-step time-dependence of the form 

Q(t) = H(t-T). Equation (2.21) then shows that

(2.24)

From Eqs. (2.22) and (2.23), we find
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Fig. 4. The function ƒ©_<Lc>, assumes value I in the shaded region bounded by the 

 Mach-cone and the sphere and ƒ©_<Lc> outside this region.

(2.25)

where

(2.26)

To evaluate the integral in Eq. (2.24), we look for the roots of the equation

(2.27)

which satisfy the condition T<t'<t. From Eq. (2.25) we note that the root 

t'=t-ƒÑ^+_c satisfies this condition in the following three cases:

two cases:

(2.28)

where ƒ©_<Lc>=1 inside the conical region (shaded in Fig. 4)

(2.29)

and ƒ©_<Lc>=0 outside the region. Of course, ƒ©_<Lc>=0 if M_c@/*8/@1. We may write

(2.30)
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Equation (2.17) yields, for Q(t) = H(t-T),

(2.31)

with S_<Lc> given by Eq. (2.28). 

3. Supershear Dipolar Sources That Start and Stop 

 So far we have been dealing with the Green's tensor which yields the field due 
to a concentrated force. We show here how the field due to a point dipolar source, 
moving in the positive x-direction with a uniform velocity V and represented by the 
moment tensor M, can be obtained. The equation of motion can be expressed in the 
form

(3.1)

where

As in section 2, we decompose the displacement field and the source term into their 

irrotational and solenoidal parts in the form

(3.2) 

(3.3)

However

(3.4)

assuming that M is a constant tensor. As before, D is the source-observer separation:

(3.5)

We thus have
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(3.6) 

(3.7)

 The substitution of Eqs. (3.2) and (3.3) into the equation of motion (3.1) 

reveals that the potentials ƒ³ and ƒµ satisfy the wave equations

(3.8)

(3.9)

Writing

(3.10)

Eqs. (3.6) to (3.9) show that satisfy E_<ƒ¿,ƒÀ>. (2.4). Knowing F_<ƒ¿,ƒÀ>, Eq. (3.10) renders 

the potentials ƒ³ and ƒµ and then Eq. (3.2) yields the displacement field. A little 

algebra leads to the relation

(3.11)

The corresponding expression for the acceleration is

(3.12)

where

(3.13)

The explicit expression for Se for the cases M_c•¬1 are given in Eq. (2.22). 

 Equations (3.6) and (3.7) are very general. These yield the source potentials ƒ³_0 

and ƒµ_0 if the moment tensor M is known. Table 1 gives the source potentials for 

various dipolar sources. In obtaining these potentials, we have made use of the 

following relations:

(3.14)

(3.15)

where D = DVD. The expressions for the potentials given in Table 1 must be 

multiplied by M_0/4ƒÎ, where M_0 is the seismic moment of the source. 

 For a point shear dislocation with normal n and slip-direction e (e • n = 0)
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Table I. The compressional and shear potentials for various dipolar sources.

 See Eq. (3.3) for definition. All expressions must be multiplied by M_0/4ƒÎ. For a dislocation 

source. 

M_0=ƒÊ•~magnitude of the slip•~fault-area .

(3.16)

Assuming Q(t) = .H(t-T), Eqs. (3.12) and (3.16) yield

(3.17)

where S_<Lc> is given in Eq. (2.28). 
 We now set up a fixed right-handed cartesian coordinate system with x-axis 

parallel to the direction of motion such that the dislocation plane coincides with the
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 Fig. 5. The functions H(t-r/ƒÀ)— H(t-r_L/ƒÀ)+2ƒ©_<OƒÀ>-2ƒ©_<LB> assumes the values 0, 

 1, or 2 depending upon the location of the observer. 

xy-plane (Fig. 5). This is known as the fault coordinate system. Let the source be at 

the point (0, y', 0) at time t= 0. Then all of our previous results hold with

We assume that

(3.18)

where denotes the slip-angle. Equation (3.17) now becomes

(3.19)

The choice of the source time-function

(3.20)

simulates a source of finite length L and propagation time T= L/ V. Q0(T) is a 
dimensionless normalization factor that will henceforth be suppressed. In the limit 
T-*0 (L-->0), we assume that Q0(T)--* To/T, so that QL(t)-+To5(t). As V-+O, 

QL(t)--+Qo(T)H(t)• 
 The acceleration for QL(t) may be expressed in the form

(3.21)

where u(o) corresponding to Q(t) = H(t) is obtained simply on putting T =0 in Eq. 

(3.19). The field thus consists of a starting phase u(o) and a stopping phase u(T), 
having opposite polarities. 

 Equations (2.28), (3.19), and (3.21) yield the following expressions for the S-
wave accelerations in the x-, y-, and z-directions.
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3.1 Strike-slip (ƒÉ)=0)

(3.22) 

(3.23)

(3.24)

where

(3.25)

and ƒ©_<LƒÀ> is defined in Eq. (2.30). 

 3.2 Dip-slip (ƒÉ=90•‹)

(3.26) 

(3.27) 

(3.28)

Similar expressions for the P-wave accelerations can be obtained without any 

difficulty. 

 The function ƒ¶_L(r, t) assumes the values 0, 1, or 2 depending upon the 

location of the observer (Fig. 6). Differentiation of ƒ¶_L(r, t) will result in the delta 

function and its first and second derivatives. For the Mach-wave, we have

(3.29)

and the differentiations implied in Eqs. (3.22) to (3.28) will yield H(Vt — x— Nod), 

ƒÂ(Vt-x-N_ƒÀ‡™), ƒÂ'(Vt-x-N_ƒÀ‡™), and ƒÂ"(Vt-x-N_ƒÀ‡™). 

 In all, we have the following arrivals:

3.3 P-wave arrivals 

Starting phase: t=r/ƒ¿. 

Stopping phase: t=T+r_L/ƒ¿. 

Mach-wave: t=(x+N_ƒ¿‡™)/ƒ¿.
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 Fig. 6. Circular cylinder coordinates associated with the stationary-phase approx-

 imation of the acceleration-field. 

 3.4 S-wave arrivals 

 Starting phase: t = r/ƒÀ. 

 Stopping phase: t= T+ r_L/ƒÀ. 

 Mach-wave: t=(x+N_ƒÀ‡™)/ƒÀ. 

 The Mach-wave arrives first. It is followed by the starting phase or the stopping 

phase depending upon the location. The points at which the starting phase and the 

stopping phase arrive simultaneously lie on one branch of the hyperbola r-r_L = cT. 

At any given time t, the points which receive the Mach-wave lie on the conical 

surface (Fig. 6)

(3.30)

4. Approximation of the Acceleration-Field in the Near-Fault Region 

 Equation (2.19) can be written in the form

(4.1)

where

(4.2)

We recall Kelvin's formula

(4.3)

where b'(s_0) = 0. Assuming M_ƒ¿<1<M_ƒÀ, we obtain
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(4.4)

(4.5)
where

(4.6)

 Because of the exponential decay,  Thus, assuming •bƒÖ•b large, 

we have the approximation

(4.7)

where

(4.8)

Under the same approximation

(4.9)

Note that components of G and •¤G are given here, for the sake of convenience, in a 

cylindrical coordinate system (x,‡™,ƒÓ) as shown in Fig. 6. 

 The acceleration field due to a displacement dislocation can now be calculated 

through the relation

(4.10)

Equations (3.16), (4.9), and (4.10) yield

(4.11)

in which the vector J depends upon the source. 

 For a strike-slip dislocation,
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(4.12)

and, for a dip-slip dislocation,

(4.13)

 Assuming Q(t'_ƒÀ)=1 and applying the inverse Fourier transform to Eq. (4.11), 

we obtain

(4.14)-

where

(4.15)

The factor e^<-pƒÖ> has been introduced to take into account the anelasticity of the 

medium. Using the integral

(4.16)

Eq. (4.14) yields

(4:17)

Since the peak of the Mach-wave arrives at t* = 0, the peak of the acceleration 

signal will have the value

(4.18)

In Eq. (4.18), the point of observation must avoid the source-location at the 

intersection of the Mach-front and the x-axis. Hence it is not valid at ‡™=0. Away 

from this axis, the Mach peak acceleration diminishes as the inverse 4th power of 

the normal distance from the line of motion and increases with the (7/2)th power of 

the dimensionless shear quality factor of the anelastic medium. In particular, for a 

shallow source (y'@/*7/@0), the Mach peak acceleration decreases as the inverse fourth 

power of the normal horizontal distance from the fault. Thus, the present 

approximation serves to show that, in effect, the major contribution to the 

acceleration field, in the near-fault zone arises from the Mach-wave and not from
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either the starting or the stopping phases. 

 Note that there is no conflict between the validity of Eq. (4.3) for high 

frequencies and the application of Eq. (4.16) over the entire frequency range: the 

amplitude of the integrand in Eq. (4.16) peaks at coo = S(3Q1 /A, and the condition 

ƒÖ_0•â1 is valid in the near-fault zone in most earth materials. 

 The final result for the peak acceleration at the time of arrival of the Mach-

wave, as given in Eq. (4.18), depends on the medium's unelasticity. This must be so 

since in a perfectly elastic medium, the arrival of the Mach-wave is marked by 

infinite amplitude which is not physical. Our result here is similar to the response of 

a linear dissipative system at resonance. 

5. Conclusions and Discussion 

 Our model and results differ from those of the previous studies in a number of 

ways: 

(1) We have derived, in closed form, the Green's tensor and its gradient for 

arbitrary shear and compressional Mach-numbers. 

 (2) In contradistinction to the common kinematic dislocation model with a 

propagating Heaviside step-function, we have used a propagating delta function 

which is proportional to the slip-velocity [i.e., the time-derivative of H(t-x/V)]. 

Thus, while the common kinematic model does not exhibit any displacement 

singularity higher than a step function, our solutions predict the arrivals of 

displacement step and delta functions. Our model predicts the arrivals of sharp 

acceleration peaks, already in the subshear region. 

 (3) We have shown that the Mach-wave plays a dominant role in the 

acceleration-field of the near-fault zone. In part II of this paper, we shall present 

numerical results that emphasize the dependence of the acceleration-field on the 

Mach-number in the near-fault zone. 
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 APPENDIX 

The Supersonic Green's Function on the Mach-Cone 

 We have shown in Eq. (2.22) that, for M_c> 1,

(A.1)

for points inside the Mach-cone and S_c(r, t)-0 for points outside the Mach-cone. 
We now wish to determine S_c(r, t) for points on the Mach-cone
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(A.2)

Returning to Eq. (2.22), we note that D(t')=0 has a double root at ƒÑ=ƒÑ=R/c, 

where

(A.3)

Now, the Dirac delta function is known to have the property

(A.4)

where ƒÑ is a double root of s(ƒÑ) = 0. The explicit form of this equation is

(A.5)

where M_c= V/c is the Mach-number and

Putting ƒÑ=t-t', Eq. (A.5) becomes

(A.6)

For M=1, Eq. (A.6) has a single root at

(A.7)

Evaluating the integral in Eq. (2.22),we have, for a point on the Mach-cone,

(A.8)

where we have used the result

(A.9)

List of Symbols
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Conventions
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